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Abstract: Early warning of detrimental weather and climate (particularly drought) on forage
production would allow for tactical decision-making for the management of pastures, supplemental
feed/forage resources, and livestock. The standardized precipitation and evaporation index (SPEI)
has been shown to be correlated with production of various cereal and vegetable crops, and with
above-ground tree mass. Its correlation with above-ground grassland or forage mass (AGFM) is
less clear. To investigate the utility of SPEI for assessing future biomass status, we used biomass
data from a site on the Konza Prairie (KP; for years 1984–1991) and from a site at the United States
Department of Agriculture-Agricultural Research Service’s (USDA-ARS) Grazinglands Research
Laboratory (GRL; for years 2009–2015), and a publicly-available SPEI product. Using discriminant
analysis and artificial neural networks (ANN), we analyzed the monthly timescale SPEI to categorize
AGFM into above average, average, and below average conditions for selected months in the grazing
season. Assessment of the confusion matrices from the analyses suggested that the ANN better
predicted class membership from the SPEI than did the discriminant analysis. Within-site cross
validation of the ANNs revealed classification errors ranging from 0 to 50%, depending upon month
of class prediction and study site. Across-site ANN validation indicated that the GRL ANN algorithm
better predicted KP AGFM class membership than did the KP ANN prediction of GRL AGFM
class membership; however, misclassification rates were ≥25% in all months. The ANN developed
from the combined datasets exhibited cross-validation misclassification rates of ≤20% for three of
the five months being predicted, with the remaining two months having misclassification rates of
33%. Redefinition of the AGFM classes to identify truly adequate AGFM (i.e., average to above
average forage availability) improved prediction accuracy. In this regard, results suggest that the
SPEI has potential for use as a predictive tool for classifying AGFM, and, thus, for grassland and
livestock management. However, a more comprehensive investigation that includes a larger dataset,
or combinations of datasets representing other areas, and inclusion of a bi-weekly SPEI may provide
additional insights into the usefulness of the SPEI as an indicator for biomass production.

Keywords: forage management; above ground biomass; standardized precipitation and evaporation
index (SPEI)

1. Introduction

Forage-based agricultural systems in the US Southern Plains (SP) states of Kansas, Oklahoma,
and Texas are vulnerable to climate extremes, especially drought [1]. According to References [2–4],
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the beef cattle industry in these states accounted for ~$26 billion US in total agricultural sales in 2012.
With respect to US cattle production, Texas, Kansas, and Oklahoma ranked 1, 3, and 5, respectively,
in production of all cattle in 2017 [5]. Combined, these states accounted for 21.3 million head of cattle
and contained 55 million ha of grass and range lands in 2012 [2–4]. As with most other agricultural
systems, extremes in weather conditions can adversely impact production. For example, the drought
of 2011 caused ~$7.6 US billion in agricultural losses in Texas alone [6]. Early warning of potential
detrimental effects of weather and climate (particularly drought) on forage production would allow for
tactical decision-making for the management of pastures and/or livestock (e.g., timely implementation
of pasture rotations, adjustment of stocking density, advanced notice of possible needs of earlier
supplemental feeding, or acquisition of additional forage resources).

Precipitation, soil water content, and evapotranspiration (ET) are key variables affecting crop
yield and biomass production. The amount and timing of rainfall in relation to plant development
clearly has an impact on crop yields and biomass production [7–9]. However, not all precipitation
successfully infiltrates the soil, and that which does may percolate to depths beyond the reach of plant
root systems. Many investigators have also shown that the amount of soil water greatly affects crop
yield [10–12] and other grain crops and grasslands [13], but such measurements are not routinely
collected and recorded at most locations.

Over the last several decades, numerous indices and indicators of drought have been developed
to assess the onset/end, extent, and severity of drought. These indices or indicators may be classified as
meteorological (e.g., the Palmer Drought Severity Index [14] and the Standardized Precipitation Index
(SPI) [15]); may be designed to reflect soil moisture conditions (e.g., Soil Moisture Anomaly [16]) or the
status of surface hydrology (e.g., the Standardized Streamflow Index [17]); or may be based on remotely
sensed data (e.g., the Evaporative Stress Index [18]). A more complete listing of indicators may be
found in References [19]. The standardized precipitation and evaporation index (SPEI, [20]), which
builds upon the methodology used to develop the SPI, is a water-balance drought index based on the
difference between precipitation (water supply) and potential evapotranspiration (ETp, water demand).
It has been suggested that the SPEI may be functional for assessment of agricultural drought and,
hence, biomass production [21,22]. Values of the SPEI may be positive (wet conditions) or negative (dry
conditions), and are interpreted as the number of standard deviations away from the mean conditions.
The SPEI is scalable over time periods of 1 to 48 months (or longer). For example, a 3 month SPEI value
calculated for June (i.e., 3SPEI6) would represent the number of standard deviations (+/−) from the
mean for the April–June time period. This scalability allows assessment of the cumulative effects of
local weather/climate for time periods of various lengths.

The 1 month SPEI has been shown to closely follow the decline in soil water content, gross
primary productivity, and ET measured for maize grown near Mead, NE, USA [23], and 1, 3,
and 6 month timescale SPEIs were found to correlate well with biomass production for several different
climate/vegetation regimes [24]. Several drought indices were evaluated by Reference [25], and the
revised SPEI with crop-specific potential ET was found to follow the trends and magnitudes of water
demand for several irrigated summer crops grown in the Texas High Plains in the USA. A linear
regression model, based on a time-series of SPEI (April through September) values, accounted for
≈59% of the variability in yield for several vegetable crops for a study site in the Czech Republic [26].
This study was followed by another assessment [27], and it was shown that the SPEI, computed at
various time scales, was correlated with productivity for 11 different crops grown in the Czech Republic.
These investigators [27] found that the correlations between the SPEI and crop productivity were
different for each crop and for different SPEI timescales, with the greatest correlation (r) achieved for
cereal crops (r = 0.52–0.60; for a monthly timescale SPEI for the months May and June). Above-ground
deciduous tree biomass for Mediterranean forests correlated significantly (r = 0.55 and 0.67, respectively)
with the September and December SPEI [28] for Mediterranean forests, and it was shown that the
interannual variability of above-ground tree (evergreen) mass in the Swiss Alps was also correlated
with SPEI [29]. In terms of grassland above-ground mass, correlation has been reported between
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the 3, 6, 12, and 24 month timescale SPEI and grassland production in China [30], and it was shown
that the monthly scale SPEI for July through September was better related to biomass production for
grasslands and shrublands than SPEIs at other timescales [31]. However, Reference [32] assessed the
SPEI’s sensitivity to drought for six grasslands in the central US, and found no statistically significant
relationships. These investigators also indicated that legacy effects of the previous (calendar) year’s
rainfall contributed little to biomass production in the following year. This lack of impact of the
previous year’s rainfall on the following year’s biomass production was also noted for grasslands in
central Oklahoma, USA [33,34].

Given the inconsistent results noted in the literature, and the probability of non-significant legacy
effects of the previous calendar year’s rainfall on grassland biomass production, we further examined
the relationship of SPEI with grassland production in the Southern Plains of the US. More specifically,
our objectives were: (1) to determine if the monthly-scale SPEIs obtained in the early part of the
calendar year can be used to classify above-ground forage biomass (AGFM) into above average,
below average, and average conditions for months later in the grazing season, and (2) to determine if
successful assessment at one location can be directly applied to another location with similar forage
and climatic conditions. If successful, application of the SPEI in this way could provide an early
warning of probable shortfalls in forage production for grassland and livestock managers, and may be
useful as a grassland management tool.

2. Materials and Methods

2.1. Study Sites

The study was conducted using data collected at Konza Prairie (KP) Long-Term Ecological
Research site near Manhattan, Kansas, USA (39◦06′0.38” N, 96◦36′29.5” W), and at the US Department
of Agriculture’s Agricultural Research Service Grazinglands Research Laboratory (GRL), located
in El Reno, Oklahoma, USA (35◦33′29” N, 98◦01′50” W) (Figure 1). The two sites are similar in
that they both belong to the Level 1 (Great Plains) and Level 2 (South Central Semi-Arid Prairie)
ecoregions, as defined by the US Environmental Protection Agency (https://www.epa.gov/eco-research/

ecoregions-north-america). Additionally, both sites fall within the Koeppen–Geiger (http://koeppen-
geiger.vu-wien.ac.at/usa.htm) Cfa climate classification (warm temperate, fully humid, hot summer).
The 30 year (1981–2010) annual average (“normal”) rainfall at the KP is ~904 mm, and ~913 mm at the
GRL. The normal maximum air temperatures at the KP and GRL in January and July are 5 and 33.3,
and 9.0 and 34.1 ◦C, respectively (data available at https://www.ncdc.novv.gov/normalsPDFaccess/).
Warm season perennial grasses dominate both sites, with the most abundant being big bluestem
(Andropogon gerardii Vtiman), little bluestem (Schizacyrium scoparium, (Michx.) Nash), Indiangrass
(Sorghastrum nutans (L.) Nash), and switchgrass (Pancium virgatum, L.). The terrain at the KP is hilly,
but is gently rolling at the GRL.

Established as a research site in 1971, the KP is 3487 ha in size and is the largest area of
unplowed prairie in North America. The KP has been divided into numerous watershed units which
receive various management treatments (e.g., grazed vs. ungrazed; prescribed burn frequency, patch
burning), and provides a rich data source (including AGFM) related to tallgrass prairies. (See http:
//lter.konza.ksu.edu/ for a more complete site description and for data access and collection protocols.)

The AGFM data from the GRL was collected during a grazing study initiated in 2009 on 346 ha of
native tallgrass prairie grasses, divided into two control paddocks of ~63 ha each and two rotational
units of ~83 ha each. The control paddocks were assigned to continuous year-round stocking.
The rotational units were divided into 10 approximately equally-sized sub-paddocks. The cattle in
these sub-units were moved on a weekly basis. (For specifics on experimental design, stocking rates,
etc. see Reference [34].) From 1949 to 2008, the site was primarily subjected to year-round continuous
stocking by beef cattle.

https://www.epa.gov/eco-research/ecoregions-north-america
https://www.epa.gov/eco-research/ecoregions-north-america
http://koeppen-geiger.vu-wien.ac.at/usa.htm
http://koeppen-geiger.vu-wien.ac.at/usa.htm
https://www. ncdc.novv.gov/normalsPDFaccess/
http://lter.konza.ksu.edu/
http://lter.konza.ksu.edu/


Agronomy 2019, 9, 235 4 of 16

Agronomy 2019, 9, x FOR PEER REVIEW 4 of 18 

 

 
Figure 1. Study sites located at the Konza Prairie Long-Term Ecological Research (LTER) site near 
Manhattan, Kansas, and the United States Department of Agriculture-Agricultural Research Service’s 
Grazinglands Research Laboratory (GRL) in El Reno, Oklahoma, USA. 

2.2. Above-Ground Forage Mass 

For the purposes of this study, and to minimize the confounding effects of grazing on AGFM 
classification, the AGFM data used herein reflect ungrazed conditions. 

The AGFM data for the KP were acquired from their website (http://lter.konza.ksu.edu/data) 
from the dataset labeled PAB02 [35]. The AGFM data selected from PAB02 were collected on 
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reflect ungrazed and unburned conditions. To ensure that areas were not re-sampled, subsequent 
sampling occurred “one step” away from and parallel to the previously sampled transect. The AGFM 
data used from the KP were provided on a g m−2 on a dry weight basis. The bi-weekly samples (n = 
40) for a given month and year were averaged and converted to kg ha−1 to represent the AGFM for 
that month within that year (one value for each month for each year), yielding eight biomass 
observations per month. 

The AGFM data for the GRL were collected from 2009 through 2015. Within the continuously 
stocked pastures, biomass samples were collected semi-monthly (May through September) at four 
random locations in areas visually identified as not having been grazed within the May through 
September timeframe of the current calendar year. Within the rotational units, biomass was collected 
(May through September) at two random locations within and prior to (or at the time of) the 
introduction of the cattle into the sub-units. All biomass samples were collected within a sampling 
area measuring 0.5 m2 and were harvested to within 1 cm of the soil surface. The samples were 
weighed fresh, then dried in a forced-air oven at 65 °C for 48 h, then weighed dry to determine dry 
AGFM. The biomass measurements for a given month and year from both the continuously stocked 
and rotational sub-units were averaged to provide a monthly value for each year of study. This 
averaging resulted in seven biomass observations per month (one observation for each month for 
each of the seven years of study). 

The monthly AGFM data from KP000a and GRL were tested for normality using the Shapiro–
Wilk’s W-test [36] (α = 0.05). Those data not meeting the normality test were further examined for 
outliers using box plots, and, if found, were removed from the dataset and re-analyzed for normality. 
Any remaining non-normal AGFM distributions were transformed using a Johnson Sb 
transformation [37]. Normally distributed monthly biomass values were assigned to the appropriate 
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confidence intervals of the mean of the transformed data. In all cases, the monthly values above the 
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Figure 1. Study sites located at the Konza Prairie Long-Term Ecological Research (LTER) site near
Manhattan, Kansas, and the United States Department of Agriculture-Agricultural Research Service’s
Grazinglands Research Laboratory (GRL) in El Reno, Oklahoma, USA.

2.2. Above-Ground Forage Mass

For the purposes of this study, and to minimize the confounding effects of grazing on AGFM
classification, the AGFM data used herein reflect ungrazed conditions.

The AGFM data for the KP were acquired from their website (http://lter.konza.ksu.edu/data) from
the dataset labeled PAB02 [35]. The AGFM data selected from PAB02 were collected on watershed
000a (KP000a), and represent bi-weekly harvests for the years 1984–1991 and for the months May
through September. The samples were collected from five 0.1 m2 areas (clipped to ground level) spaced
10 m apart along four transects (n = 20 per watershed per sampling date) and reflect ungrazed and
unburned conditions. To ensure that areas were not re-sampled, subsequent sampling occurred “one
step” away from and parallel to the previously sampled transect. The AGFM data used from the KP
were provided on a g m−2 on a dry weight basis. The bi-weekly samples (n = 40) for a given month
and year were averaged and converted to kg ha−1 to represent the AGFM for that month within that
year (one value for each month for each year), yielding eight biomass observations per month.

The AGFM data for the GRL were collected from 2009 through 2015. Within the continuously
stocked pastures, biomass samples were collected semi-monthly (May through September) at four
random locations in areas visually identified as not having been grazed within the May through
September timeframe of the current calendar year. Within the rotational units, biomass was collected
(May through September) at two random locations within and prior to (or at the time of) the
introduction of the cattle into the sub-units. All biomass samples were collected within a sampling area
measuring 0.5 m2 and were harvested to within 1 cm of the soil surface. The samples were weighed
fresh, then dried in a forced-air oven at 65 ◦C for 48 h, then weighed dry to determine dry AGFM.
The biomass measurements for a given month and year from both the continuously stocked and
rotational sub-units were averaged to provide a monthly value for each year of study. This averaging
resulted in seven biomass observations per month (one observation for each month for each of the
seven years of study).

The monthly AGFM data from KP000a and GRL were tested for normality using the Shapiro–Wilk’s
W-test [36] (α= 0.05). Those data not meeting the normality test were further examined for outliers using
box plots, and, if found, were removed from the dataset and re-analyzed for normality. Any remaining
non-normal AGFM distributions were transformed using a Johnson Sb transformation [37]. Normally
distributed monthly biomass values were assigned to the appropriate AGFM class based on the upper
and lower 95% confidence intervals of the respective monthly means. Non-normally distributed
monthly biomass values were first transformed using the Johnson Sb transformation, and then assigned
to the appropriate AGFM class based on the upper and lower 95% confidence intervals of the mean of
the transformed data. In all cases, the monthly values above the upper 95% confidence interval were

http://lter.konza.ksu.edu/data
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designated as “above average” (abv), those biomass values below the lower 95% confidence interval
were designated “below average” (blw), and all other values were designated “average” (avg).

Assuming that the month of September represents peak biomass, within-site annual variability in
peak biomass was examined via plots of biomass and Tukey’s Honestly Significant Difference (HSD,
α = 0.05) [38] means test. Monthly variation in biomass values is depicted using box plots.

2.3. Standardized Precipitation and Evaporation Index (SPEI)

The SPEI was developed by Reference [20], and is a standardized value of the difference (Di) of
precipitation (Pi) and potential evapotranspiration (ETpi) for month i:

Di = Pi − ETpi (1)

The Di values can be aggregated over different timescales, however the Di are first standardized
from a three-parameter log–logistic distribution:

f (x) =
β

α

(x− γ
α

)β−1
(
1 +

(x− γ
α

)β)
(2)

The parameters α, β, and γ are calculated from probability-weighted moments (PWM) and used to
determine the log–logistic distribution, which is applied to the Di dataset. The SPEI is then calculated
as the probability of exceeding a given value of Di (W = −2 × ln(P)):

SPEI = W −
C0 + C1W + C2W2

1 + d1W + d2W2 + d3W3 (3)

where C0, C1, C2, d1, d2, and d3 are constants. See References [19,35] for details.
For our study locations, we used the 0.5 degree gridded SPEI product, which was obtained from

the Global SPEI database (https://climatedataguide.ucar.edu/climate-data/standardized-precipitation-
evapotranspiration-index-spei). Latitude and longitude of the approximate centroid of each site were
entered into the user interface, which returns the SPEI values for the grid point nearest to the input
coordinates. In this dataset, SPEI is calculated using monthly precipitation and ETp data provided by
the Climatic Research Unit of the University of East Anglia, East Anglia, UK. For this product, ETp is
based on the FAO-56 Penman–Monteith equation [39] (http://spei.csic.es/database.html). Although the
delivered product provides grid-specific SPEIs at timescales between 1 and 48 months, we only used
the 1 month timescale.

Rather than calculate the SPEIs for each site, we chose to use this readily-available product for our
study. A publicly-available SPEI represents the type of product that could be easily accessible and
implemented for forecasting AGFM.

2.4. Statistical Analysis

We analyzed the ability of the 1 month SPEIs to be used as predictors for classifying AGFM into
the abv, avg, and blw categories using discriminant analysis and artificial neural networks (ANN).
Discriminant analysis is a multi-variate linear technique which seeks to separate observations into
distinct classes based on a set of predictor variables (in this case, the SPEI values), and to assign new
observations into previously defined groups [40]. All SPEI values for the months January through
September, inclusive, were used to determine which months, if any, were most advantageous for
AGFM classification. The objective functions used to evaluate the discriminant results included the
overall misclassification rates and the confusion matrices. We used discriminant analysis and ANN
in four ways: (1) we evaluated each site separately, by month, using the complete data; (2) we then
separated the data for each site into calibration and validation datasets to test the calibrated discriminant
function on data not used in the calibration phase; (3) we applied the site-specific discriminant and

https://climatedataguide.ucar.edu/climate-data/standardized-precipitation-evapotranspiration-index-spei
https://climatedataguide.ucar.edu/climate-data/standardized-precipitation-evapotranspiration-index-spei
http://spei.csic.es/database.html
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ANN functions developed for a given site in (1) to the other site to examine the transferability of the
discriminant and ANN classification algorithm across sites; and (4) we combined the two datasets,
from which we created calibration and validation datasets to determine if the accuracy of the resulting
prediction algorithms increased. In (2) and (4), the validation datasets were based upon a random
selection of the dataset that was first stratified according to the AGFM classes. This approach yielded
75% of the observations assigned to the calibration datasets, and the remaining 25% were assigned
to the validation datasets. Misclassification rates for a given month were calculated by dividing the
number of misclassified observations by the total number of observations for that month.

Artificial neural networks are non-linear, non-statistical mathematical models that mimic the
learning process of the human brain [41]. The ANN does not assume normality of the data, nor
is a minimum amount of data specified to develop a predictive algorithm. However, the number
of hidden nodes, which provides the mathematical connection between the input neurons (in this
case the monthly SPEI values) and the output neurons (one neuron in this case, the AGFM class),
is constrained either as a function of the number of records in the dataset, or the number of input and
output neurons, or a combination of these. For this study, the number of input neurons equaled four
and the number of output neurons equaled one for both datasets. The number of records per month
varied from six to eight, depending upon site and month. We set the number of hidden neurons to
two (half of the sum of number of inputs and outputs), in accordance with Reference [41]. The ANN
predictive algorithm is developed through weighting the neurons in the hidden layer, which is located
between the input neurons and the output neurons. At the outset of running the ANN, every input
neuron is connected to every hidden neuron, and every hidden neuron is connected to every output
neuron. As the data records are read and evaluated by the ANN, the weights of the hidden neurons
are adjusted so that inputs are associated as strongly as possible with the intended output neuron.
The reading and evaluating of the dataset is done iteratively until the prediction ability of the ANN
is maximized. The ANN used in this study is described as a fully connected multi-layer perceptron.
We used the hyperbolic tangent transformation function between the input neurons and the hidden
neurons. All analyses were performed in JMP 14 Pro (SAS Institute, Cary, NC, USA).

3. Results

3.1. Above-Ground Forage Mass

No outliers were observed in the AGFM datasets. The Shapiro–Wilks W-test indicated that monthly
biomass was normally distributed at KP000a; thus, the biomass data needed no transformation before
assigning the AGFM values to the appropriate AGFM classes. However, the Shaprio–Wilks W-test
indicated that the GRL biomass data for all months was not normally distributed. Therefore, these data
were transformed before assignment to the appropriate AGFM class.

Assuming that September approximates peak biomass, it was observed (Figure 1) that AGFM
varied by ~388 kg ha−1 at KP000a, which is about 11 times smaller than the range in values observed at
GRL. The AGFM values at KP000a were low compared to what has been reported (1500 to 5000 kg ha−1)
for other locations on the KP [42]. The cause of this low biomass production is not precisely known,
but may relate to its not having been burned or grazed for many years, thus reducing the nutrient cycling
necessary for plant growth. At KP000a, the highest observed AGFM occurred in 1991 (1265 kg ha−1)
and the lowest in 1989 (886 kg ha−1). At GRL, the AGFM was 7230 kg ha−1 in 2015 (Figure 2), which
was statistically higher than all other years. The years 2009 and 2012 exhibited the lowest peak AGFM
(~2800 kg ha−1). It was also observed that considerable variation occurred in May at KP000a, while the
variability was comparatively low and similar for the remaining months (Figure 3). AGFM at GRL was
highly variable for all months.
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Figure 3. Box plots of AGFM for month of year for KP000a (A) and GRL (B). The number of years
represented in the KP000a and GRL datasets is eight and seven, respectively.

3.2. Discriminant Analysis

Analysis of the entire site-specific datasets revealed that the 1 month timescale SPEIs representing
months January through April (i.e., 1SPEI1–1SPEI4) were useful in differentiating AGFM classes at both
sites (Table 1) for the May through September time periods. For this time period, only the avg class
exhibited any misclassification error (17%) for the KP000a site, whereas only the abv category exhibited
misclassification errors (33%) at the GRL site. Overall, adding SPEI values for months occurring after
April did not substantially change the misclassification rate for site KP000a, but it did increase the
misclassification rate at the GRL site, where the abv AGFM category was impacted more than the
others. In Table 1, note that we are using the 1 month scale SPEIs up to, but not including, the month
for which we are trying to predict AGFM classes. Thus, sequentially adding SPEI values for the months
following April (i.e., 1SPEI4), produces a commensurate decrease in the number of months than can be
evaluated. Given the results noted immediately above, we used only the 1SPEI1–1SPEI4 values in the
following analysis to build and evaluate both the discriminant and ANN models.

At KP000a, it was observed (Table 2) that misclassifications ≥ 50% occurred for all months except
September (0%). At the GRL site, the misclassification rates were 50% (Table 2) for all months except
September, which exhibited no misclassifications. Application of the GRL discriminant function to
KP000a resulted in misclassification errors ≥75% for all months (Table 3). Similarly, application of
the KP000a discriminant function to the GRL site resulted in classification errors ranging from 43%
in August to 86% in July. Results from combining the KP000a and GRL datasets led to calibration
misclassification rates of 0% for May and June, and from 30 to 36% for the remaining months.
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The misclassification rates for the validation dataset ranged from 40 to 100% for all months except
September, which had a 0% misclassification rate.

Table 1. Misclassification rate results from the site-specific discriminant analysis of the 1 month time
scale standardized precipitation and evaporation indices (SPEIs) and AGFM classifications for the
Konza Prairie (KP000a) and GRL research sites. AGFM classifications are: abv = above average,
avg = average, and blw = below average.

KP000a Misclassification Rate 1 GRL Misclassification Rate

SPEI
Months

AGFM
Month abv avg blw SPEI

Months
AGFM
Month abv avg blw

1−4 May 0 17 0 1−4 May 0 0 0
Jun 0 0 0 Jun 0 0 0
Jul 0 0 0 Jul 0 - 0

Aug 0 0 0 Aug 0 0 0
Sep 0 0 0 Sep 33 0 0

1−5 Jun 0 0 0 1−5 Jun 0 0 0
Jul 0 0 0 Jul 0 - 0

Aug 0 0 0 Aug 33 0 0
Sep 0 0 0 Sep 33 0 33

1−6 Jul 0 0 0 1−6 Jul 33 - 0
Aug 0 0 0 Aug 33 50 0
Sep 0 0 0 Sep 33 0 0

1−7 Aug 0 0 0 1−7 Aug 33 50 50
Sep 0 0 0 Sep 33 0 0

1−8 Sep 0 25 0 1−8 Sep 66 0 0
1 Percentage (%).

Table 2. Discriminant analysis within-site validation confusion matrices showing actual and predicted
class membership for the months May through September for both sites. AGFM classes are above
average (abv), average (avg), and below average (blw) above-ground forage biomass. The total
misclassification rate (TMR) for each month is also shown, and is calculated as the number of
misclassifications divided by the total number of observations.

May June July August September
Actual abv avg blw abv avg blw abv avg blw abv avg blw abv avg blw

Site = KP000a

abv 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
avg 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0
blw 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

TMR 1 100 50 100 66 0

Site = GRL

abv 0 1 1 0 0 0 0 0 0 0 1 1 3 0 0
avg 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
blw 0 0 0 0 0 1 1 0 1 0 0 0 0 0 3

TMR 50 50 50 50 0
1 Percentage (%).

3.3. Neural Networks

The KP000a ANN calibrated well for all months except September (Table 4). Within-site
cross-validation resulted in a 0% misclassification rate for May, July, and August, but a 33 and
50% misclassification rate for June and September, respectively (Table 4). The GRL ANN calibrated
well for the months May, June, and August, but exhibited a 40 and 67% misclassification rate for July
and September (Table 5). The GRL ANN cross-validation indicated a 33 and 50% misclassification rate
for May and June, respectively, and 0% misclassification rates for the remaining months. Application
of GRL’s ANN algorithm to site KP000a resulted in misclassification rates ranging from 25% for May
to 38% for June through August (Table 6). Application of KP000a’s ANN algorithm to the GRL site
produced misclassification rates ranging from 33% in May to 57% in June. The monthly average
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misclassification rate for GRL prediction of KP000a was ~34%, compared to ~44% where the KP000a
ANN algorithm was applied to GRL. Results from combining the KP000a and GRL datasets led
to calibration misclassification rates of 31% for July to 89% for June (Table 7). Although the ANN
calibrated poorly, the validation misclassification rates were 0% for July and September, 20% for May,
and 33% both June and August (Table 7).

Table 3. Discriminant analysis confusion matrices from cross-site prediction showing actual and
predicted class membership for the months May through September for both sites. AGFM classes
are above average (abv), average (avg), and below average (blw) above-ground forage biomass. The
total misclassification rate (TMR) for each month is also shown, and is calculated as the number
of misclassifications divided by the total number of observations. Site KP000a class membership
predicted from GRL discriminant analysis algorithm, GRL class membership predicted from site KP000a
discriminant analysis algorithm.

May June July August September
Actual abv avg blw abv avg blw abv avg blw abv avg blw abv avg blw

Site KP000a
Predicted by GRL

abv 0 1 0 0 0 2 0 1 0 1 1 1 0 0 1
avg 3 0 3 1 1 3 3 2 0 0 1 2 3 0 1
blw 0 0 1 0 1 0 1 1 0 2 0 0 0 0 1

TMR 1 88 88 75 75 83
abv 1 1 1 1 1 1 1 2 1 2 0 1 0 3 0
avg 0 1 0 0 0 1 0 0 0 1 1 0 0 0 1
blw 0 2 0 1 2 1 2 1 0 0 1 1 0 1 2

Site GRL
Predicted by

KP000a TMR 67 75 86 43 71
1 Percentage (%).

Table 4. Confusion matrices from artificial neural network (ANN) calibration and cross-validation,
showing actual and predicted class membership for the months May through September for site KP000a.
AGFM classes are above average (abv), average (avg), and below average (blw) above-ground forage
biomass. The total misclassification rate (TMR) for each month is also shown, and is calculated as the
number of misclassifications divided by the total number of observations.

May June July August September
Actual abv avg blw abv avg blw abv avg blw abv avg blw abv avg blw

ANN Calibration
for Site = KP000a

abv 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0
avg 0 5 0 0 3 0 0 5 0 0 3 0 0 2 1
blw 0 0 1 0 0 1 0 0 1 0 0 2 0 0 0

TMR 1 0 0 0 0 50

Cross-Validation
for Site = KP000a

abv 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
avg 0 1 0 0 2 0 0 0 0 0 1 0 0 1 0
blw 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0

TMR 0 33 0 0 50
1 Percentage (%).

Table 5. Confusion matrices from ANN calibration and cross-validation, showing actual and predicted
class membership for the months May through September for the GRL site. AGFM classes are above
average (abv), average (avg), and below average (blw) above-ground forage biomass. The total
misclassification rate (TMR) for each month is also shown, and is calculated as the number of
misclassifications divided by the total number of observations.

May June July August September
Actual abv avg blw abv avg blw abv avg blw abv avg blw abv avg blw

ANN Calibration
for Site = GRL

abv 2 0 0 2 1 0 3 – 0 2 0 0 2 1 0
avg 0 1 0 0 1 0 – – – 0 2 0 0 0 0
blw 0 0 1 0 0 2 2 0 0 0 0 2 0 3 0

TMR 1 0 17 40 0 67

Cross-Validation
for Site = GRL

abv 2 0 0 0 0 0 0 – 1 1 0 0 0 0 0
avg 0 0 0 0 0 0 – – – 0 0 0 0 1 0
blw 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0

TMR 33 0 50 0 0
1 Percentage (%).
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Table 6. Confusion matrices from ANN calibration at one site applied to the other site, showing actual
and predicted class membership for the months May through September for the GRL site. AGFM
classes are above average (abv), average (avg), and below average (blw) above-ground forage biomass.
The total misclassification rate (TMR) for each month is also shown, and is calculated as the number of
misclassifications divided by the total number of observations.

May June July August September
Actual abv avg blw abv avg blw abv avg blw abv avg blw abv avg blw

abv 1 0 0 2 0 0 1 0 1 1 1 0 0 1 0
avg 1 5 0 2 3 0 1 4 0 0 4 0 0 4 0
blw 1 0 0 0 1 0 1 1 0 0 2 0 0 1 0

GRL ANN
Prediction of Site

KP000a TMR 1 25 38 38 38 33

Site KP000a ANN
Prediction of GRL

abv 3 0 0 3 0 0 4 0 0 3 0 0 2 1 0
avg 0 1 0 1 0 0 0 0 0 1 1 0 0 0 1
blw 1 1 0 2 1 0 3 0 0 1 1 0 1 0 2

TMR 33 57 43 43 43
1 Percentage (%).

Table 7. Confusion matrices from ANN calibration and cross-validation, showing actual and predicted
class membership for the months May through September for the GRL site. AGFM classes are above
average (abv), average (avg), and below average (blw) above-ground forage biomass. The total
misclassification rate (TMR) for each month is also shown, and is calculated as the number of
misclassifications divided by the total number of observations.

May June July August September
Actual abv avg blw abv avg blw abv avg blw abv avg blw abv avg blw

abv 1 1 1 1 1 1 2 0 2 1 0 3 1 1 1
avg 1 3 0 3 0 0 1 4 0 0 4 1 1 3 1
blw 0 2 0 2 1 0 1 0 3 1 1 1 0 0 3

ANN Calibration
for Combined Site

Datasets TMR 1 56 89 31 50 36
ANN

Cross-Validation
for Combined Site

Datasets

abv 1 0 0 2 0 0 1 0 0 0 1 0 1 0 0
avg 0 3 0 0 2 1 0 0 0 0 1 0 0 0 0
blw 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1

TMR 20 33 0 33 0
1 Percentage (%).

The SPEIs with the highest absolute weightings on the two hidden neurons (Hn1, Hn2) during
calibration were tabulated (Table S1) with respect to the scenarios presented in Tables 4–7. Overall,
and for Hn1, 1SPEI1 and 1SPEI3 each accounted for 36% of the highest weightings, followed by 1SPEI2
(16%), and 1SPEI4 (12%). For Hn2, SPEI3 accounted for 56% of the highest weightings, followed by
1SPEI2 (32%), 1SPEI4 (8%), and 1SPEI1 (4%). On a month-by-month basis for Hn1, 1SPEI2 accounted
for 60% of the highest weightings in May. For July and September, 1SPEI3 accounted for 60 and 80%
of the highest weightings, whereas 1SPEI1 accounted for 60% of the highest weightings in August.
In June, both 1SPEI1 and 1SPEI4 accounted for 40% of the hieghest weightings. For Hn2, 1SPEI3
accounted for 60% of the highest weightings in June through and August, whereas 1SPEI2 accounted
for 60% of the highest weightings in September. 1SPEI3 and 1SPEI4 each accounted for 40% of the
highest weightings in May.

4. Discussion

4.1. Study Context

Estimating forage mass or amount of standing forage in pastures and grasslands is important
to allow decisions for agronomic management and limitations to livestock stocking to be made.
The determination/measurement of forage mass reflects the existing growing conditions. Reference [43]
reported that scaling of spring precipitation from the long-term average precipitation provided useful
information for predicting peak standing crop for destocking decisions. They also reported that
grazing did not affect the relationship between peak standing crop prediction of mixed-grass prairie
and precipitation. Reference [44] used soil water content at the beginning of the growing season to
improve predictions of peak standing crop from the Great Plains Framework for Agricultural Resource
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Management Range model in a mixed prairie. Reference [45] used annual precipitation and soil
moisture to evaluate short- and long-term influences on above-ground biomass production in native
grasslands, and Reference [46] used mean annual precipitation and drought to forecast reductions
in above-ground biomass production. Reference [47] combined drought indices (1 and 3 month SPI)
and remote sensing to estimate production of wheat and barley production in a semi-arid region of
Spain. Prevailing patterns of biomass production in a tall-grass prairie site in the US Great Plains have
also been estimated using the normalized difference vegetation index (NDVI) and integrated over
time [47,48]. In the current study, the 1 month scale SPEI (a water-balance drought index) was assessed,
via discriminant analysis and ANN, as a predictive tool for classes of AGFM in native grasslands of
the southern Great Plains of the US.

4.2. Discriminant Analysis

The results in Table 1 suggest that when all the data for a given site were used, that the 1 month
time scale SPEIs for the months January through April (i.e., 1SPEI1–1SPEI4) were useful in assigning
AGFM classifications for the months of May through September. However, when the discriminant
analysis was forced to cross-validate within site (Table 2), misclassification rates of 50% or more were
observed for most months at both sites. Cross-site validation (i.e., the application of one site’s predictive
discriminant function using the other site’s SPEI data) led to misclassification rates of ≥40% (Table 3).
In both of these latter instances, these misclassification rates may be inflated, given the small n-size
available at each site for cross-validation.

In discriminant analyses, classification can be problematic, since variance can cause classification
groups to overlap [39]. Discriminant analysis is most effective when observations contain more variable
information within the tails of the cumulative distribution function of the population, rather than within
the upper and lower 95% confidence intervals of the mean. One potential driver of misclassification
could be the effect of amount and timing of precipitation received during the growing season. There is
variation in the timing and amount of precipitation from year to year, which has the capacity to affect
the amount of biomass produced. Such issues are of particular relevance when considered in relation
to amount and timing of growth by plant communities of native grasslands. One experiment near
the GRL study site noted completely different rates of accumulation of above-ground biomass during
two years that related to variance in precipitation received [34]. In that study, there was a shift in the
rate of biomass accumulation beginning in early May, caused by drier conditions during late May
through August of one year. This drought-affected period received one third less total accumulated
precipitation during March through August of the growing season, compared to the second year,
though amounts received in January through April were similar during both years. The result of this
difference in accumulation of precipitation was a roughly 50% reduction in total biomass by the end of
the more drought-affected growing season.

4.3. Artificial Neural Network

According to Reference [40], it is better for an ANN to validate and perform well than to calibrate
well. For within-site cross-validation, the ANN for the KP000a site (Table 4) both calibrated and
validated well. The GRL ANN site validated better than it calibrated (Table 5). Within the context of
cross-site validation (Table 6) it was observed that the GRL ANN performed better when applied to site
KP000a than when the site KP000a ANN was applied to the GRL site. Given that the sites are similar
in terms of general climate characteristics, and that both are native warm-season tallgrass prairies
(and dominated by the same species of grass), this may indicate that the relationship between SPEI
and AGFM categories is different at the two sites. (This would also impact discriminant analysis.)

Comparison of the maximum and minimum values of 1SPEI1–1SPEI4 for both sites reveals
significant differences between the two sites (Table 8). For example, at site KP000a, the maximum
value of 1SPEI1 was 1.85, compared to a value of 0.80 at GRL. However, for this same SPEI variable
site KP000a experienced a minimum value of −0.89, which is 35% larger than that observed at GRL.



Agronomy 2019, 9, 235 12 of 16

The minimum 1SPEI2 value at site KP000a indicates much drier conditions than were experienced at
GRL, but the maximum values are similar. The 1SPEI3 and 1SPEI4 values are somewhat similar for
the two sites. These findings suggest it may be possible to develop a more accurate ANN prediction
algorithm by combining datasets from similar climatic and forage types that represent a wider range
of conditions.

Table 8. Maximum, minimum, and range of 1 month timescale SPEI values 1SPEI1 through 1SPEI4 for
sites KP000a and GRL.

Statistic 1SPEI1 1SPEI2 1SPEI3 1SPEI4

Site = KP000a

Maximum 1.85 1.14 0.99 1.95
Minimum −0.89 −1.69 −1.66 −1.20

Range 2.74 2.83 2.65 3.15

Site = GRL
Maximum 0.80 1.09 1.3 1.49
Minimum −1.37 −0.75 −1.42 −1.35

Range 2.17 1.84 2.72 2.84

Examination of the importance (via the weightings) of the SPEIs on the hidden nodes of the ANNs revealed that,
overall, 1SPEI1 and 1SPEI3 played leading roles in the development of the ANN predictive algorithms, whereas
1SPEI4 was of much less importance.

4.4. AGFM and AGFM Classes

The two study sites are similar in terms of climate and vegetation. However, despite the large
differences in biomass production observed at the two sites (Figure 1), the seasonal evolution of this
production is similar—increases steadily from May to about August/September (Figure 3). Variability
in AGFM is more pronounced at the GRL site, but sufficient variability existed at both sites to assign
AGFM values to AGFM classes. The tacit assumption in this approach is that, although biomass
production may vary between two sites in absolute terms, both sites should trend similarly in response
to precipitation and evapotranspiration (ET). That is, a given value of AGFM at a site will represent
average, above average, or below average conditions in response to the variation in precipitation and
ET, as represented by the SPEI. Given that the two sites are similar in terms of climate and vegetation,
the application of the discriminant analysis and ANN predictive algorithms of AGFM class developed
from the GRL data to the KP000a site, and vice versa, is appropriate.

As noted above, the discriminant analysis approach did not perform well. In some cases it
may also be difficult for ANN algorithms to differentiate between categories that closely overlap.
Assuming that the abv and avg categories indicate adequate forage availability, then “true adequate,”
“false adequate,” “false below adequate,” and “true inadequate” forage availability categories can be
constructed from confusion matrices. False adequate conditions represent predictions of adequate
forage, when in reality a below adequate forage availability condition occurred, and false below
adequate would represent predictions of below average forage availability, but average or better
conditions actually occurred. Using the results in Table 6 and the validation portion of Table 7, it can
be seen that the GRL ANN prediction algorithm applied to site KP000a correctly predicted adequate
forage for 79% of the cases (over all months), incorrectly classified 8% of the cases as having adequate
forage (i.e., false adequate forage condition), while 13% of the cases were incorrectly classified as
having below adequate forage (i.e., false inadequate condition). (True inadequate conditions did not
occur for this scenario.) When the KP000a ANN algorithm was applied to the GRL dataset, it correctly
predicted true adequate forage conditions for 59% of the cases, 3% of the cases fell within the false
inadequate condition, 32% of the cases fell within the false adequate condition, and 3% of the cases
were correctly placed in the true inadequate category. The ANN developed from the combined datasets
correctly predicted true adequate conditions for 67% of the cases, 6% of the cases fell within the false
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inadequate category, 11% of the cases fell within the false adequate category, and true inadequate
conditions were correctly predicted for 22% of the cases. This approach might be useful for a grassland
or livestock manager who requires only a basic forecast of forage conditions.

4.5. SPEI

In this study, a gridded SPEI product was used which represented a 50 km × 50 km area, which
may not be representative of the conditions experienced at the study sites. A SPEI calculated using
local meteorological data, such as was done by Reference [25], might improve correlation with biomass
production. Based on References [32,33], we assumed that previous calendar year precipitation had
little to no effect on current year biomass production. The results reported in Table 1, and the ANN
k-fold validation statistics reported in Tables 4 and 5 tend to support this assertion. However, as noted
above, timing and amount of precipitation during the growing season can have a profound impact on
biomass production. We speculate that a bi-weekly SPEI may provide the temporal resolution needed
to improve prediction of AGFM. Moreover, relationships between SPEI and biomass production for
the climatic area represented in this study will likely be different for areas having markedly different
climate and forage (e.g., cool-season grasses) conditions.

5. Conclusions

This study investigated the potential use of early in the calendar year, 1 month scale SPEIs for the
prediction of AGFM for the grazing months May through September of tallgrass prairies in the Southern
Plains of the US. Initial results from the within-site discriminant analysis and ANN indicated that the
January through April monthly timescale SPEIs could be used to predict AGFM class for the months
May through September. However, within-site validation indicated that discriminant analysis led to
high misclassification rates, whereas the ANN approach exhibited much lower misclassification rates.
The predictive discriminant and ANN functions developed for one study site were not transferable to
the other study site. This is likely due to two factors: (1) Neither site fully captured the variability
in SPEI experienced by the other, and (2) The monthly timescale SPEI does not capture the timing
of precipitation, which can have a profound impact on biomass production. A bi-weekly SPEI may
capture this important aspect of biomass production. At present, the results presented herein suggest
that the SPEI may be useful for predicting adequate AGFM (i.e., average to above average forage
availability) conditions, but false positives are to be expected. A more comprehensive investigation
that includes a longer time period of study, an increased number of study sites, and a bi-weekly
SPEI would provide additional insight into the usefulness of the SPEI as an indicator for biomass
production. If AGFM prediction can be based on the SPEI, then a prediction tool can be developed that
could provide an early warning of probable shortfalls in forage production for grassland and livestock
managers, and may be useful for improved grassland management.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/9/5/235/s1,
Table S1. Monthly scale SPEI exerting the most influence on the ANN hidden nodes 1 and 2 (Hn1, Hn2) by month.
The SPEIs shown are for ANN calibrations for KP (upper portion of Table 4 in the main text), for GRL (upper
portion of Table 5 in the main text), for GRL calibration and prediction of KP, for KP calibration and prediction of
GRL (Table 6 in the main text), and for the calibration of the combined datasets (Table 7 in main text).
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