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Abstract: An important but rarely studied aspect of crop modeling is the uncertainty associated
with model calibration and its effect on model prediction. Biomass and grain yield data from a
four-year maize experiment (2008–2011) with six irrigation treatments were divided into subsets by
either treatments (Calibration-by-Treatment) or years (Calibration-by-Year). These subsets were then
used to calibrate crop cultivar parameters in CERES (Crop Environment Resource Synthesis)-Maize
implemented within RZWQM2 (Root Zone Water Quality Model 2) using the automatic Parameter
ESTimation (PEST) algorithm to explore model calibration uncertainties. After calibration for each
subset, PEST also generated 300 cultivar parameter sets by assuming a normal distribution of each
parameter within their reported values in the literature, using the Latin hypercube sampling (LHS)
method. The parameter sets that produced similar goodness of fit (11–164 depending on subset used
for calibration) were then used to predict all the treatments and years of the entire dataset. Our results
showed that the selection of calibration datasets greatly affected the calibrated crop parameters and
their uncertainty, as well as prediction uncertainty of grain yield and biomass. The high variability
in model prediction of grain yield and biomass among the six (Calibration-by-Treatment) or the
four (Calibration-by-Year) scenarios indicated that parameter uncertainty should be considered in
calibrating CERES-Maize with grain yield and biomass data from different irrigation treatments, and
model predictions should be provided with confidence intervals.

Keywords: CERES-Maize; crop cultivar parameters; model uncertainty; irrigation treatment; PEST

1. Introduction

Model parameterization is critical to the robustness of model applications across spatial and
temporal scales [1]. Uncertainty in model parameterization can greatly influence model performance
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and applications [2], such as the equifinality problem where very similar simulation results can
be obtained from different parameter values in hydrological models [3] and agricultural system
models [4–6]. The sources of model parameterization uncertainty may be related to the calibration
procedure [7], parameter interactions [5,6], likelihood function [2,8], and measured model inputs [9,10].

Many model parameterization strategies, such as decomposition, screening, space reduction [11],
and automatic local and global search procedures [12,13] have been developed to solve the
high-dimensional and sub-optimal problems that occur during optimizing model parameters.
For example, the local search strategy of gradient-based Gauss–Marquard–Levenberg (GML) procedure
was implemented in the PEST software [14], and has been used to calibrate soil hydraulic [15,16] and
crop parameters [17,18]. Global search procedures, such as the Shuffled Complex Evolution method [12],
genetic algorithms [19], simulated annealing [20], and Markov chain Monte Carlo methods [21] have
been widely applied in hydrological models. However, all of these model calibration strategies face the
problem of non-uniqueness during parameter optimizations because none of these strategies is superior
when considering model performance for multiple outputs under various experimental conditions [2].

In addition to choosing a parameterization method, it is also important to select reasonable
calibration datasets that results in lower uncertainty for model parameters, and to assess the uncertainty
associated with experimental data selection [10,22,23]. Ma et al. [18] summarized two data-selection
methods for calibrating a hydrological-agricultural model: (1) using one treatment across multiple
years and then validating against other treatments or (2) using one year of data across all treatments and
then validate against other years. Thorp et al. [24] found that the ability of CERES (Crop Environment
Resource Synthesis)-Maize to simulate maize yield was improved as more growing seasons (five seasons
vs. two seasons) were used for the cross-validation. In a recent study on calibrating a soybean model
using measured data from different numbers of field experiments, Fensterseifer et al. [25] found that
model performance was improved as the number of experiments (including experimental treatments,
seasons, and sites) used for calibration increased. However, few studies have evaluated both parameter
and prediction uncertainty associated with experimental data selection during calibration. In a previous
study from Sima et al. [23], they simply assumed simulation uncertainty to be the same as experimental
error. In general, full datasets required for model calibration are not available, whereas more limited
datasets comprised only of easily measured grain yield and biomass are more readily available
for calibrating crop cultivar parameters in crop models. However, the uncertainty in parameter
determination and model performance associated with using these limited calibration datasets has not
been fully investigated.

The objective of this study was to quantify simulation uncertainty using the uncertainty tool
(RANDPAR) in the Parameter ESTimation (PEST) algorithm and the irrigation experiment from
northeastern Colorado. Specifically, two calibration datasets of either one treatment across years or all
treatments in one year were used to quantify the uncertainty in both model calibration and prediction.
Goodness of model calibration was defined by minimizing the simulation errors of yield, biomass, leaf
area index (LAI), and soil water content (i.e., the objective function, Φ). After model calibration of crop
cultivar parameters for each sub-dataset, RANDPAR, which uses the Latin hypercube sampling (LHS)
technique, was used to sample 300 cultivar parameter sets within their respective reported ranges in the
literature. The 300 sampling size was more than the 100 recommended by others in model calibration
based on the LHS because of its high efficiency than the original Monte Carlo sampling [26,27]. Of the
300 parameter sets, those providing equivalent goodness-of-fit (within 10% of calibrated Φ according
to Moriasi et al. [28] and Ma et al. [7] for each calibration dataset were subsequently used to predict
yield and biomass for the entire dataset.

2. Materials and Methods

2.1. Filed Experimental Treatments

The experiment was conducted from 2008 to 2011 near Greeley, Colorado, USA (40.45◦ N, 104.64◦ W).
The site mainly contains Olney fine sandy loam soil (fine-loamy, mixed, superactive, mesic Ustic
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Haplargids) and is uniform throughout the 200 cm soil profile. Other soils in the field are Nunn
clay loam (fine, smectitic, mesic Aridic Argiustolls), and Otero sandy loam (coarse-loamy, mixed,
superactive, calcareous, mesic Aridic Ustorthents) [29]. Six irrigation treatments (micro-irrigation with
surface drip tubing adjacent to each row) with four replicates in a randomized block design were
implemented with each treatment meeting a specified percentage of potential crop evapotranspiration
(ET) requirements [30,31] during the growing season: 100% (T1), 85% (T2), 75% (T3), 70% (T4), 55%
(T5), and 40% (T6) of potential crop ET. The differential irrigation treatments were used to study the
response of maize growth to water deficits in the region. The amount of irrigation water to be applied
for each treatment was estimated every 3 to 6 days and based on reference ET demand, crop coefficient,
rainfall, and soil water deficit. The T1 treatment was irrigated such that water availability (irrigation
plus precipitation plus stored soil water) was adequate to meet crop water requirements, as predicted
by the reference evapotranspiration and crop coefficients (FAO-56 methodology) [30]. The remaining
treatments were irrigated to meet specified percentages of the water demand calculated for T1. Total
irrigation amounts were 46.9, 36.9, 31.3, 30.3, 21.1, and 16.7 cm in 2008; 42.7, 35.6, 30.7, 25.9, 18.7, and
12.9 cm in 2009; 38.6, 33.3, 28.3, 24.9, 18.3, and 13.0 cm in 2010; and 50.5, 40.8, 34.8, 32.6, 24.2, and
17.7 cm for treatments 1 through 6, respectively.

Maize hybrid Dekalb 52-59 (102-d relative maturity) was planted at a rate of 81,000 seeds per
hectare with 0.76 m row spacing in early May each year. A detailed description of the experiment was
provided by Ma et al. [6], and the experimental dataset and detailed methodology can be found at
US Department of Agriculture National Agricultural Library Ag Data Commons at https://data.nal.
usda.gov/dataset/usda-ars-colorado-maize-water-productivity-dataset-2008-2011 [29]. Average daily
temperature during growing season from May to October was 17.6 ◦C in 2008, 16.5 ◦C in 2009, 18.6 ◦C
in 2010, and 18.5 ◦C in 2011, respectively. The growing seasonal precipitation was 24.5 cm in 2008,
23.7 cm in 2009, 21.1 cm in 2010 and 22.1 cm in 2011, respectively. Although the seasonal precipitation
amounts were similar among the four years, the highest monthly rainfall occurred in August (14.1 cm)
in 2008. While the highest monthly rainfall occurred in June in both 2009 (8.7 cm) and 2010 (8.0 cm),
and in May in 2011 (9.6 cm).

Hourly weather data (solar radiation, precipitation, air temperature, wind speed, and relative
humidity) were recorded on site with a standard Colorado Agricultural Meteorological Network
(http://ccc.atmos.colostate.edu/~{}coagmet/) weather station. Soil water content was measured twice a
week during the growing season with a portable time-domain reflectometry moisture meter for the
0–15 cm soil layer and with a neutron attenuation moisture meter between 15 cm and 200 cm below
the soil surface at 30 cm intervals. Grain yield was measured by hand-harvesting maize ears from the
center 15 m of the center four rows of each plot, of which 10 or 15 plants were harvested for above
ground biomass measurement. Leaf area index (LAI) was estimated from leaf length and width, and
multiplying the average leaf area by plant population as described by Trout and Bausch [29].

2.2. RZWQM2 Calibrations with PEST

The Root Zone Water Quality Model (RZWQM2, version 2.6) is a process-based, one-dimensional,
field-scale model that produces detailed simulations of soil water, soil temperature, plant growth,
pesticide fate, and soil carbon and nitrogen dynamics as influenced by various agricultural management
practices [32]. The Green-Ampt equation is used for soil water infiltration and the Richards’ equation
for soil water redistribution. The modified Brooks-Corey equations [33] are used to describe the soil
water retention curve in the model. The CERES-Maize crop model incorporated into RZWQM2 is used
to simulate crop growth, water use, and N uptake in this study, where RZWQM2 provides soil water,
soil temperature, and nutrient information for the DSSAT4.0 crop models [34].

An automated parameter estimation software (PEST), described by Doherty [14], was incorporated
into RZWQM2 to facilitate model calibration. PEST uses a hybrid method of Tikhonov regularization
and truncated singular value decomposition (SVD) regularization for calibration [14]. The objective
function (Φ) is expressed in general form as [7,14]:

https://data.nal.usda.gov/dataset/usda-ars-colorado-maize-water-productivity-dataset-2008-2011
https://data.nal.usda.gov/dataset/usda-ars-colorado-maize-water-productivity-dataset-2008-2011
http://ccc.atmos.colostate.edu/~{}coagmet/
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Φ(b) = [y− y′(b)]TQ[y− y′(b)], (1)

where Q is a weight matrix, y is a vector of observations, y′(b) is a vector of simulated values produced
by the model based on parameter vector b, and T indicates matrix transpose. Both y and y′(b) have
the same dimension. Parameters that minimize this equation are attained by solving the normal
equations using the Gauss-Marquardt-Levenberg (GML) gradient search algorithm [14]. In this study,
the objective function is the sum of squared errors between experimental and simulated yield, biomass,
LAI, and soil water content.

The CERES-Maize cultivar parameters (Table 1) were selected for optimization to investigate the
effect of different sub-datasets on calibrated crop parameters and subsequent prediction of crop yield
and biomass. Other parameters (such as soil hydraulic parameters) were from previous publications
without modification [35]. The initial crop parameters and their ranges used in PEST were the same as
those in Sima et al. [23] based on reported values in the literature [7,35], except for the field capacity,
which was from Ma et al. [35] (Table 2). For model calibration, the 24 year-by-treatment data points were
sub-divided into four groups by year (Year_08, Year_09, Year_10, and Year_11) (Calibration-by-Year)
or into six groups by treatments (Treat_T1, Treat_T2, Treat_T3, Treat_T4, Treat_T5, and Treat_T6)
(Calibration-by-Treatment). Data that were not used for model calibration were used for model
validation. The overall prediction of all datasets was compared among the two calibration methods
(Figure 1).

A sensitivity analysis of model outputs (soil water content, LAI, grain yield and biomass across
all the six treatments and four years) to the crop cultivar parameters were conducted with PEST, where
a composite sensitivity of each parameter was calculated by normalized magnitude with respect to the
number of observations [14]. The composite sensitivity of any parameter can be considered as the
magnitude of the vector comprising the column of the Jacobian matrix (the derivatives of all model
outputs with respect to a particular parameter), divided by the number of observations [14]. In this
way, the effects of the different parameters (different types and magnitudes) on the model outputs can
be compared. As shown in Table 1, soil water content showed low sensitivity to all the crop parameters,
and low sensitivity of LAI to these crop parameters were also found, except for P1 and PHINT. Grain
yield and biomass showed obviously higher sensitivities to the crop parameters than soil water content
(SWC) and leaf area index (LAI) (Table 1). Of the six crop parameters, lowest sensitivities of simulated
grain yield and biomass to P2 were found for the single location simulations (Table 1).

Table 1. Sensitivity analysis of model outputs to these crop cultivar parameters, and their initial values
and ranges as reported in the literature for the CERES (Crop Environment Resource Synthesis)-maize
model in RZWQM2 (Root Zone Water Quality Model 2) [6,33].

Crop Parameter
Parameter Sensitivity Analysis Parameter Calibration

SWC LAI Grain Yield Biomass Range Initial

P1 0.004 0.23 3.43 5.38 100–450 250

P2 0.000 0.00 0.02 0.03 0–2 0.2

P5 0.003 0.06 2.80 2.38 500–1000 600

G2 0.001 0.02 2.54 1.77 440–1000 900

G3 0.001 0.03 2.90 2.06 5–16 6

PHINT 0.004 0.16 1.46 2.03 38–55 50

P1: Degree days (base temperature of 8 ◦C) from seedling emergence to end of juvenile phase (thermal degree days);
P2: Day length sensitivity coefficient; P5: Degree days (base temperature of 8 ◦C) from silking to physiological
maturity (thermal degree days); G2: Potential kernel number; G3: Potential kernel growth rate (mg per kernel per
day); PHINT: Degree days required for a leaf tip to emerge (phyllochron interval) (thermal degree days).
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Table 2. Soil horizon, soil bulk density, saturated soil water content, and calibrated field capacity used
in previous studies [6,33].

Soil Depth
(cm)

Soil Bulk Density
(g cm−3)

Saturated Soil Water
Content (cm3 cm−3)

Field Capacity
(cm3 cm−3)

0–15 1.492 0.437 0.231
15–45 1.492 0.437 0.242
45–75 1.492 0.437 0.230

75–105 1.568 0.408 0.206
105–135 1.568 0.408 0.205
130–165 1.617 0.390 0.263
160–190 1.617 0.390 0.310
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Figure 1. A schematic diagram for quantifying the uncertainty of crop parameters in CERES-Maize
model and model predictions of yield and biomass for all the 24 year-treatment datasets (including soil
water content (SWC), leaf area index (LAI), grain yield and biomass) in Table 3.

2.3. Unicertainty Analysis of Crop Parameters and Model Predictions

To quantify the uncertainties in model calibration and prediction, a Jacobian matrix was generated
based on the optimized parameters from calibration by PEST’s RANDPAR utility, which was used to
run the PREDUNC7 utility in PEST for the posterior covariance matrix [14]. During this procedure
(Figure 1), 300 cases of six crop cultivar parameters were generated from LHS by assuming a normal
distribution of each parameter within their respective reported ranges in the literature (Table 1).
The LHS is modified from Monte Carlo method and showed higher efficiency than the original Monte
Carlo simulation in sampling parameters with a given distribution [26]. Ma et al. [27] recommended
a sampling size of 100 to quantify RZWQM sensitivity to both soil and crop cultivar parameters.
The 300 cases generated by LHS method in this study should be adequate for the model uncertainty
analysis considering the small crop cultivar parameter number (6 parameters in Table 1) and the highly
efficient LHS method [26,27]. The parameter sets that provided Φ values within 10% of calibrated
Φ (minimum Φ) values for the calibrated sub-dataset were selected to predict yield and biomass of
the entire datasets (Figure 1), because we assumed a 10% deviation from the calibrated results as
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acceptable given the large experimental error in field measurements [7,28]. The selected cases within
10% of calibrated Φ may be different but reflect the model uncertainties associated with these different
calibration sub-datasets, which were then used to quantify the uncertainty of crop parameters and
predictions of yield and biomass for each calibrated sub-datasets (Figure 1).

The uncertainty of crop parameters associated with the scenarios within 10% of calibrated Φ,
and subsequent prediction of yield and biomass were quantified with statistics of RMSE (root mean
squared error, Equation (2)), relative RMSE (RRMSE = RMSE/mean, %) and coefficient of variation
(CV, %; Equation (3)). In addition, the confidence intervals for the model predictions based on these
selected cases were used to quantify the uncertainty in model predictions.

RMSE =

√√
1
n

n∑
i=1

(Pi −Oi)
2, (2)

CV = SD/Vavg × 100%, (3)

where Pi is the ith simulated yield or biomass; Oi is the ith observed yield or biomass; n is the number
of data pairs; SD is the standard deviation of the variable of interest and Vavg is the average value of
the variable of interest.

3. Results and Discussion

3.1. Uncertainty in Model Calibration among Sub-Datasets

Previous simulations with the same model and datasets showed reasonable predictions of soil
water contents, LAI, and crop phenology [6,7]. There was no great difference in simulated soil
water content (RMSE = 0.034–0.035 cm3 cm−3) and LAI (RMSE = 0.84–1.01 cm2 cm−2) among these
different calibration sub-datasets, as confirmed by the low sensitivities of these model outputs to
crop cultivar parameters (Table 1). The RMSE values for simulated soil water contents and LAI
were close to the previous simulation with RMSE = 0.030–0.039 cm3 cm−3 and 0.78–0.98 cm2 cm−2,
respectively [6]. The RMSE values for the predicted crop anthesis date ranged from 2.6 to 6.0 days
(average value = 4.5 days) for the Calibration-by-Year and from 3.4 to 5.1 day (average value = 4.3 days)
for the Calibration-by-Treatment, which were also comparable to previous simulations using the same
model and datasets [6,7]. The higher simulated RMSE values among the four Calibration-by-Year
scenarios than the six Calibration-by-Treatment scenarios were expected since only one year data were
used for the Calibration-by-Year.

For both Calibration-by-Year and Calibration-by-Treatment methods, PEST-optimized P1 (thermal
time from seedling emergence to end of juvenile phase) and PHINT (thermal time for a leaf tip
to emerge) had the lowest CV values, followed by P5 (grain filling duration, thermal time from
silking to physiological maturity), G2 (potential kernel number), G3 (potential kernel growth rate),
and P2 (day length sensitivity coefficient), among the individual scenarios in each group (Table 3).
The high variability among Calibration-by-Year (CV = 94.8%) and among Calibration-by-Treatment
(CV = 124.8%) for P2 indicated high uncertainty associated with the calibration data (grain yield and
biomass) from different years or treatments but same location. The high uncertainty of P2 was mainly
due to the low sensitivity of simulated grain yield and biomass to P2 under the current experimental
conditions, and DeJonge et al. [4] also reported low sensitivity of grain yield and LAI to P2 and
recommended that the default value of this parameter be used. Therefore, calibrating the parameter of
P2 in CERES-Maize model should be caution especially using measured data from a single location.
The average calibrated cultivar parameters between the two calibration methods were similar for P1,
P2, and PHINT (Table 3). The other crop yield-related parameters (P5, G2, and G3) varied considerably
between the two calibration methods and among the different calibration scenarios for each method
(e.g., Year_08-Year_11 or Treat_T1-Treat_T6, Table 3), which indicated their high uncertainties when
calibrating the model using the final crop yield and biomass. However, these parameter uncertainty
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could be reduced if more yield related measurements (such as kernel weight and kernel number) were
available. The higher CV values among Calibration-by-Year than among Calibration-by-Treatment for
P5 (26.5% vs. 14.0%) and G2 (28.1% vs. 22.8%) suggested higher uncertainty due to weather variability
than to irrigation amounts. Another crop yield related parameter, G3, showed slightly lower CV values
among Calibration-by-Year than among Calibration-by-Treatment (39.0% vs. 44.5%, Table 3), mainly
due to the higher calibrated G3 value (reaching the upper end of the range of acceptable values for G3)
for Treat_T6 calibration scenarios.

Similar to the results of Sima et al. [23], PEST was able to calibrate biomass and yield well when
calibrating the model with either all of the treatments in one year (Calibration-by-Year) or one treatment
in all years (Calibration-by-Treatment). The RMSEs for simulated grain yield and biomass were
1232–2560 kg ha−1 and 1817–2819 kg ha−1, respectively, for the Calibration-by-Year scenarios, and
were 876–1194 kg ha−1 and 1542–2068 kg ha−1, respectively, for Calibration-by-Treatment scenarios
(Table 4). The corresponding RRMSE values were 15%–30% (grain yield) and 11%–16% (biomass) for
the Calibration-by-Year scenarios and 10%–14% (grain yield) and 9%–12% (biomass) for Calibration–by-
Treatment scenarios.

Across the four Calibration-by-Year scenarios (Year_08 to Year_11, Table 4), the RMSEs showed
higher variability for grain yield (CV = 35%) than for aboveground biomass (CV = 20%). The calibration
with the sub-dataset of Year_09 produced slightly higher RMSE and RRSME values for both grain
yield and biomass, compared with other years (Year_08, Year_10, and Year_11, Table 4). Across the six
Calibration-by-Treatment scenarios (Treat_T1 to Treat_T6) (Table 4), the RMSE values showed lower
variabilities (CV = 11%) for both grain yield and biomass, compared with the Calibration-by-Year
results. These results indicated lower uncertainty by the method of Calibration-by-Treatment than that
of Calibration-by-Year, which agrees with previously published results [23–25].
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Table 3. Calibrated cultivar parameter values, and the averaged cultivar parameter values and their coefficients of variation (CV, %) among the selected Φ cases (11–164
cases with Φ values within 10% of calibrated Φ values for each scenario) from the 300 cases generated by Latin hypercube sampling (LHS), for the Calibration-by-Year
and Calibration-by-Treatment.

Calibration Methods Calibration
Scenarios

Calibrated Parameter Values with PEST * Averaged Parameter Values from the Selected Φ Cases within 10% of Calibrated Φ

Values and Their CV Values (in Parentheses, %) **

P1 P2 P5 G2 G3 PHINT Case
Numbers P1 P2 P5 G2 G3 PHINT

All treatments in one year
(Calibration-by-Year)

Year_08 283.3 0.76 1000 450 16.0 47.6 44 287.2 (6.6) 0.8 (35.6) 904 (15.3) 458 (6.2) 15.1 (6.9) 43.6 (5.6)

Year_09 244.5 0.06 617 659 8.5 38.0 50 241.9 (2.7) 0.1 (35.0) 669 (11.8) 623 (26.4) 9.0 (19.8) 38.1 (0.9)

Year_10 255.9 0.20 555 911 9.6 53.6 74 248.4 (4.7) 0.2 (37.1) 544 (3.5) 792 (22.5) 12.2 (21.0) 53.1 (2.5)

Year_11 264.1 0.22 633 967 8.2 50.3 151 254.4 (5.5) 0.2 (57.5) 667 (3.9) 838 (16.6) 9.9 (22.0) 49.8 (2.0)

Average 259.6 0.29 681 777 9.7 47.9 258.0 (4.9) 0.3 (41.3) 696 (8.6) 678 (17.9) 11.6 (17.4) 46.2 (2.7)

CV *** 5.8 94.8 26.5 28.1 39.0 12.4 7.8 99.5 21.6 26 23.3 14.4

One treatment for all years
(Calibration-by-Treatment)

Treat_T1 258.4 0.19 757 997 5.7 44.9 77 252. (2.1) 0.2 (20.6) 755 (3.5) 981 (5.0) 5.8 (7.3) 44.2 (3.0)

Treat_T2 239.9 0.21 889 1000 5.6 43.2 140 238.5 (0.9) 0.2 (31.3) 958 (6.1) 966 (4.8) 5.5 (9.1) 39.8 (5.4)

Treat_T3 279.3 0.06 687 893 8.3 45.3 11 273.5 (3.5) 0.1 (79.5) 716 (5.4) 856 (14.6) 8.3 (17.6) 44.5 (3.1)

Treat_T4 237.3 0.01 936 951 6.8 43.5 45 241.8 (7.3) 0.02 (58.4) 931 (8.8) 916 (12.3) 6.7 (14.8) 42.1 (4.8)

Treat_T5 249.9 0.20 825 1000 7.0 43.8 99 241.1 (4.2) 0.2 (62.8) 986 (4.3) 970 (6.4) 7.0 (9.7) 40.2 (4.5)

Treat_T6 266.9 1.03 1000 441 16.0 39.8 164 251.1 (4.9) 1.0 (43.5) 839 (17.9) 476 (14.9) 15.5 (5.9) 38.4 (1.9)

Average 256.5 0.27 831 879 8.1 43.8 249.7 (3.8) 0.3 (49.3) 864 (7.6) 861 (9.7) 8.1 (10.7) 41.5 (3.8)

CV *** 5.9 124.8 14 22.8 44.5 4.7 5.2 128.1 13.0 22.6 46.0 6.0

* P1: Degree days (base temperature of 8 8 ◦C) from seedling emergence to end of juvenile phase (thermal degree days); P2: Day length sensitivity coefficient; P5: Degree days (base
temperature of 8 ◦C) from silking to physiological maturity (thermal degree days); G2: Potential kernel number; G3: Potential kernel growth rate (mg per kernel per d); PHINT: Degree
days required for a leaf tip to emerge (phyllochron interval) (thermal degree days). ** the CV values were calculated from the selected Φ cases. *** the CV values were calculated among the
four scenarios for Calibration-by-Year or among the six scenarios for Calibration–by-Treatment.
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Table 4. The RMSE (root mean square error, kg ha−1) and relative RMSE (RRMSE, %) values for yield and biomass predictions using Parameter ESTimation
(PEST) optimized cultivar parameters or LHS sampled cultivar parameters (11–164 cases with Φ values within 10% of calibrated minimum Φ values), for the
Calibration-by-Year and Calibration-by-Treatment.

Calibration Methods
Calibration

Scenarios with
PEST

Yield and Biomass Predictions by PEST
Optimized Parameters Selected

Case
Numbers

Yield and Biomass Predictions with the Optimized Parameters from the
Selected Cases within 10% of Calibrated Φ Values

Yield Biomass Yield Biomass

RMSE * RRMSE * RMSE * RRMSE * RMSE ** RRMSE ** CV *** RMSE ** RRMSE ** CV ***

All data Initial 2964 35 3403 20

Calibration-by-Year;
All treatments (T1–T6)

in one year

Year_08 1366 16 1817 11 44 1350 16 11 1770 10 9
Year_09 2560 30 2819 16 50 2337 28 47 2607 15 19
Year_10 1232 15 2408 14 74 1256 15 15 2610 15 9
Year_11 1624 19 1995 12 151 984 12 11 1804 11 4

Average 1695 20 2260 13 1482 17 21 2198 13 10

Calibration-by-Treatment;
One treatment for all

years (2008–2011)

Treat_T1 1078 13 1882 11 77 1139 13 10 1945 11 6
Treat_T2 984 12 2068 12 140 1117 13 9 2074 12 9
Treat_T3 876 10 1568 9 11 865 10 7 1552 9 6
Treat_T4 1194 14 1813 11 45 1134 13 9 1929 11 11
Treat_T5 1108 13 1542 9 99 1332 16 15 1679 10 6
Treat_T6 1158 13 1823 11 164 1121 13 14 1806 11 19

Average 1066 12 1783 11 1118 13 11 1831 11 10

* RMSE and RRMSE were calculated from all data sets (24 year-by-treatment data points) for each calibration scenario. ** RMSE and RRMSE values were calculated from all data sets
(24 year-by-treatment data points) for each calibration scenario and then were averaged across the selected Φ cases (11–164 cases) for each calibration method. *** CV (coefficient of
variation, %) values were calculated among the selected Φ cases (11–164 cases) for each calibration method.
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3.2. Uncertainty in Model Predicitions Based on Calibration-By-Year Method

Among the 300 sampled cultivar parameter sets, 44, 50, 74, and 151 sets simulated Year_08,
Year_09, Year_10, and Year_11 sub-datasets adequately within 10% of calibrated minimum Φ values,
respectively. The variability in crop parameters among the selected Φ cases for each Calibration-by-Year
scenario is shown in Table 3 and Figure 2. Across the four calibration scenarios, the averaged parameter
values from the selected Φ cases were relatively stable for P1 (CV = 7.8%) and PHINT (CV = 14.4%),
and varied greatly for P2 (CV = 99.5%). The CV values were 21.6% for P5, 25.6% for G2, and 23.3% for
G3. These variations were similar to those during PEST optimization as shown in Table 3. For the
Year_08 sub-dataset, G2 and G3 were relatively stable among the scenarios with CV values of 6.2%
and 6.8%, respectively, whereas they varied greatly among the Φ cases for other three sub-datasets
(CV = 16.6%–26.4% for G2 and 17.4%–22.0% for G3, Table 3). Opposite trends were true for P1, P2, P5,
and PHINT across the calibration years, with high variation among the cases for Year_08 (CV = 6.6, 35.6,
15.3, and 5.6%, respectively), and low variation for other calibration years (Figure 2 and Table 3). This
result showed high parameter uncertainty associated with the compensations among these cultivar
parameters when calibrating them using final grain yield and biomass data only.
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Figure 2. Variability in optimized maize cultivar parameters (P1, P2, P5, G2, G3, and PHINT as defined
in Table 1) among the selected cases with Φ (objective function) values within 10% of calibrated minimum
Φ values from the 300 cases generated by Latin hypercube sampling (LHS) for each Calibration-by-Year
scenario. The boxplots show the minimum and maximum values (asterisks), medians (lines), and
means (dots). The 25% and 75% percentiles are shown as the tops and bottoms of the boxes, and the 5%
and 95% percentiles are shown as the whiskers below and above the boxes.
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The RMSE values for simulated grain yield among the selected Φ cases ranged from 918 to
1782 kg ha−1, 806 to 2836 kg ha−1, 1006 to 1814 kg ha−1, and 773 to 1651 kg ha−1 with CV values
of 11%, 47%, 15%, and 11%, for Year_08, Year_09, Year_10, and Year_11, respectively (Figure 3).
The corresponding RMSEs for simulated aboveground biomass ranged from 1307 to 1942 kg ha−1,
1465 to 3285 kg ha−1, 2141 to 3176 kg ha−1, and 1614 to 2087 kg ha−1, with CV values of 9%, 19%,
9%, and 4% (Figure 3). Among the four calibration scenarios, higher RMSE and RRMSE values for
both grain yield and biomass with higher variation (higher CV values) were simulated for Year_09
than for other calibration years (Figure 3 and Table 4). This result was generally consistent with the
optimization results with different calibration years (Table 4) and was probably due to the higher
variation in the calibrated parameters of G2 and G3 among the selected Φ cases in 2009 (CV values of
19.8%-26.4%) than in other years (CV values of 6.2%–22.0%) (Figure 2 and Table 3).
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Figure 3. Box plots for RMSEs (Root Mean Square Error, kg ha−1) for simulated grain yield (a)
and biomass (b) across the selected cases within 10% of calibrated minimum Φ values from the
300 cases generated by the Latin hypercube sampling (LHS) for Year_08, Year_09, Year_10, and Year_11.
The boxplots show the minimum and maximum (asterisks), medians (lines), and means (dots). The 25%
and 75% percentiles are shown as the tops and bottoms of the boxes, and the 5% and 95% percentiles
are shown as the whiskers below and above the boxes.

The uncertainty in yield and biomass predictions in terms of CV among the selected Φ cases
is generally lower for calibration than for validation (Figure 4). Among the four calibration year
scenarios, predicted uncertainty in yield and biomass was higher for Year_09 and lower for Year_11.
Year_09 greatly under-predicted crop yield and biomass than other three years (Year_08, Year_10,
and Year_11; Figure 4a,c,d and Figure 4e,g,h). Year_08 greatly under-predicted grain yield in 2009
(Figure 4b) but over-predicted biomass in 2010–2011 (Figure 4g,h). Year_10 greatly under-predicted
grain yield and biomass in 2011 (Figure 4d,h). Year_11 showed better yield and biomass predictions
with lower uncertainty and lower RMSEs compared with the other three years (Figure 4 and Table 4).
In addition, the uncertainty of predicted biomass was generally lower than the uncertainty in predicted
grain yield (Figure 4a–d vs. Figure 4e–h; Table 4).
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Figure 4. Experimental and simulated grain yield (a–d) and biomass (e–h) for Year_08, Year_09, Year_10,
and Year_11 based on the Calibration-by-Year method (Table 3). The vertical bars and shaded areas
are ±1 Standard Deviation (SD) around the mean for experimental and simulation data, respectively.
The SD values was calculated based on the replicates for measured data and on the selected Φ cases for
simulated data.

3.3. Uncertainty in Model Predicitons Based on Calibration-by-Treatment Method

There were 77, 140, 11, 45, 99, and 164 cases within 10% of calibrated Φ values for the Treat_T1
to Treat_T6 sub-datasets, respectively. The crop parameter variability among the selected cases
for the Calibration-by-Treatment method was lower (more stable) compared with that for the
Calibration-by-Year method (Figures 2 and 5; Table 3). The CV values were below 15% for most of
the crop parameters with the exception of P2 which had CV values from 20.6% to 79.5% for the six
Calibration-by-Treatment scenarios (Figure 5; Table 3). Among the six calibration scenarios (Figure 5),
the average crop parameters from the selected Φ cases showed similar variability to the PEST-optimized
crop parameters, with CV values of 5.2% for P1, 128.1% for P2, 13.0% for P5, 22.6% for G2, 46.0% for
G3, and 6.0% for PHINT (Table 3).

The calibration of Treat_T6 resulted in higher values of P2 and G3 but lower values of G2 among
the selected Φ cases, compared with the other calibration treatments (Figure 5 and Table 3), which
suggested high uncertainty in optimized crop parameters when the model was calibrated with the most
severe water stress treatment (i.e., Treat_T6, irrigated to replace only 40% of potential crop ET). If only
considering the no water stress or lower water stress treatments for calibration (i.e., Treat_T1-Treat_T5),
the variability in crop parameters across the six Calibration-by-Treatment scenarios were reduced
considerably with CV values below 16%.
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Figure 5. Variation in optimized maize cultivar parameters (P1, P2, P5, G2, G3, and PHINT as defined
in Table 1) among the selected cases within 10% of calibrated Φ values from the 300 cases generated
by the Latin hypercube sampling (LHS) for Treat_T1 to Treat_T6 in Table 3. The boxplots show the
minimum and maximum values (asterisks), medians (lines), and means (dots). The 25% and 75%
percentiles are shown as the tops and bottoms of the boxes, and the 5% and 95% percentiles are shown
as the whiskers below and above the boxes.

Compared with the Calibration-by-Year (Figure 3), the RMSEs among the selected Φ cases were
generally lower for both grain yield (average RMSE values: 1118 vs. 1482 kg ha−1) and biomass
(average RMSE values: 1831 vs. 2198 kg ha−1) using the Calibration-by-Treatment method (Table 4 and
Figure 6). The variability among the selected Φ cases for the Calibration-by-Treatment was lower for
simulated grain yield (average CV values: 11% vs. 21%) but similar for simulated biomass (average
CV values: 10% vs. 10%), compared with that for the Calibration-by-Year (Table 4). These results
indicated a lower uncertainty in yield and biomass predictions based on the Calibration-by-Treatment
method than that based on the Calibration-by-Year method. The estimated uncertainty in yield and
biomass prediction (CV values from 7%–47% for grain yield and 4%–19% for biomass) were generally
higher than measurement error of 7.5%, which suggested that the model could have performed even
better if the higher simulation uncertainty in this study had been used in the F-test of Sima et al. [23].

Besides higher CV of crop parameters, the RMSE values for yield and biomass prediction showed
higher variability among the selected Φ cases for Treat_T6 (CV = 14% for grain yield and CV = 19%
for biomass) (Table 4 and Figure 6). Therefore, calibration data from severe water stress treatments
could result in higher uncertainty of model parameters (Figure 5) and predictions of yield and biomass
(Figure 6). Consequently, data acquired from less water stressed treatments should be used for
calibration, as recommended by Boote et al. [36]. Reduced uncertainty for predicting crop yield and
biomass can be obtained by calibrating two treatments across multiple years (such as both T1 and T6
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across the four years) as confirmed by a previous simulation study on deficit irrigation management in
the North China Plain [37].
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Figure 6. Box plots for RMSE (Root Mean Square Error, kg ha-1) values for simulated grain yield (a)
and biomass (b) calculated from the selected cases within 10% calibrated minimum Φ values from
the 300 cases generated by the Latin hypercube sampling (LHS) for Treat_T1 to Treat_T6 (Table 3).
The boxplots show the minimum and maximum (asterisks), medians (lines), and means (dots). The 25%
and 75% percentiles are shown as the tops and bottoms of the boxes, and the 5% and 95% percentiles
are shown as the whiskers below and above the boxes.

Further comparisons of the uncertainty in model prediction estimated from standard deviations
among these selected Φ cases is shown in Figure 7. Similar to the uncertainty in Calibration-by-Year
(Figure 4), lower uncertainty was generally simulated for calibration than for validation, and for
biomass prediction (Figure 7e–h) than for grain yield prediction (Figure 7a–d). Compared with the
Calibration-By-Year results, lower uncertainty in predicted grain yield (average CV values of 11% and
21%) but similar uncertainty in predicted biomass (average CV values of 10% and 10%) were found for
the Calibration-by-Treatment (Figure 4 vs. Figure 7; Table 4). Among the six Calibration-by-Treatment
scenarios, higher uncertainty in yield and biomass prediction occurred for Treat_6 (CV = 19%) than for
Treat_T1-Treat_T5 (CV = 6%–11%; Table 4). The high prediction uncertainty was simulated mainly
for the high irrigation treatments with over-predicted grain yield and biomass (i.e., Treat_1-Treat_2 in
2010–2011, Figure 7c,d,g,h). Similarly, over-predicted grain yield for Treat_1-Treat_2 in 2008–2011 was
also found for the Treat_T4 and Treat_T5 (Figure 7c,d). On the other hand, the Treat_T1 and Treat_T2
with low uncertainties also greatly under-predicted grain yield for the low irrigation treatments
(Figure 7a–d), which was in agreement with previous study with the CERES-Maize model as reported
by Marek et al. [38] and Liu et al. [39]. The worse simulations after model calibrations as shown
in Figures 4 and 7, partly due to only part of the datasets for calibration, had little effect on the
model uncertainty assessment since the overall errors (RMSE and RRMSE) from both calibration and
validation were used for each calibration scenario (Figure 1).
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Figure 7. Experimental and simulated yield (a–d) and biomass (e–h) for Treat_T1 to Treat_T6 based on
the Calibration-by-Treatment method (Table 3). The vertical bars and shaded areas are ±1 Standard
Deviation (SD) around the mean for experimental and simulation data, respectively. The SD values was
calculated based on the replicates for measured data and on the selected Φ cases for simulated data.

4. Conclusions

In this study, we demonstrated how simulation uncertainty varied with data selection for model
calibration using PEST optimization algorithm and the LHS sampling technique. The results showed
that the crop cultivar parameters calibrated using experimental data from one treatment (full irrigation
or deficit water stress treatments) across all four years (Calibration-by-Treatment method) resulted
in better yield and biomass predictions than those derived using data from all treatments in one
year (Calibration-by-Year method). Higher variation in calibrated crop cultivar parameters among
the selected Φ cases (within 10% of calibrated Φ values) were simulated for the Calibration-by-Year
method than for the Calibration-by-Treatment method. These results indicated that uncertainty in
model prediction was due more to year variability than to treatment effects (irrigation) under the
current experimental conditions. Therefore, when crop parameters are calibrated from measured yield
and biomass only, parameter uncertainty should be reported and used to generate confidence intervals
of model predictions resulting from parameter uncertainty. Our results also suggested that simulation
uncertainty could be reduced when the model was calibrated with experimental data covering a wide
range of management and weather conditions.
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