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Abstract: An ever-growing challenge to agricultural production worldwide is the reduced availability
of water and increased incidence of drought. The development of low-irrigation barley cultivars
marks a significant achievement in breeding efforts for drought tolerance, but specific traits conferring
adaptation to water stress remain unclear. Here, we report results from two years of replicated field
trials comparing yield, phenology, water usage, and rooting characteristics of low-irrigation varieties
“Solar” and “Solum” to high-input, semi-dwarf varieties “Kopious” and “Cochise”. The objective
was to identify differential performance of varieties under high- and low-water conditions through
comparison of growth and developmental traits. Rooting characteristics were analyzed by digging
in-field root profile walls to a depth of 1.8 m. Varieties were compared under high (877 mm) and
low (223 mm) water regimes including irrigation and precipitation. Observed traits associated with
improved performance of the low-irrigation varieties under drought conditions included early vigor,
early flowering, greater root growth at 40–80 cm depth, and more effective water use exhibited by
greater water extraction post-anthesis. The deeper rooting pattern of the low-irrigation varieties may
be related to their ability to use more water post-anthesis under water stress, and thus, to fill grain,
compared to high input varieties.
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1. Introduction

Barley has demonstrated a capacity to thrive in arid and semi-arid climates where drought is
a determinant of crop productivity. The projected increase in incidence and severity of drought
conditions combined with the predicted decline in water availability has sparked interest in crop
production that is less water dependent [1,2]. As a result of the increasing demand for cereal grains,
attributable to human and animal consumption, there is an emerging consensus that demand could be
better met through the development, dissemination, and adoption of drought tolerant genotypes [3,4].

Major drought tolerance traits assessed in this study relate to crop growth, water use, and yield.
Crop growth as measured by biomass is indicative of a crop’s ability to retain function in a dehydrated
state [5–8]. Greater early-season leaf or shoot biomass, known as early vigor, is another drought
adaptive trait. Early season canopy cover reduces evaporation from the soil surface leaving more water
available for crop growth [9–11]. Plant height under drought stress compared to under non-stress
conditions is also an indicator of crop drought tolerance as is the allocation of carbohydrate reserves to
grain filling, expressed by harvest index [12–14].

Harvest index, the ratio of grain to total above-ground biomass, and grain yield in cereals is
most affected by terminal drought stress, i.e., stress during the critical reproductive stage of anthesis.
Therefore, traits associated with increased water access during grain fill, or changes in crop duration
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are associated with greater harvest index and grain yield [15,16]. A primary way to increase crop water
access is through deeper roots, if subsurface water is available. Water use during this period is critical
as photosynthate is allocated to grain growth [17,18]. In association with rooting depth, penetration
ability of roots is of interest, as soil hardness generally increases as the soil dries [19,20].

Another means to improve water access is by adapting crop phenology to seasonal moisture
availability. Considered one of the most impactful breeding strategies for low-water environments,
faster phenological development has led to improved yield of cereals in Mediterranean-type
environments characterized by winter precipitation and terminal drought stress [21–23]. Shorter crop
duration maximizes growth when temperatures and vapor pressure deficit are lower.

The development and release of one-irrigation barley cultivars marks a significant achievement
in breeding efforts for drought tolerance; however, the specific physiological and phenological traits
associated with their drought tolerance remain unclear. In an effort to elucidate these traits, two
years of replicated field trials were conducted in Tucson, Arizona comparing low-input varieties
“Solar” and “Solum” to high-input, conventional varieties “Kopious” and “Cochise”. We hypothesize
that the low-input varieties will perform better under low water conditions and vice versa at
high water conditions due to differences in yield components, phenology, water use patterns, and
rooting characteristics.

2. Materials and Methods

2.1. Varietal Information

Development of barley cultivars adapted to water-limited environments was the motivation for
a breeding program headed by R.T. Ramage and R. K. Thompson with the Agriculture Experiment
Station (AES) of the University of Arizona and the Agriculture Research Service (ARS), USDA. In 1981,
Composite Cross XXXIX was released, a population adapted to a single irrigation of 15 cm to 20 cm
applied at or before planting (enough to wet the soil profile to a depth of 1.5 m to 1.8 m), with normal
seasonal rainfall around 7 cm to 11 cm in Southwest Arizona. Selection criteria included turgid plants
at flowering, plump seed, and ability to outcross (male sterility) [24].

Continued breeding efforts using the Composite Cross XXXIX germplasm resulted in the release
of six-row “one-irrigation barley” varieties: Solum in 1991 (by the ARS, USDA and Arizona AES)
and Solar (by Arizona AES) in 2006. Originating as F6 selections, these varieties were released as
spring barleys for winter crop production in low-water-use environments in the Southwestern United
States where only one or two irrigations were applied. Variety trials by Arizona AES (2002 to 2004)
have confirmed “Solar” has significantly higher yield, test weight, and lodging resistance than its
predecessor “Solum” [25].

The conventional varieties included in this study were “Kopious” and “Cochise”, derived from
Composite Cross XXXII, a short-straw high-input population developed by Ramage et al. [26]. These
varieties normally receive 5 to 7 flood irrigations of around 150 mm per irrigation each season.

2.2. Site Characteristics

Field studies were conducted to study barley performance under high- and low-irrigation
conditions. Trials were conducted in the years of 2015 and 2018 at the University of Arizona, Campus
Agricultural Station in Tucson, AZ located at 32◦9′36” N, and 110◦33′36” W. Soil type was a Gila very
fine sandy loam (coarse-loamy, mixed, superactive, calcareous, thermic Typic Torrifluvent). The field
was fallow prior to the 2015 and 2018 planting.

2.3. Cultural Methods

The cultural methods were similar each year, with slight variations. For the 2015 trial, planting
occurred on 3 December 2014 and was established with sprinkler irrigation from 12 December to 16
December (33 mm). For the 2018 trial, planting occurred on 7 December 2017 and was established with



Agronomy 2019, 9, 221 3 of 18

sprinkler irrigation from 12 December to 1 January (51 mm). In both years, the seed was planted into
dry, flat soil with a cone planter. The low-input varieties were planted at a seeding rate of 78 kg ha−1

(1.24 million seeds ha−1) and the high-input varieties were planted at a seeding rate of 157 kg ha−1

(2.4 million seeds ha−1) to reflect the optimum seeding rate for each variety type.
Nitrogen was applied in the form of urea (46–0–0) at a rate of 56 kg N ha−1 at planting. During the

growing season, an additional 112 kg N ha−1 was applied around the tillering stage to both irrigation
treatments. Weeds and insects were controlled as needed. Each plot was 7 rows wide with a row
spacing of 15 cm and a plot length of 9 m. The experimental design was Latin square with each variety
having four reps per treatment.

2.4. Soil Water Measurements

Neutron probe access tubes were installed to a depth of 1.8 m to measure volumetric water content
at depth increments of 0.3 m. Soil water was measured approximately once a week and relative to
irrigations (0–1 day before, and 3–4 days after irrigation) with a neutron probe (CPN Model 503DR,
Campbell Pacific Nuclear International Inc., Concord, CA, USA). The neutron probe was calibrated by
regressing volumetric water content against standardized neutron count ratios using multiple paired
measurements when soil was wet and dry. Volumetric soil moisture content for the neutron probe
calibration was determined from gravimetric water content and bulk density.

Neutron probe counts from 0 m to 1.8 m were used to calculate period water use for each variety
by the water balance method, with precipitation and irrigation included and runoff assumed to be
negligible. The period water use values were summed at the end of the season for total water use of
each variety.

Water use (ET) was estimated from the differences in soil water content between specific time
periods plus rainfall. Deep percolation was considered negligible as soil water content was taken at
least 3 days after an irrigation when field capacity had been reached and most deep percolation had
already occurred. Furthermore, soil water content was measured at 1.8 m, a depth beyond which not
much water would percolate. The time periods between soil water measurements were at least 3 days
after an irrigation and 0–1 day before the next irrigation, as mentioned above. Water use between soil
water measurements before and after an irrigation were estimated by averaging the estimated daily
water use before and after the soil water measurements. This daily water use was calculated from
the crop coefficient (Kc) multiplied by reference evapotransiration (ETo). The Kc was calculated from
ET/ETo. Water use between planting and the first soil water measurement was estimated using a Kc of
0.25 multiplied by ETo from the nearby weather station.

2.5. Soil Water Retention Characterization

Soil water characteristics previously reported by Miller and Ottman were used [27]. Soil
bulk density was 1.48 g cm−3. Volumetric soil water content was 0.24 m3 m−3 at field capacity
(θvFC), 0.085 m3 m−3 at permanent wilting point (θvPWP), and plant-available water (θvPAW) was
0.155 m3 m−3. The differences in soil water characteristics among depths were small and less than the
standard error of these measurements, so values were averaged across depths.

2.6. Irrigation Treatments

The experiment included two irrigation treatments: high and low, hereon referred to as HI and
LI respectively (Table 1). In both years, sprinkler irrigation was applied to both treatments until
seedling emergence. Sprinkler irrigation was used to germinate the seed as it results in better stand
establishment than flooding, where a soil crust often forms inhibiting seedling emergence. Flood
irrigation was used during the season after emergence since the soil profile could be saturated with a
single flood irrigation, whereas several sprinkle irrigation events would be required to do so to prevent
surface runoff. The frequency of flood irrigations in the HI treatment was based on levels of soil water
depletion (SWD), with irrigations occurring around 50% depletion or approximately every two weeks



Agronomy 2019, 9, 221 4 of 18

during mid-season, totaling 6 irrigations per season. In 2015, the LI treatment only received sprinkler
irrigation and no subsequent flood irrigations due to high precipitation in December and January.
In 2018, the LI treatment received one flood irrigation following emergence, and an additional flood
irrigation at the five-leaf stage. The source of irrigation water was tertiary-treated municipal effluent.

Table 1. Soil water depletion (SWD) and irrigation amounts for barley irrigation trials conducted in
Tucson, AZ in 2015 and 2018. The growing season precipitation was 151 mm in 2015 and 55 mm in 2018.

Water Source Date High Irrigation Treatment Low Irrigation Treatment

2015 SWD mm SWD mm

Sprinkler Irrigation 12–16 Dec. * n/a 33 n/a 33

Floods

16 Dec. * n/a 117
23 Jan. 0.40 78
20 Feb. 0.52 156
4 Mar. 0.65 152
27 Mar. 0.70 128
10 Apr. 0.74 137

total 801 33

2018 SWD mm SWD mm

Sprinkler Irrigation 11 Dec *–1 Jan. n/a 51 n/a 51

Floods

10 Jan. n/a 53 n/a 52
9 Feb. 0.49 110 0.49 105
9 Mar. 0.47 81
23 Mar. 0.48 84
6 Apr. 0.50 89

26 Apr. 0.84 91
total 637 208

* Dates in December were in 2014 and 2017 when respective plantings occurred.

2.7. Plant Measurements

Measurements of plant biomass and interception of photo synthetically active radiation (PAR)
were taken throughout the season around five leaf, first node, boot, and flowering stages. Date of
heading, flowering, and physiological maturity were recorded. Biomass samples were obtained from
an area of two rows by a 45.7 cm cut at the base. Dry weight was assessed after samples had dried at
60 ◦C for 2 to 10 days depending on growth stage. Intercepted PAR was measured with a Sunfleck
Ceptometer (Decagon Devices, Pullman, WA, USA). Measurements were taken within one hour of
solar noon on clear days. Three averaged readings were taken at the soil surface within the canopy,
along with companion measurements of incident PAR outside the influence of the canopy.

Heading date was recorded when 50% of the heads were past the leaf collar. Flowering date was
recorded when 50% of heads had anthers extruded. Maturity date was noted when 50% of heads and
peduncle had changed to tan color.

At harvest, biomass yield, height, and lodging were assessed as well as grain yield, test weight,
and seed weight. Plant height was averaged from 10 heads. For final biomass yield, 1 m2 of whole
barley plants were hand-harvested and dried at 60 ◦C. Grain weight was assessed from the 1 m2

sample. For final grain yield, 5 rows by 1.5 m were hand-harvested and threshed. Clean seed was
assessed for test weight and seed weight.

2.8. Method of Root Analysis

Root density at physiological maturity was assessed using the profile wall method. A 1.8-m deep
trench traversing the plots was dug with a back-hoe, taking care to create a vertical, flat profile, that was
later smoothed with a shovel. The profile wall was washed slowly with water using a fanned spray
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nozzle to expose the roots. For each variety under both irrigation treatments, the density of roots within
10 cm × 10 cm grids were rated on a scale of 1 to 10 along the total profile (100-cm wide by 180-cm deep).
For example, a rating of 1 was given when 1 to 2 roots were present in the grid square, a rating of 5 was
given when approximately 50 percent of the grid square was filled with roots, and a rating of 10 was
scored when roots filled the majority of the grid square. See Figure 1 for examples of root ratings.

Agronomy 2019, 9, x FOR PEER REVIEW 5 of 19 

 

Root density at physiological maturity was assessed using the profile wall method. A 1.8-m deep 
trench traversing the plots was dug with a back-hoe, taking care to create a vertical, flat profile, that 
was later smoothed with a shovel. The profile wall was washed slowly with water using a fanned 
spray nozzle to expose the roots. For each variety under both irrigation treatments, the density of 
roots within 10 cm × 10 cm grids were rated on a scale of 1 to 10 along the total profile (100-cm wide 
by 180-cm deep). For example, a rating of 1 was given when 1 to 2 roots were present in the grid 
square, a rating of 5 was given when approximately 50 percent of the grid square was filled with 
roots, and a rating of 10 was scored when roots filled the majority of the grid square. See Figure 1 for 
examples of root ratings. 

In 2018, a 6-mm thick plexiglass sheet measuring 1.2 m × 0.85 m was placed flush against each 
profile wall and buried early in the season. The intention was to have the roots grow up to the 
plexiglass and be observable without washing, however, washing was still required. Placement of 
the plexiglass did create a flat soil surface for when the root profile wall was dug and greatly 
facilitated the process of washing away the soil. 

Figure 1. Examples of root density ratings from the profile walls: (a) rating of 1; (b) rating of 5; (c) 
rating of 10. 

2.9. Statistical Analysis  

The data was analyzed by SAS version 9.4 using the PROC GLM procedure, except for water 
use which was analyzed using the PROC MIXED procedure, and the root profile wall data which 
was analyzed using SPSS version 25 with the GLM procedure. 

2.10. Weather 

Weather data was recorded by the Arizona Meteorological Network (AZMET) Campus 
Agricultural Center weather station, located about 0.5 km from the experimental plots. See Table 2 for 
growing season temperature, precipitation, and ETo. 

Table 2. Monthly average maximum and minimum temperature, precipitation, and reference ETo for 
the 2015 and 2018 growing seasons compared with the 31-year average in Tucson, AZ. 

Month 
Max. Temperature Min. Temperature Precipitation Reference ETo 

2015 2018 31-yr avg.  2015 2018 
31-yr 
avg.  

2015 2018 
31-yr 
avg.  

2015 2018 
31-yr 
avg.  

 °C mm 
Dec. *   18.9 21.7 18.9 3.3 2.8 1.6 55 8 22 51 69 59 
Jan. 19.4 22.8 19.5 3.9 2.2 1.8 57 6 22 61 76 68 
Feb. 23.9 21.1 21.0 6.7 3.9 3.4 9 41 18 89 76 84 

March 26.1 25.0 24.8 8.9 6.1 6.3 16 0 10 140 130 142 
April 28.3 31.1 28.2 9.4 10.6 9.2 6 0 7 180 183 184 
May 30.0 33.9 32.8 12.8 13.9 13.5 8 0 3 203 221 228 

(a) (b) (c) 

Figure 1. Examples of root density ratings from the profile walls: (a) rating of 1; (b) rating of 5; (c)
rating of 10.

In 2018, a 6-mm thick plexiglass sheet measuring 1.2 m × 0.85 m was placed flush against each
profile wall and buried early in the season. The intention was to have the roots grow up to the plexiglass
and be observable without washing, however, washing was still required. Placement of the plexiglass
did create a flat soil surface for when the root profile wall was dug and greatly facilitated the process
of washing away the soil.

2.9. Statistical Analysis

The data was analyzed by SAS version 9.4 using the PROC GLM procedure, except for water use
which was analyzed using the PROC MIXED procedure, and the root profile wall data which was
analyzed using SPSS version 25 with the GLM procedure.

2.10. Weather

Weather data was recorded by the Arizona Meteorological Network (AZMET) Campus
Agricultural Center weather station, located about 0.5 km from the experimental plots. See Table 2 for
growing season temperature, precipitation, and ETo.

Table 2. Monthly average maximum and minimum temperature, precipitation, and reference ETo for
the 2015 and 2018 growing seasons compared with the 31-year average in Tucson, AZ.

Month
Max. Temperature Min. Temperature Precipitation Reference ETo

2015 2018 31-yr avg. 2015 2018 31-yr avg. 2015 2018 31-yr avg. 2015 2018 31-yr avg.
◦C mm

Dec. * 18.9 21.7 18.9 3.3 2.8 1.6 55 8 22 51 69 59
Jan. 19.4 22.8 19.5 3.9 2.2 1.8 57 6 22 61 76 68
Feb. 23.9 21.1 21.0 6.7 3.9 3.4 9 41 18 89 76 84

March 26.1 25.0 24.8 8.9 6.1 6.3 16 0 10 140 130 142
April 28.3 31.1 28.2 9.4 10.6 9.2 6 0 7 180 183 184
May 30.0 33.9 32.8 12.8 13.9 13.5 8 0 3 203 221 228

Mean 24.4 25.9 24.2 7.5 6.6 13.5 - - - - - -
Sum - - - - - - 151 55 82 724 754 765

* Month of December shows data for 2014 and 2017 when respective plantings occurred, ETo was calculated using
the standardized Penman–Monteith equation.
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3. Results

3.1. Light Interception

Fraction of photosynthetically active radiation (fPAR) intercepted by the crop differed among
varieties depending on irrigation treatment and year (Table 3). Under HI in 2015, fPAR was higher
for the high-input varieties at first and last sampling, and in 2018 there was no difference between
groups. Under LI in 2015, fPAR was also greater for the high-input varieties at all sampling times.
Conversely, under LI in 2018, the low-input varieties had higher fPAR at all measurement times. High
precipitation during the beginning of the 2015 growing season may explain the improved performance
of the high-input varieties under low irrigation conditions for this year. In 2015, in Dec–Jan, there
was 122 mm of precipitation, compared to 14 mm in 2018 and the 33-year average of 44 mm at the
field location.

Table 3. Effect of irrigation treatment on the fraction of photosynthetically active radiation (PAR)
intercepted by barley for trials conducted in Tucson in 2015 and 2018.

Irrigation
Treatment Variety 2015 2018

21 Jan. 19 Feb. 16 Mar. 2 Feb. 23 Feb. 20 Mar. 27-Mar.

High “Cochise” 0.532 0.976 0.996 0.459 0.668 0.911 0.596
“Kopious” 0.540 0.984 0.996 0.623 0.864 0.973 0.719

Mean 0.536 0.98 0.996 0.541 0.766 0.942 0.657
“Solar” 0.312 0.975 0.987 0.534 0.811 0.946 0.652

“Solum” 0.294 0.975 0.969 0.481 0.752 0.943 0.613
Mean 0.303 0.975 0.978 0.508 0.781 0.944 0.632

Variety ns ns ** ** ** ** **
Variety

Adaptation * ns ** ns ns ns ns

LSD.05 ns ns 0.012 0.069 0.065 0.015 0.052

Low “Cochise” 0.468 0.989 0.992 0.369 0.626 0.872 0.529
“Kopious” 0.457 0.990 0.991 0.588 0.856 0.955 0.692

Mean
“Solar”

0.463 0.990 0.992 0.479 0.741 0.914 0.611
0.381 0.985 0.988 0.577 0.821 0.955 0.684

“Solum” 0.305 0.977 0.976 0.607 0.817 0.958 0.706
Mean 0.343 0.981 0.982 0.592 0.819 0.957 0.695

Variety * ** ** ** ** ** **
Variety

Adaptation ** ** ** ** ** ** **

LSD.05 0.116 0.007 0.004 0.097 0.067 0.047 0.072

* Significance of variety effect and variety adaptation effect was based on a p-values: + < 0.10, * < 0.05, ** < 0.01;
while ns = not significant. Least significant difference (LSD) was calculated at the p < 0.05 level.

3.2. Plant Growth and Biomass Accumulation

Biomass yield differed among varieties depending on irrigation treatment (Table 4). Under HI
in 2015, biomass yield did not differ between nor within groups except at the first sampling time in
which the high-input varieties had greater biomass than the low-input varieties. Under HI in 2018,
biomass yield did not differ between groups except at the last sampling time in which the low-input
varieties outperformed the high-input varieties. Under LI in 2015, the high-input varieties had higher
biomass at the first two sampling dates, possibly due to unusually high precipitation, but the low-input
varieties had higher biomass at the last sampling date. Under LI in 2018, the low-input varieties had
higher biomass at all but one of the sampling times.
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Table 4. Effect of irrigation treatment on biomass yield (g m−2) of barley for trials conducted in Tucson
in 2015 and 2018.

Irrigation
Treatment Variety 2015 2018

21 Jan. 19 Feb. 16 Mar. 7 Feb. 23 Feb. 16 Mar. 27 Mar.

High “Cochise” 150 1812 3215 90.4 278 963 1656
“Kopious” 166 1744 2903 141 303 1364 1833

Mean 158 1778 3059 116 290 1163 1744
“Solar” 125 1787 3165 134 360 1473 2081
Solum 114 1729 2921 120 315 1206 2180
Mean 119 1758 3043 127 338 1339 2131

Variety * ns ns + ns ns ns
Variety

Adaptation ** ns ns ns ns ns *

LSD.05 35.9 334 381 41.3 96.8 434 472

Low “Cochise” 144 1884 2795 68.2 283 911 1196
“Kopious” 184 1952 2404 162 314 1202 1670

Mean 164 1918 2600 115 298 1056 1433
“Solar” 142 1930 2978 157 497 1324 2013

“Solum” 130 1676 3064 144 407 1330 2365
Mean 136 1803 3021 151 452 1327 2189

Variety ** * * ** ns ns **
Variety

Adaptation ** + ** * * ns **

LSD.05 28.3 186 441 48.7 246 489 618

* Significance of variety effect and variety adaptation effect was based on a p-values: + < 0.10, * < 0.05, ** < 0.01;
while ns = not significant. Least significant difference (LSD) was calculated at the p < 0.05 level.

3.3. Phenology

All varieties progressed faster under LI (Table 5). As a group, under HI, the low-input varieties
flowered five days earlier in 2015, and eight days earlier in 2018 than the high-input varieties. Under
LI, the low-input varieties flowered two days earlier in 2015 and four days earlier in 2018 compared
to the high-input varieties. Similarly, under HI, compared to the high-input varieties, the low-input
varieties reached physiological maturity (PM) eight and nine days earlier in 2015 and 2018, respectively.
Under LI, the low-input varieties reached PM nine and six days earlier in 2015 and 2018, respectively.

Another phenological difference observed was time between heading and flowering. Under HI,
all varieties flowered one to two days after heading. Under LI, however, the high-input varieties
flowered 0 to 1 days after heading while the low-input varieties maintained the one to two-day interval
observed under HI. A shortened heading to anthesis interval, observed both years, may be a sign of
stress response in “Cochise” and “Kopious”.
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Table 5. Effect of irrigation treatment on heading, flowering and physiological maturity of barley by
date for trials conducted in Tucson in 2015 and 2018.

Irrigation
Treatment Variety 2015 2018

Heading Flowering Maturity Heading Flowering Maturity

High “Cochise” 9 Mar. 11 Mar. 1 May 20 Mar. 22 Mar. 6 May
“Kopious” 9 Mar. 11 Mar. 1 May 22 Mar. 24 Mar. 30 Apr.

Mean 9 Mar. 11 Mar. 1 May 21 Mar. 23 Mar. 3 May
“Solar” 5 Mar. 7 Mar. 23 Apr. 15 Mar. 17 Mar. 26 Apr.

“Solum” 5 Mar. 6 Mar. 23 Apr. 13 Mar. 14 Mar. 23 Apr.
Mean 5 Mar. 6 Mar. 23 Apr. 14 Mar. 15 Mar. 24 Apr.

Variety ** ** ** ** ** **
Variety

Adaptation ** ** ** ** ** **

LSD 05 0 0.4 0 2.2 2.2 0.85

Low “Cochise” 7 Mar. 7 Mar. 11 Apr. 19 Mar. 19 Mar. 24 Apr.
“Kopious” 7 Mar. 7 Mar. 10 Apr. 20 Mar. 20 Mar. 23 Apr.

Mean 7 Mar. 7 Mar. 10 Apr. 19 Mar. 19 Mar. 23 Apr.
“Solar” 4 Mar. 6 Mar. 3 Apr. 14 Mar. 16 Mar. 19 Apr.

“Solum” 3 Mar. 4 Mar. 31 Mar. 13 Mar. 14 Mar. 16 Apr.
Mean 3 Mar. 5 Mar. 1 Apr. 13 Mar. 15 Mar. 17 Apr.

Variety ** * ** ** ** **
Variety

Adaptation ** * ** ** ** **

LSD.05 1.6 1.8 1.20 1.51 1.14 1.31

* Significance of variety effect and variety adaptation effect was based on a p-values: + < 0.10, * < 0.05, ** < 0.01;
while ns = not significant. Least significant difference (LSD) was calculated at the p < 0.05 level.

3.4. Final Yield Components

Yield and yield components differed among varieties depending on irrigation treatment, variety,
and year (Tables 6 and 7). For the HI treatment in 2015 and 2018, high-input varieties had higher
total yield and grain yield compared to low-input varieties. Differences between test weight were not
significant. Under HI, harvest index was similar between groups in 2015 but higher for the high-input
varieties in 2018. In contrast, under LI in 2015 and 2018, low-input varieties had higher grain yield and
test weight. “Solar” was the only variety to meet or surpass the minimum test weight (605 kg m−3) to
be qualified as Grade 1 barley based on standards set by the Federal Grain Inspection Service of the
US [28]. Harvest index was also higher for the low-input group in 2015 but not significantly different in
2018. Total yield did not differ between groups under LI either year; however, “Solar” had the highest
and “Cochise” the lowest total yield of all varieties. Kernel weight and plant height were higher for
the low-input varieties under both LI and HI treatments in both years. Percent of lodging was higher
for the low-input varieties in 2015 under HI and LI. Between the low-input varieties, “Solar” lodged
significantly less. In 2018, lodging was minimal. Lastly, under LI the average height of the semi-dwarf
varieties (69 cm in 2015 and 59 cm in 2018) was below optimal height for mechanical harvest (typically
76 cm to 86 cm) [29].
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Table 6. Effect of irrigation treatment on barley yield and yield components for a trial conducted in
Tucson in 2015.

Irrigation
Treatment Variety Total

Yield
Grain
Yield

Harvest
Index

Test
Weight

Kernel
Weight Lodging Plant

Height

g m−2 g m−2 % kg m−3 g/1000 % cm

High “Cochise” 2490 715 29 623 31.6 31 85
“Kopious” 3019 813 40 684 42.3 0 86

Mean 2755 764 34 654 37.0 16 86
“Solar” 2456 470 31 672 45.0 19 102

“Solum” 2020 437 35 601 42.5 61 93
Mean 2238 454 33 637 44 40 98

Variety + ** + * ** * **
Variety

Adaptation * ** ns ns ** + **

LSD.05 467 145 7.8 60.1 6.0 38 6.5

Low “Cochise” 1705 236 20 482 17.3 0 69
“Kopious” 1565 260 19 470 17.4 0 69

Mean 1635 248 19 476 17.4 0 69
“Solar” 1890 335 25 607 25.5 4 104

“Solum” 1181 262 27 480 26.6 43 95
Mean 1536 299 26 544 26.1 24 99

Variety + ** + ** ** ** **
Variety

Adaptation ns ** * ** ** ** **

LSD.05 512 51.9 7.5 29.9 5.8 19 4.3

* Significance of variety effect and variety adaptation effect was based on a p-values: + < 0.10, * < 0.05, ** < 0.01;
while ns = not significant. Least significant difference (LSD) was calculated at the p < 0.05 level.

Table 7. Effect of irrigation treatment on barley yield and yield components for a trial conducted in
Tucson in 2018.

Irrigation
treatment Variety Total

Yield
Grain
Yield

Harvest
Index

Test
Weight

Kernel
Weight Lodging Plant

Height

g m−2 g m−2 % kg m−3 g/1000 % cm

High “Cochise” 1389 620 40 726 30.0 0 83
“Kopious” 1630 677 38 743 32.6 0 81

Mean 1509 647 39 734 31.3 0 82
“Solar” 1347 524 34 810 40.7 3.75 104

“Solum” 1018 358 32 762 44.3 2.5 100
Mean 1183 442 33 786 42.5 3.13 102

Variety * * ns ** ** ns **
Variety

Adaptation * ** * ** ** ns **

LSD.05 409 193 ns 27.5 4.2 ns 7.5

Low “Cochise” 843 299 32 544 20.6 0 58
“Kopious” 952 220 20 535 18.4 0 61

Mean 898 259 27 540 19.5 0 59
“Solar” 1132 403 32 696 27.3 0 97

“Solum” 794 274 32 600 27.7 0 93
Mean 963 339 32 648 27.5 0 95

Variety ** * ns ** ** - **
Variety

Adaptation ns * ns ** ** - **

LSD.05 134 101 ns 42.0 5.1 - 4.4

* Significance of variety effect and variety adaptation effect was based on a p-values: + < 0.10, * < 0.05, ** < 0.01;
while ns = not significant. Least significant difference (LSD) was calculated at the p < 0.05 level.
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3.5. Root Traits

A comparison of root growth by each variety under HI verse LI shows that the high-input varieties
had more root growth under HI than they did under LI, especially in the top 0–30 cm (Figure 2).
Conversely, the low-input varieties had more root growth under LI than HI especially from 40–80 cm
depth. The low-input varieties also had higher average root growth compared to high-input varieties
in both years under LI (Figure 3). In 2015, “Solum” had significantly more roots than the other varieties
from 0–100 cm and in 2018 “Solar” had significantly more roots than the other varieties from 50–90 cm.
Under HI, there was no difference in average root growth between varieties; however, “Kopious” had
more roots than the other varieties at 40–50 cm depth in 2015, and in 2018, “Cochise” had more roots
than the other varieties at 20–30 cm depth.

Agronomy 2019, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/agronomy 

3.5. Root Traits 

A comparison of root growth by each variety under HI verse LI shows that the high-input 
varieties had more root growth under HI than they did under LI, especially in the top 0–30 cm (Figure 
2). Conversely, the low-input varieties had more root growth under LI than HI especially from 40–80 
cm depth. The low-input varieties also had higher average root growth compared to high-input 
varieties in both years under LI (Figure 3). In 2015, “Solum” had significantly more roots than the 
other varieties from 0–100 cm and in 2018 “Solar” had significantly more roots than the other varieties 
from 50–90 cm. Under HI, there was no difference in average root growth between varieties; however, 
“Kopious” had more roots than the other varieties at 40–50 cm depth in 2015, and in 2018, “Cochise” 

Figure 2. Root density ratings at depths from profile walls dug at physiological maturity under high 
irrigation (dry) and low irrigation (wet) by variety: (a) “Cochise”; (b) “Kopious”; (c) “Solar”; (d) 
“Solum”. Crossmark “×” indicates significant difference in root density at p < 0.05. 

(a) (b) 

(c) (d) 

Figure 2. Root density ratings at depths from profile walls dug at physiological maturity under
high irrigation (dry) and low irrigation (wet) by variety: (a) “Cochise”; (b) “Kopious”; (c) “Solar”;
(d) “Solum”. Crossmark “×” indicates significant difference in root density at p < 0.05.

Observations from the root profile showed dramatic differences in rooting between varieties,
especially at depth. (Figure 4). The profile also revealed that under LI, “Solar” and “Solum” roots
were able to penetrate through a hard caliche layer starting at 70 cm to 80 cm depth (Figure 5). Caliche
is a hardened, naturally cemented deposit of calcium carbonate common in the soils of arid regions.
In addition, under HI, roots of all varieties generally appeared thinner and less aggregated than roots
under LI which appeared thicker and often formed a webbed, mesh-like conglomeration (Figure 6).
Roots of the low-input varieties showed this webbed phenotype more often than the high-input
varieties; however, as Figure 7 shows, they too sometimes formed this root morphology.
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Figure 5. Root profile at physiological maturity (PM) from 50–10 cm under low irrigation treatment in
2018, red line indicates start of caliche layer at 70 cm: (a) “Solar” variety at PM with roots growing
through caliche; (b) “Cochise” variety at PM showing root growth stops at the caliche layer.
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Figure 7. Webbed root phenotype under low irrigation seen at higher magnification: (a) “Solar” roots
at 50–60 cm; (b) “Kopious” roots at 30–40 cm.
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3.6. Water Use

Total cumulative water use was generally similar between varieties under both high and low
irrigation in 2015 and 2018, with the exception of “Cochise” under HI in 2018, using significantly more
water than the other varieties (Figure 8). “Cochise” began using more water than the other varieties
post-anthesis, approximately 100 days after planting. However, general trends of cumulative water use
by growth stage, show that the high-input varieties use more water pre-anthesis while the low-input
varieties use more water post-anthesis (Table 8).
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Figure 8. Cumulative water use (mm) since days after planting: (a) 2015, high irrigation; (b) 2015,
low irrigation treatment; (c) 2018, high irrigation; (d) 2018, low irrigation treatment. Crossmark “×”
indicates significant difference at p < 0.05.

Table 8. Effect of irrigation treatment on barley water use (mm) for trials conducted in Tucson in 2015
and 2018.

Irrigation
Treatment Variety Cumulative Pre-Anthesis Post-Anthesis

2015 2018 2015 2018 2015 2018

High “Cochise” 581 627 272 244 309 383
“Kopious” 621 454 271 215 351 241

Mean 601 540 271 229 330 312
“Solar” 594 466 209 171 386 293

“Solum” 581 426 218 151 363 275
Mean 588 446 213 161 374 284

Variety ns ** ** ** ** **
Variety

adaptation ns * ** ** ** +

Variety × depth * ** ns ** ** **
LSD.05 ns 52 24 27 35 35
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Table 8. Cont.

Irrigation
Treatment Variety Cumulative Pre-Anthesis Post-Anthesis

2015 2018 2015 2018 2015 2018

Low “Cochise” 292 270 210 181 82 88
“Kopious” 298 306 221 231 77 74

Avg 295 288 216 206 80 81
“Solar” 290 296 186 197 105 100

“Solum” 267 284 170 186 97 98
Mean 279 290 178 192 101 99

Variety ns ns ** * ** **
Variety

adaptation ns ns ** ns ** **

Variety × depth ns ns ns ns ** ns
LSD.05 ns ns 26 35 15 16

* Significance of variety effect and variety adaptation effect was based on a p-values: + < 0.10, * < 0.05, ** < 0.01;
while ns = not significant. Least significant difference (LSD) was calculated at the p < 0.05 level.

4. Discussion

4.1. Early Vigor

Defined by fast leaf area development and biomass accumulation, early seedling vigor is associated
with greater leaf area, and thus, greater incident light interception [30,31]. Our results show higher
light interception by the low-input varieties under LI at all sampling times in 2018, but not 2015, which
may have been due to high rainfall during the early 2015 season. Higher fPAR at the beginning of the
2018 season suggests early vigor in the low-input varieties under LI when considering fPAR as a proxy
for leaf area.

Similar to the fPAR results, biomass was also greater for the low-input varieties under LI at
first sampling in 2018. Greater early season growth is particularly useful under drought conditions
as ground cover and canopy shading serve to reduce evaporation from the soil surface, increasing
available water for transpiration and crop growth [32,33].

4.2. Early Flowering and Maturity

The importance of early flowering/heading as a drought escape mechanism has been extensively
reported on, as have positive correlations between earliness and grain yield under drought stress in
cereals [34,35]. In this study, early flowering and maturity were observed in the varieties bred for low
irrigation conditions and correlated with higher grain yield under LI. Under HI, early maturity was
negatively correlated with grain yield.

4.3. Root Length Density, Depth, and Penetration

Greater average root length density and deeper roots of “Solar” and “Solum” under LI correlated
with higher grain yield. Similar results have been reported in other studies in which deeper rooted
genotypes had higher grain yield under drought stress [36–41]. The observation from the root profile
that “Solar” and “Solum” roots were able to penetrate through a caliche layer starting at 70 cm depth
is noteworthy. Mechanical impedance is a major limiting factor of root growth [42]. Cereal cultivars
better able to penetrate hard pans have been shown to have deeper root growth and better access to
water [43–45]. Many of the studies on root penetration ability have been conducted in pot experiments
with artificially compacted soil. The use of root profile walls in this experiment allowed for in-field
visual documentation of roots growing through hard soil.
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4.4. Plant Height and Lodging Resistance

Though dramatic gains in grain yield were achieved through the development of semi-dwarf
cereals, in cases of severe water deficit, they may be too short for mechanical harvest, or less economically
profitable in areas where straw used as animal feed is an important commodity, e.g., West Asia and
North Africa [46]. A multisite study by Silva Lopes et al. [47] found plant height was significantly
and positively associated with grain yield in the most low-yielding, rainfed environments. The results
from this study found the taller varieties, “Solar” and “Solum” outperformed the semi-dwarf cultivars
in grain yield under LI. The low-input varieties were also able to maintain similar plant height under
LI as that under HI which is indicative of their drought tolerance [13]. Moreover, under LI the average
height of the semi-dwarf varieties (69 cm in 2015 and 59 cm in 2018) was below optimal height for
mechanical harvest (typically 76 to 86 cm) [29].

As expected, the semi-dwarf varieties had significantly less lodging than the standard-height
varieties, particularly under HI. “Solar” demonstrated significantly less lodging than its predecessor
“Solum”, as it was bred to do [25]. Bending strength or stiffness has been associated with root
penetration of hard soils [48]. The improved lodging resistance of Solar may somehow be related to
the ability of Solar roots to better penetrate through drying/hard soil.

4.5. Effective Use of Water

Effective use of water (EUW) describes maximizing soil water capture for assimilate partitioning
to reproduction [49]. Effective use of water was demonstrated through early vigor and higher harvest
index of the low-input varieties under LI. In addition, under both irrigation treatments cumulative
water use over the season was the same between all the varieties tested, indicating those bred for
low-water use environments had greater grain yield per unit water use under LI. The observation
that the low-input varieties use less water pre-anthesis and more water post-anthesis under drought
conditions suggest they may employ a water conservation technique such as early vigor to ensure
water is still available during the critical grain filling period or have a means of accessing more water
during this period, such as the rooting traits of “Solar” and “Solum”. A study by Siddique et al. [50]
similarly found early flowering genotypes of wheat exhibiting early vigor had lower rates of soil
evaporation early in the season and used a greater ratio of water post-anthesis than pre-anthesis.

4.6. Future Research

Given the extensive time and labor required for root profile analysis, future research could explore
how to improve the efficiency, effectiveness, and replicability of this method to better study roots
in realistic soil environments. Real time monitoring of water use may reveal interesting patterns
undetectable by the neutron probe. Further exploration of differences in root morphology and traits
associated with water usage would help to further our understanding of drought tolerance.

5. Conclusions

Though debate exists regarding whether selection under optimal or stress conditions is preferable
when breeding for drought tolerance, the results of this study show the varieties bred for low-water
conditions had greater grain yield and test weight under LI than varieties bred for high-water-use
conditions. Advantageous traits under HI conditions were associated with poorer performance under
drought stress, specifically later maturity, shallow root systems, and less water-use post-anthesis.
Observed strategies of drought tolerance in this study included early vigor, early flowering, greater
root density at depth, and greater water extraction post-anthesis. The root profile pit addressed the
need for root studies conducted in realistic environments and revealed insights difficult to capture
with other field-based methods.
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