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Abstract: Genetic mapping studies provide improved estimates for novel genomic loci, allelic effects
and gene action controlling important traits. Such mapping studies are regularly performed by
using a combination of genotypic data (e.g., genotyping markers tagging genetic variation within
populations) and phenotypic data of appropriately structured mapping populations. Randomly
obtained DNA information and more recent high-throughput genome sequencing efforts have
dramatically increased the ability to obtain genetic markers for any plant species. Despite the presence
of constantly and rapidly increasing genotypic data, necessary steps to determine whether specific
markers can be associated with genetic variation may often be initially neglected, meaning that
ever-growing genotypic markers do not necessarily maximize the power of mapping studies and
often generate false results. To address this issue, we present a framework for analyzing genotypic
data while developing a genetic linkage map. Our goal is to raise awareness of a stepwise procedure
in the development of genetic maps as well as to outline the current and potential contribution of this
procedure to minimize bias caused by errors in genotypic datasets. Empirical results obtained from
the R/qtl package for the statistical language/software R are prepared with details of how we handled
genotypic data to develop the genetic map of a major plant species. This study provides a stepwise
procedure to correct pervasive errors in genotypic data while developing genetic maps. For use in
custom follow-up studies, we provide input files and written R codes.
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1. Introduction

Mapping genes and/or quantitative trait loci (QTL) that influence phenotypic traits is one of the
first necessary steps to build a scientific basis for plant breeding and genetics. Studies in crop plants
now routinely use some form of trait mapping, resulting in extensive and well-developed mapping
resources for these plants.

Genetic mapping studies are conducted by collecting genotypic and phenotypic datasets. This data
collection is followed by a series of statistical tests to identify significant associations between genotypes
and phenotypes. Such mapping studies have been conducted in both qualitative (mostly mediated
by one or a few genes) and quantitative traits (mediated by QTL). Initial mapping positions with
appropriate scale and precision determined via genetic mapping can be enhanced by further gene
cloning (molecular sequence characterization) approaches. The DNA information obtained from the
cloning eventually has an impact on the design of optimal strategies for plant improvement.

One of the most commonly used genetic mapping methods is linkage mapping. Linkage mapping
identifies associations between segregating alleles and phenotypes. If the actual studies are about QTL,
then they are called QTL mapping studies. The simplest and most widely used method of linkage
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mapping is a two-parent (biparental) cross. The potential advantages of linkage mapping compared
with other methods such as association mapping are that the method is more powerful for identifying
QTL and that the population used for linkage mapping may be used for the direct selection of a cultivar
or may be utilized in a recurrent selection program. Association mapping, which exploits historical
recombination events, can be an alternative option to linkage mapping for genes of interest and has
been used to acquire greater map resolution [1]. Association mapping may require confirmed genetic
diversity in samples or the pretesting of large numbers of germplasm accessions. With increasing DNA
information from recent genome sequencing, the genome-wide association study (GWAS) method is
being adapted to diverse plant species. As one of the association mapping methods, nested-association
mapping (NAM) has been used more commonly in recent years [2] because of its ability to combine the
advantages of linkage and association mapping. Though the methods of mapping continue to evolve,
the importance of the arrangement of phenotypes and genotypes along chromosomes as calculated by
the frequency with which they are inherited together remains the same.

Recent advances in genotyping technologies are making it possible to create genetic maps and
exploit the genetic linkage between markers and traits with unprecedented resolution. In the rush
to use such technologies, however, the experimental designs necessary to check and correct errors in
genotypic datasets may be initially neglected. In mapping studies, genotypes and phenotypes are
collected from samples with the goal of discovering the associated variants, which assumes that the
observed genotype corresponds with the true underlying genotype. Therefore, such errors can result
in a substantial loss of the likelihood of detection of true genotypes and may lead to false evidence
for association.

To address this issue, we describe a stepwise procedure to correct pervasive errors in genotypic
data while developing a genetic linkage map of plant species. As a case study, we choose to use a
representative recombinant inbred line (RIL) population of a diploid plant soybean (Glycine max).
We use the R/qtl package [3] coupled with in-house R codes as a tool to demonstrate how such errors
can be corrected. Since its introduction, R/qtl has become a reference implementation with an extensive
guide on QTL mapping [4,5]. The package provides an extensible, interactive environment for mapping
QTL and is implemented as an add-on package for R [6]. Though the R/qtl package has pointed out
shortcomings due to errors in QTL analysis [3–5], it has received relatively little attention from the
majority of plant geneticists and breeders.

2. Materials and Methods

2.1. Preparation of the Plant Population

An RIL population was formed by crossing two U.S. soybean (Glycine max) parents: Harosoy
(H, [7]) and Clark (C, [8]). The cultivars Harosoy and Clark were selected because of their importance
to soybean breeding and genetics; historically, they inherit major U.S. soybean genetic backgrounds
(Germplasm Resources Information Network (GRIN; http://www.ars-grin.gov/cgi-bin/npgs/html/site_
holding.pl?SOY)), and they remain important genotypes in breeding programs. Ten F1 plants were
made from 10 pairs of parent plants, and each cross was designated as H × C (e.g., the first crossing
as H-1 × C-1). F1 plants were grown to advance the generations. After discarding undesirable F1

plants, a total of 300 F6 lines were developed from eight F1 families (hereafter, families A through
H). Twenty-five F6 plants in each of the families were bulked, forming a RIL population (hereafter,
the H × C population).

2.2. Genotypic Data Acquisition

Plants were genotyped using a bulk sample of leaflets from plants for each RIL or parent. DNA was
diluted to 20 ng/µl. Two types of methods, a 2.5% agarose gel-based simple sequence repeat (SSR)
assay and an Illumina GoldenGate assay [9], were applied to acquire genotypic data. For the SSR
assay, a modified protocol by Akkaya et al. [10] was used. For single nucleotide polymorphism (SNP)
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genotyping, the Illumina GoldenGate assay was performed with a 1536-SNP USLP 1.0 array [11].
GenCall software (Illumina, Inc., San Diego, CA) was used to identify allelic variation. Four classical
markers, the pubescence color locus (TT/tt; T and t show tawny and gray colors, respectively),
hilum color locus (RR/rr; R and r show black and brown colors, respectively), hilum color intensity
locus (II/iiii; I is less intense than ii), and maturity date locus (E2E2/e2e2; E2 and e2 show late and early
maturity, respectively) [12], were scored in the RILs. A total of 751 polymorphic markers (481 SNPs,
266 SSRs, and 4 classical markers) were used in further analyses, and the alleles from C and H were
genotyped as ‘A’ and ‘B’ calls, respectively.

2.3. Genetic Map Development

We briefly describe the development of a genetic map here and detail this development in Section 3.
To develop a genetic map, we used two different versions of the R environment (3.0.1 and 3.4.3) to
implement the R/qtl package (V. 1.41-6, [3]). R/qtl processes diverse populations including F2, backcross
(BC), and RIL populations. The Kosambi mapping function [13] and a genotyping error of 0.01% were
used for linkage analysis. For general linkage grouping, a logarithm of odds (LOD) score of 3.0 and a
recombination frequency (RF in the Kosambi function) of 0.372 were chosen as the significance criteria.
Linkage map distance was estimated by maximum likelihood (ML) with the expectation–maximization
(EM) algorithm [14]. The default maximum number of iterations and tolerance value were 1 × 104 and
1 × 10−6, respectively.

3. Results and Discussion

Here, we present and discuss common steps to develop the genetic linkage map of a soybean RIL
population. A workflow summarizing these steps is shown in Figure 1. Details of R codes are listed in
Figure S1. Input files are included in Table S1 and Table S2.
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pervasive errors in genotypic datasets are presented (the right column) in the order in which they are
performed in this article. Specific named R/qtl and R functions are immediately followed by single
closed brackets.
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3.1. Preprocess Genotypic Datasets

Once the genotypic data are acquired, the first step is to convert ambiguous genotypes
(e.g., ambiguous amplicons obtained from gel-based genotyping methods) to missing genotype
codes (NA, N, or - symbols). Furthermore, heterozygous genotype codes (AB or H as determined
by genotyping software packages) should be carefully considered as there is overall agreement that
heterozygous genotypes are error prone unless such genotypes are validated using independent data
such as high-depth whole genome sequencing (WGS) information. It is therefore considerable that
heterozygous genotype calls be converted to missing genotypes when high levels of homozygosity are
expected as a consequence of artificial selection.

We converted heterozygose calls to missing genotypes, since F6-derived soybean RILs were used in
this study. After conversion, we used two R/qtl functions—specifically, read.cross() and convert2riself()—to
process our RIL data. The first function emulates a typical BC data-type by reading RIL data and generating
read-in data. The second function then converts the typical BC data-type to the RIL data type.

Next, we identified duplicate plant samples. Sample duplication could arise from human errors in
advancing plant generations during population development steps (e.g., two seeds advanced from the
same F6 plant in a RIL population) or the DNA extraction phase. Using the R/qtl function Allpairs(),
we examined all possible pairs of individuals in the H × C population and calculated the degree of
paired marker genotype identity. There were 44850 (300C2 = 300 × 299/2) possible pairings of the
300 individuals. The paired identity values for all pairs were displayed in a histogram according to
their fractional degree of identity from zero identity (0.0) to complete identity (1.0) using the function
hist() (Figure 2). Zero identity means the pair had a zero match of an A or B (e.g., H in F2) or NA
(missing) genotype codes at all marker loci compared, whereas complete identity means the pair had a
100% match of genotype codes at every marker locus compared. The histogram peak value should
theoretically be 0.5 in a RIL population (0.375 = 6/16 in the case of the F2 population).
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Figure 2. Identification of duplicated individuals. Histogram of the proportion of markers for which
pairs of individuals have matching genotypes. The top portion of the histogram (a degree of 0.5)
represents an idealized distribution of the frequency of matching genotypes in a recombinant inbred
line (RIL) plant population. The fraction was computed for two-way comparisons of all markers,
which ranged between 0.0 (0% identical) and 1.0 (100% identical). The majority of individuals in this
population showed between 30% and 70% of genotypes shared. A fractional degree, 0.97, is marked by
a red arrow on rug lines and used as a threshold value to indicate duplicate individuals.

The main challenge for the interpretation of paired marker genotype identity is to make a judgment
call of what is a significant fraction of outliers (values that lie beyond the range of the far-right tail).
Therefore, we should state a specified threshold for the fractional degree and display the R/qtl index
number for members of the pair. From the perspective of inbreeding in population genetics, unlike a
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randomly mating population, selfing might be a common form of inbreeding, and each successive
generation of selfing causes a theoretical 50% reduction in heterozygosity, while the allele frequencies
in the population are unchanged. In our RIL population, the frequency of heterozygotes can be
approximately 3% after five generations of selfing. Therefore, we chose 97% as a suitable threshold
value. Our analysis showed that there were no outliers falling beyond the threshold value (Figure 2).

3.2. Identification of Potential False Crossovers

The occurrence of crossover events may vary by population size. According to the Beavis effect [15],
a relatively small population size results in an overestimation of the QTL effect due to biased crossover.
In this study, we used a large sample size (the number of RILs was 300) and constructed a genetic
map with 751 polymorphic markers to avoid the bias due to crossover counts. In addition, we used
codominant markers to access the recombinations driven by crossover. Notably, certain population
types may be prone to biases between crossings; one example could be a BC population where large
numbers of genome segments from a donor parent result in a large portion of monomorphic alleles by
generation. Specifically, a BC population with a small population size is more likely to increase map
distances with biased recombination information. Further, if outlying crossover counts (high or low)
are observed in samples, such samples should be carefully assessed to determine whether they are the
true members of the given population. Usually, samples with high or low crossover counts are not the
descendants of parental mating in a population. Another possibility is sampling error, where poor
DNA quality or sample mix-ups occur.

We plotted the number of crossovers in the RILs (Figure 3a). When the threshold value ranged
from 42 to 100 (the parametric 5th and 95th percentiles of the value distribution identified using the R
function quantile(); bottom and top horizontal bars, respectively), 15 RILs, which came from 5 F1 families
(4, 4, 3, 2, and 2 from families A, B, C, D, and E, respectively), had crossover counts much greater than 100.
Although setting the range of threshold values could be subjective, we decided not to retain the 15 RILs.
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Figure 3. Identification of problematic individuals and markers based on crossovers. (a) Numbers
of observed crossovers in each individual line are displayed. Threshold values of 100 crossovers
(the parametric 95th percentile of the value distribution; top horizontal bar) or less are accepted as the
criteria for assigning the number of crossovers to each individual, resulting in 15 individuals identified
as outliers. The bottom horizontal bar indicates the parametric 5th percentiles of the value distribution;
(b) genotypes that show potential false crossovers on chromosome 19. Red-colored quadrangles flag
markers with a high logarithm of odds (LOD) score, indicating the presence of potential genotypic errors.
The genetic map distance between adjacent markers is 0.003 (between markers m1 and m2) and 0.001 cM
(m2 and m3) based on the consensus map. Those three markers were excluded, since they were most
likely caused by genotyping errors. Empty and black-filled circles indicate ‘C’ and ‘H’ genotypes in the
population as described in the Materials and Methods. The crossover event is marked by a blue cross.
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In cell division, double crossover or multi-crossover events within a narrow interval may occur
with a minimum probability. In a linkage map with sparse map distances, if the genotype at a single
marker position is out of phase relative to its flanking markers, e.g., a marker showing different
polymorphism compared to two flanking markers within a narrow interval, it is very unlikely that
a true double crossover event occurred. We calculated the LOD score of each marker with the null
hypothesis that a genotype from an individual at each marker is correct using the function calc.errorlod().
The genotypic data of all other markers on the chromosome were considered by employing a hidden
Markov model (HMM) [16]. To compute the stringent criterion, a LOD score ≥ 5 (a genotyping error
rate of 1 per 10,000 or higher) was used to designate a genotype error. An example that shows a
potential genotype error due to a false double crossover is shown in Figure 3b: 25 individuals with a
LOD score ≥ 5 at three marker positions, BARC-011793-00875 (marker ID: m1), BARC-047428-12928
(m2), and Sat_134 (m3) (three markers positioned within 0.003 cM based on the soybean consensus
map (the integrated genetic linkage map of soybean by Hyten et al. [11])). A total of 18 markers with a
large LOD error were detected on chromosomes 2 (two markers), 5 (two), 9 (one), 14 (four), 15 (two),
17 (two), 18 (two), and 19 (three); further analyses excluded these markers.

3.3. Validating Effects by Genome Structure

We then examined the homogeneity of genotypes driven by pedigrees in our population using
the R/qtl function plot.missing() (Figure 4). On chromosomes 1, 8, 12, and 20, we observed several
single families or multifamilies that possessed monomorphism for a given marker (Figure 4b). The loci
on chromosome 20 in particular exhibited notable monomorphism across families. Family-specific
monomorphism requires biological interpretation, such as gene conversion and natural variation of
parents, since the observed monomorphism could be quite unusual. To retain potentially useful genetic
information for those markers, we converted monomorphic codes to missing since such monomorphism
would result in a false positive declaration of segregation distortion for those markers. To be justified
in converting such genotypes to missing calls, it is advisable to test the segregation distortion of those
markers (Section 3.5; no fluctuations in segregation ratios of family-specific monomorphic markers
were observed) and switched alleles (Section 3.4; no switched alleles were detected) prior to the
construction of the genetic map.
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3.4. Correcting the Order of Markers

The use of consensus genetic linkage maps is powerful in developing a new genetic map because
such maps provide a unified statistical framework for controlling for the effects of misplaced or
incorrectly ordered markers or for saturated markers [11]. Given that our marker data type fits the
framework of the soybean consensus map (all markers used in our study are present in the dataset
used for the consensus map), we projected markers of our H × C population onto the consensus
map to examine the relative marker positions and distribution of the population using the function
plot.map() (Figure 5a). We then used the function jittermap() to generate slightly offset map positions
by a 1 × 10−6 map distance to avoid regression failure in the QTL analysis functions in R/qtl. In cases
where consensus maps or previous linkage studies are not available, studies using population-based
genotyping data (e.g., a linkage test) can perform statistical tests to determine whether marker orders
for each chromosome would be best for their own genetic map. Physical maps supported by reference
genome assembly data may also be incorporated into resolving marker orders.
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Figure 5. Determination of genotypes that occurred in erroneous order. (a) Marker positions
(both marker order and map distance) within chromosomes are projected based on the consensus map.
Empty dots represent the beginnings and ends of chromosomes. The length (cM; centimorgan) of each
chromosome is labeled under the chromosome. The gap marked by a black arrow is the genetic map
distance between the first marker located at 0.00 cM and the next marker; (b) a plot of the logarithm of
odds (LOD) scores against the estimated recombination frequency (RF) for all marker pairs indicating
erroneous markers. The threshold values (RF >0.5 and LOD >3.0) were shaded in gray.

To correct marker loci with erroneously switched allele codes, we first evaluated the linkage
between all possible pairs of markers using the recombination frequency (RF) and LOD. The RF was
estimated by the RF between a pair of markers, and the LOD score for the RF was estimated by the test
statistic of the null hypothesis that the RF is 0.5. Generally, the lower the RF value is, the higher the LOD
score is, but if the A or B allele of one marker is switched in comparison with the B or A allele of another
marker, then the RF value between the two markers may exceed 0.5 (up to a value of RF = 1.0). As a
result, high RF values will cause high LOD scores. The relationship between the LOD score and RF was
graphed using the function plot(), and we investigated whether any marker pairs had RF values greater
than 0.5, which was coupled with a high LOD score (LOD > 3.0 using the R/qtl function checkAlleles())
(Figure 5b). A substantial number of marker pairs appeared to have RF values greater than 0.5 at an
upward spike in the graph. No such markers, however, were flagged when a threshold LOD value
(LOD = 3.0; 0.0002 as a p-value of the χ2 distribution) was applied. A more stringent threshold LOD
value can also be applied (e.g., a LOD value of 7 after Bonferroni correction). An upward spike in
a graph implies a switched allele condition, while a downward spike of RF values reflects linkage.
Ideally, estimated RF values in the genotypic dataset would be 0.5 or less. Marker pairs with RF values
greater than 0.5 may occur when imperfect allele segregation and/or missing genotypes in each of the
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unlinked markers are observed. Moreover, scatter in the curve will arise if marker genotypes are missing
because RF values of 0.5 for given marker pairs can deviate from their true 0.5 value. A sampling error
(an experimental error made by sample size) that originates from imperfect allele segregation in each
marker may indeed arise in the range of 0.5 < RF < 0.6 when a large standard deviation is detected for
RF (e.g., RF = 0.5 ± 0.2). In any case, small sample sizes will result in a large standard deviation for RF,
and a large RF is also possible due to switched alleles for one member of the marker pair.

3.5. Segregation Analysis

We then looked at the segregation of each marker. χ2 tests were applied to determine whether each
marker segregated with a ratio of 1 (AA):1 (BB) in the population. The outputted segregation data were
ordered by chromosomes and markers using the function plot() (Figure 6a). A threshold value of 4.18 was
obtained by -log10p-value, where the significance level (type I error rate) was set to 0.05 and Bonferroni
correction was made (the total number of markers was 751). In the case of the LOD value, however, the
value increases since the LOD value equals –log10(likelihood ratio test (LRT) value), where the LRT equals
0.2172 × p-value (the P-value from a χ2 distribution). For the LRT and LOD values, 1.446 × 10−5 and
4.8398 were obtained, respectively. If a marker has few genotypes for a χ2 test, Yates’ correction can be
considered as an alternative. A total of nine markers in the H × C population showed fluctuations of
segregation ratios on chromosomes 5, 10, and 14 (Figure 6a). Despite significant fluctuations in ratios,
knowledge of genetic architecture can be exploited whether we retain specific alleles. According to the
soybean consensus map, the soybean maturity allele [17] was positioned at 121.41 cM on chromosome 10,
and the segregation distortion site included this allelic position. Therefore, the segregation distortion of
six markers on chromosome 10 was likely due to inadvertent human selection of the C genotype (E2E2)
for late maturity (vs. the H genotype e2e2 for early maturity). Therefore, we retained these six markers
on chromosome 10 and dropped three markers on chromosomes 5 and 14 for the next step. After these
markers were dropped, the RILs showed an overall genotype frequency of 1:1 across the whole genome
(Figure 6b). Markers with distorted segregation could increase false positives in QTL analysis, especially
in the simple interval mapping (SIM), and could be cofactors in both composite interval mapping (CIM)
and multiple interval mapping (MIM) methods. Therefore, removing such markers requires careful
consideration for specific crosses or plant species, because this influences the power for detecting true QTL.
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Figure 6. Unusual segregation patterns of genotypes. (a) Major fluctuations in segregation ratios in
genotypic datasets of the H × C population were detected (red arrows on chromosomes 5 and 14 and
black arrow on chromosome 10). We retained the markers (near the black arrow) on chromosome 10,
since such fluctuations were likely due to the artificial selection. A threshold value of 4.18 (horizontal
bar) for the segregation ratio was determined by calculating a P-value using a χ2 test (alpha level = 0.05)
and then applying the Bonferroni correction. Some picks represent multiple data values within the
narrow chromosome interval; (b) after the removal of fluctuating genotypes (red arrows in Figure 6a),
a mirror image (black color for the ‘C’ genotype in the H × C population; blue for ‘H’) was observed
across chromosomes, which verified the 1:1 genotype frequency for each marker.
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3.6. Construction of the Genetic Map

After performing the above-mentioned steps, we created a draft genetic map for the H × C
population using plot.map() (Figure 7a). To create a map, we translated an RF value between two
adjacent markers into an intermarker distance using the Kosambi mapping function. Assuming that
the marker order in the H × C population follows that of the soybean consensus map, we computed
RF values between two markers on each chromosome in the population. Because of the exponential
relationship between RF and the Kosambi map distance, when RF values increase to the limit of 0.5,
the Kosambi map distance value explodes to infinity. Therefore, to correct undesirable gaps, we set the
maximum RF value to 0.450, which equaled the Kosambi map distance of 73.61 cM. On chromosome
13, where a large gap appeared (a red arrow), we observed that the maximum distance of a gap was
500.8 cM, which was greater than 73.61 cM. Using the function fix(), we reduced the gap to 73.61 cM.
One factor which should be considered critically when researchers apply this step to independent
experiments is that larger map distances due to such gaps could overestimate R2 values and affect the
estimation of confidence intervals for QTL [18,19].
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Figure 7. A genetic map was developed using corrected genotypic data. (a) The draft genetic map
was developed using the H × C population (termed the H × C map). Unlike in Figure 5a, which was
developed based on the map distance of the consensus map, the map distance in the H × C map was
drawn based on the H × C population. Marker orders were based on the consensus map. A gap
(red arrow) that spans approximately 500 cM on chromosome 13 was observed; (b) the final H × C map
(marked by a filled blue arrow on chromosome 1; representative of all 20 chromosomes) was compared
to the consensus map (open blue). Markers mapped to two different maps are connected by black lines.
The corrected genetic linkage on chromosome 13 was used in the final H × C map.

Finally, we compared the final H × C map with the soybean consensus map V.4.0 (Figure 7b).
The total map distance of the H×C map was 3769.4 cM, which was 1.6 times larger than that (2296.4 cM)
of the soybean consensus map. The increased map distance in the H × C map compared to that in the
consensus map could be attributable to a lower number of mapping populations incorporated in our
mapping study. The average map distance of the H × C population was 5.21 cM.

4. Conclusions

Our study provides a workflow for cleaning genotypic datasets of plant populations in order
to optimize subsequent genetic map development and mapping studies. The workflow is based on
functions of the R/qtl package and a synthesis of R functions. A major advantage of this workflow
is that users can use the workflow as a guideline to build a genetic map while requiring much less
time and effort to prepare their own genotypic datasets. This is primarily because we have covered all
important aspects which need to be considered when building the genetic map and can end up hidden
in laboratories in an educational, concise way.
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After performing the steps prior to those used to construct Figure 7, researchers can continue
QTL/gene mapping studies of their target traits. For example, the R/qtl package provides two
functions, scanone() for a single-QTL model (e.g., single marker analysis, interval mapping, selective
genotyping by imputation analysis, and CIM) and scantwo() for a multiple-QTL model (e.g., MIM).
Further, R/qtl provides diverse tools for QTL analysis using different strategies such as imputation
analysis (selective genotyping) and composite or multiple interval mapping (good for setting up a
criterion). Alternatively, input datasets could be prepared by using R/qtl when different software
(ex. WinQTLCartographer [20], PLABQTL [21], or QTLNetwork [22]) are preferred.

The ultimate goal of genetic mapping is to identify the genetic variants that determine traits
or phenotypes. Recent genomic study has been making significant progress in achieving genetic
information, driving down genotyping costs and increasing capacity to acquire genotypes and genotype
accuracy. Despite this progress, success in using such information to discover the association between
genotypes and phenotypes will remain elusive unless phenotyping is further advanced to overcome
current limitations in phenotype data collection in the plant species of interest.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/9/4/196/s1,
Figure S1: R codes, Table S1: Genotypic data, Table S2: Phenotypic data.
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