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Abstract: Realizing the yield potential of crop plants in the presence of shifting pathogen populations,
soil quality, rainfall, and other agro-environmental variables remains a challenge for growers and
breeders worldwide. In this review, we discuss current approaches for combatting the soilborne
phytopathogenic nematodes, Pratylenchus and Heterodera of wheat and barley, and Meloidogyne
graminicola Golden and Birchfield, 1965 of rice. The necrotrophic fungal pathogens, Rhizoctonia
solani Kühn 1858 AG-8 and Fusarium spp. of wheat and barley, also are discussed. These pathogens
constitute major causes of yield loss in small-grain cereals of the Pacific Northwest, USA and
throughout the world. Current topics include new sources of genetic resistance, molecular leads from
whole genome sequencing and genome-wide patterns of hosts, nematode or fungal gene expression
during root-pathogen interactions, host-induced gene silencing, and building a molecular toolbox of
genes and regulatory sequences for deployment of resistance genes. In conclusion, improvement of
wheat, barley, and rice will require multiple approaches.

Keywords: genetic resistance; root disease; wheat; rice; barley; nematodes; transcriptomics; HIGS;
DORN1; nematode-inducible promoters

1. Introduction

Grain crops including rice (Oryza sativa L.), common or bread wheat (Triticum aestivum L.),
durum wheat (Triticum turgidum L. ssp. durum), and corn (Zea mays L.) are preferred staple foods
throughout many parts of the world. Yield enhancement of these crops poses a challenge for growers
and breeders who seek to maintain production rates in accordance with consumer needs and in the
face of environmental challenges. For instance, an approximate 1% increase in wheat yields per
year is estimated to meet consumer demands for the next 5 to 15 years, whereas yield reductions of
6%–13% are estimated in the face of temperature shifts, and development of new adapted cultivars is
accomplished in a span of 10 or more years [1,2]. In this review, we focus on prospects for improvement
of wheat, barley (Hordeum vulgare L.), and rice with respect to resistance against the soilborne pathogens
Rhizoctonia solani, Fusarium culmorum (W.G. Smith) Sacc., Pratylenchus neglectus (Rensch, 1924) Filijev
and Stuurmans Stekhoven, 1941, P. thornei Scher and Allen, 1953, Hereodera avenae Wollenweber, 1924,
and Meloidogyne graminicola. These pathogens are problems in the dryland production regions of the
Pacific Northwest, USA (PNW), Australia, Europe, China, Southeast Asia, India, and other parts of
the world [2–7]. Furthermore, a body of knowledge is accumulating about the cellular and molecular
interactions between these hosts and pathogens that are helping to elucidate the basis of susceptibility
and resistance, e.g., References [8–13].

Wheat and rice are major sources of nutrition for 40% and over 50% of the world’s population,
respectively [14,15]. Wheat, rice, and barley provide about 56% of the caloric content and 50% of

Agronomy 2019, 9, 188; doi:10.3390/agronomy9040188 www.mdpi.com/journal/agronomy

http://www.mdpi.com/journal/agronomy
http://www.mdpi.com
https://orcid.org/0000-0002-8513-4862
http://www.mdpi.com/2073-4395/9/4/188?type=check_update&version=1
http://dx.doi.org/10.3390/agronomy9040188
http://www.mdpi.com/journal/agronomy


Agronomy 2019, 9, 188 2 of 22

required protein for the human diet [16]. In 2017, 16.4 million tons of barley were produced in
107 countries, including Russia, the Middle East, Europe, Australia, UK, North, Central and South
America, and Asia [17]. Annual yield losses due to diseases have been estimated at 10%–15% [16,18].
Plant-parasitic nematodes are thought to cause $100–800 billion in losses per year worldwide [19–21],
with $157 billion in losses due to root-knot nematodes of the genus Meloidogyne [10]. Over $100 billion
is attributed to cereal cyst nematodes (Heterodera spp.), with losses ranging from 20% to 90%, depending
upon location and year [20,22,23]. Meloidogyne graminicola of rice has resulted in yield losses of up to
80% in Southeast Asia [11,24]. This nematode is also problematic in Latin America, Asia, Southeast
Asia, and India where flooding is restricted in the interest of water conservation [4,6]. In the PNW,
the root lesion nematodes, Pratylenchus neglectus and P. thornei, contribute up to 35% and 60% yield
reductions in wheat, with yearly chronic losses of 5% ($51 million) [25,26]. The cereal cyst nematodes
Heterodera avenae and H. filipjevi (Madzhidov, 1981) Stelter, 1984 also are problems on PNW wheat and
barley [5].

Solutions for nematode resistance likely will depend on the host–pathogen interaction, particularly
on plant genotype and pathogen-specific aspects of the infection processes. Root-knot nematodes
enter the root at the zone of elongation, and migrate intercellularly to the vascular cylinder, where
they induce feeding sites composed of giant cells [9,13]. Female nematodes deposit eggs onto the root
surface in a gelatinous matrix. The nematodes also stimulate plant cell division resulting in an external
organ, called the knot or gall. While little cellular damage occurs during the establishment of the
feeding site, the nematode draws nutrients from the host, alters host root morphology, and generates
progeny. In contrast, cereal cyst nematodes intracellularly migrate to the vascular cylinder, and induce
the fusion of multiple host cells to form a multinucleate feeding organ called the syncytium [10,13,27].
The root lesion nematodes also intracellularly migrate through the root, causing significant host cell
breakage. However, these nematodes feed from root cortical cells without disrupting the lignin and
suberin layers of the vascular cylinder [13,28].

Wheat and barley are generally susceptible to the soilborne fungal pathogens Fusarium culmorum,
one of several Fusarium spp. associated with Fusarium crown, stem, and root rot, and R. solani AG-8,
the causal agent of Rhizoctonia root rot and bare patch. Fusarium culmorum is a yield-reducing pathogen
of durum wheat and bread wheat in warm dry climates, and has been reported in Europe, Australia,
Canada, North America, Africa, and Western Asia [8,29,30]. Yield losses due to Fusarium-derived root
and stem diseases were reported to be about 25% in Australia and 31%–65% in North America [25,31].
In the dryland wheat-based production systems of the PNW, chronic infection by soilborne pathogens
causes 10%–15% annual yield losses [32], or about $101 million yearly for wheat in Washington
State [33]. Fusarium culmorum and R. solani anastomosis group 8 (AG-8) were detected in 36% and
50% of surveyed fields in Washington and Oregon, respectively [25,34]. Both of these pathogens are
harbored in stubble resulting from direct seeding [32,35].

Management options for soilborne diseases of the small-grain cereals include rotation, application
of appropriate amounts of fertilizers, fungicide seed treatments, tillage, and use of partially-resistant
crop genotypes, when available. There are excellent articles and extension bulletins describing
widely-used management practices for the above mentioned soilborne diseases that are not included
in this review. Instead, we consider how recent biotechnological advances can help to identify new
genes for disease resistance, and how the genes can be deployed as traits in the field. In this review,
we focus on new genetic loci for resistance or tolerance from association mapping and genome-wide
association studies (GWAS); the roles of genomics and transcriptomics in identifying specific candidate
resistance and parasitism genes; advances in understanding the mechanisms by which pathogen
proteins act in a susceptible host to cause the disease condition; and the difficulties of using candidate
resistance genes from non-cereals to find and test the corresponding genes in small-grain cereals.
Finally, we recognize the utility of a molecular toolbox of wheat, barley, and rice genes and regulatory
sequences for generating cis-genic germplasm for pre-breeding. Engineered disease resistance was
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popular in the 1980s and 1990s, and should be given consideration again in the light of CRISPR/Cas9
biotechnology that will eventually be refined for producing non-GM germplasm for the cereals [36–40].

Accordingly, Section 7 of the review includes new data on wheat root genes induced during
infection by Pratylenchus neglectus and P. thornei, the aim of which is to identify regulatory DNA
segments with potential to turn on the expression of selected resistance genes when Pratylenchus
is present. Candidate defense genes for disease resistance in wheat, barley, or rice are sometimes
found in non-cereals, necessitating a search for the cereal gene equivalent (orthologue). In this
section, we also discuss attempts to identify the wheat orthologue of the DORN1 gene (also known
as P2K1) from Arabidopsis. The DORN1 (Does not Respond to Nucleotides1) protein is a plasma
membrane-bound receptor that senses extracellular ATP released during cellular damage [41]. The gene
was originally isolated using a genetic screen for an ATP-insensitive mutant [42]. When overexpressed
in Arabidopsis (Arabidopsis thaliana (L.) Heynh), tobacco (Nicotiana benthamiana Domin), and potato
(Solanum tuberosum L.), the Arabidopsis DORN1 gene conferred host resistance against the biotroph
Phytophthora brassicae De Cock and Man in’t Veld 2002, the hemibiotrophs Pseudomonas syringae van Hall
and Phytophthora infestans (Mont.) de Bary 1876, and the necrotroph Botrytis cinerea (Pers.:Fr) [43–46].
Pathogen resistance resulted when the receptor-ATP complex triggered the release of reactive oxygen
species (ROS) and activated additional defense pathways in the host [47,48]. Root defense strategies
and root interactions with the microbiome are reviewed in De Coninck et al. [49].

2. New Sources of Genetic Resistance to Nematodes of Small-Grain Cereals

Genetic resistance remains a desirable means of controlling soilborne pathogens. New mapping
approaches are enabling the screening of populations with a genetically wider range of individuals.
For instance, populations for association mapping can include accessions from global collections
(diversity panel) or accessions enriched for the trait of interest based on geographic origin (focused
identification of germplasm strategy, or FIGS) [1,50]. Mapping approaches now use single-nucleotide
polymorphisms, or SNPs (90K iSelect SNP genotyping assay), or hybridization of host DNA to short
DNA sequences on an array that represent a nonredundant set of genes located on all 21 wheat
chromosomes (diversity array technology, or DArT, platform) [51,52]. A DArT array for barley
has also been developed [53]. Genome sequences of individuals from the mapping population
(genotyping-by-sequencing) have been used to obtain SNPs at a high density for better mapping
resolution [54]. In some cases, the genome sequence of the host can be used to select candidate resistance
genes based on physical proximity to a mapped locus or marker. The new mapping approaches,
suitable for elite lines and adapted cultivars, enable the screening of a wider variety of genetic resources
and avoid the problems associated with inter-specific crosses. An excellent review of genetic resistance
to cereal cyst nematodes in wheat and barley is available [20].

Resistance to Meloidogyne graminicola in rice is important because all cultivars generally are
susceptible to this nematode. Genetic resistance from Oryza glaberrima, an African cultivated rice,
and O. longistaminata, a perennial wild rice relative, have been introgressed into adapted cultivars,
although expression of resistance is attenuated in progeny of the latter [55]. Nevertheless, O. glaberrima
confers nematode arrest at different stages in the infection process, providing different mechanisms
of resistance for deployment. Recently, 332 accessions from a rice diversity panel, comprised of elite
lines and landraces from 82 countries and representing five rice subpopulations [56], was screened for
resistance to M. graminicola under controlled conditions [3]. Strong resistance was manifest in two
accessions as absence of gall formation and very few females after M. graminicola infection. A GWAS
approach revealed 11 QTL associated with gall number. Five of the QTL, located on Chr 3, 4, and
11, co-segregated with eight SNP markers. The authors concluded that two loci on Chr 3 and Chr 11
were close to previously reported loci. Another source of resistance to M. graminicola was identified
in O. sativa cultivar Zhonghua 11, from the Chinese Academy of Agricultural Sciences rice breeding
program [55]. This cultivar displayed reduced reproduction, fewer feeding sites and underdeveloped
giant cells, compared to susceptible cultivar IR64. Resistance functioned in both flooded and dryland
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(aerobic) field conditions, and appeared to be dominant in F1 progeny of a cross between Zhonghua
11 and IT64. Zhonghua 11 shows promise as a source of an effective and readily transmissible trait,
although, as pointed out by the authors, further testing is required.

Native sources of resistance to cereal cyst nematodes include the Cre genes from wild relatives of
wheat or adapted cultivars. These have been deployed and combined for resistance against Heterodera
avenae [14]. The wheat DArT array was used to discover markers for new nematode resistance loci in
107 spring wheat genotypes from the CIMMYT semi-arid wheat screening nursery [14]. Genotypes
grown in this nursery are scored for yield under low or high rainfall (depending upon the year) in soil
containing nematodes, root rot pathogens, and other biotic challenges. The study revealed three DArT
markers for four novel H. avenae resistance QTL. In a separate study, resistance to H. filipjevi was revealed
in winter wheat accessions from the International Wheat Improvement Program using the 90K SNP
platform [57]. Resistance was based on counts of cysts and females in root and soil samples, and was
associated with 11 QTL. The PNW adapted cultivar Madsen harbored resistance against H. avenae and
H. filipjevi under both controlled environments and in naturally infested fields in China [5]. Reduced
root penetration by juveniles and reduced white females on roots was observed for both species.
While the action of these new sources of resistance might be conditioned by environment and genotype
of the nematode, transfer of resistance to adapted germplasm will not require extensive pre-breeding.

Resistance to P. neglectus and P. thornei was reported in wheat and barley cultivars in Australia
and the Pacific Northwest [7,14,26,28]. Wheat generally sustained more damage than barley, and
P. thornei was more frequent, and hence more destructive, than P. neglectus [25,26]. Wheat and barley
cultivars were rated for grain yield in the field, with and without application of the nematicide aldicarb;
those for which yield was not substantially increased by aldicarb were considered to have native
resistance [26]. This resistance was better described as tolerance, because enhanced grain yield was
not due to reduced nematode reproduction. Tolerance was observed in 38 of 45 cultivars of spring
wheat and barley and 22 of 121 winter wheat cultivars. Additional resistance to P. neglectus was
mapped in doubled haploid populations of winter barley using DArT, restriction fragment length
polymorphisms, SSR markers, and SNP markers [58]. Resistance, based on nematode counts from
inoculations in a controlled environment, was attributed to six QTL. A major QTL conferred resistance
to both P. neglectus and P. penetrans, also a pathogen of small-grain cereals. Spring wheat genotypes
from the CIMMYT semi-arid wheat screening nursery screens produced seven and six new QTL and
associated DArT markers for P. neglectus and P. thornei resistance, respectively [14]. Resistance to
these two species also was reported in 32 Iranian wheat landraces [59]. In growth chamber assays,
nematode counts in roots plus soil samples were reduced in resistant landraces compared to control
lines. Association mapping using simple sequence repeat (SSR) markers resulted in three clusters of
markers, indicating that at least three different resistance loci were present among the 32 landraces. In a
subsequent study, landrace IWA8608077, with moderate but consistent resistance against P. neglectus
and P. thornei, was used as a parent in a cross with the susceptible PNW cultivar Louise [25]. A resulting
recombinant inbred line population was screened for visible root browning and reduction in nematode
counts. Six major QTL for resistance were identified, four of which mapped to chromosome (Chr) 5A.

3. An Update on Genetic Resistance to Soilborne Fungal Pathogens of Small-Grain Cereals

Adapted small-grain cereal cultivars lack effective resistance or tolerance against Fusarium
culmorum and Rhizoctonia solani, and genetic resistance in wild relatives has been scarce. An interesting
locus in wheat was identified from mapping the recombinant inbred line population of the landrace
IWA8608077 (resistant) crossed to Louise [25]. A major QTL for Pratylenchus resistance on Chr 5A also
was associated with partial resistance to F. culmorum and R. solani AG-8. Partial resistance was evident
as reduced discoloration of internode and crown tissue for F. culmorum, and reduced foliar stunting
for R. solani AG-8, compared to controls. The P. neglectus and R. solani loci co-mapped to the same
genetic interval (cM), whereas recombination was observed between that locus, the P. thornei locus,
and F. culmorum locus. These and additional findings suggested that three different genes or gene
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regions from IWA8608077 were contributing to the resistances on Chr 5A. A QTL on Chr 5A of spring
wheat accessions was involved in resistance against F. culmorum and F. graminearum, pathogens of the
Fusarium head blight complex [60].

Genetic resistance to R. solani AG-8 of wheat and barley has been reported [61,62], but not
integrated into breeding programs due to lack of molecular markers or field performance. Recent
screening and mapping of populations derived from synthetic or synthetic-derived CIMMYT wheat
accessions resulted in five new sources of resistance or partial resistance; mapping of the trait was
carried out for two sources [63,64]. For both sources, reduced disease severity was deemed to be due to
tolerance, rather than resistance, although soil population densities of the pathogen were not quantified.
Two evaluations for shoot-stunting were carried out in field plots where pathogen buildup in the soil
was favored. The field screens were interspersed with a greenhouse root rot assay. In 190 recombinant
inbred lines from a cross of synthetic-derived SCPB-3104 and susceptible PNW spring wheat cultivar
Louise, three tolerance QTL were identified using genotyping-by-sequencing and composite interval
mapping [63]. Markers associated with the QTL mapped to Chr 1BL, 2AS, and 2DL. A similar study of
a cross between SYN-172 and Louise yielded three consistent QTL on Chr 1AL, 7DS, and 7DL, with
7DL derived from Louise [64]. Transgressive segregation was observed for both the SPCB-3104 and
SYN-172 mapping populations.

4. Genes Associated with Disease Resistance against Soilborne Pathogens

Molecular markers are of value to breeders and pre-breeders, but identification of the genes
underlying genetic resistance should be identified in order to determine resistance mechanisms.
Such knowledge can be applied to other host genotypes, pathogen isolates and, possibly, to other
environments. Proceeding from a trait or locus to a gene of interest is now more feasible with whole
genome sequencing, sequencing of coding portions of the genome [65], and global sequencing of
expressed genes (transcriptomics). Data for multiple individuals can be obtained and analyzed
simultaneously due to lower costs of next-generation sequencing and more sophisticated software for
assigning function to candidate genes.

In a screen for M. graminicola resistance in O. sativa, Dimpka et al. [3] focused on 493 candidate
resistance genes in the regions of 11 QTL associated with reduced gall numbers. Genes most likely
to have defense-related functions were identified using a variety of software. Sixteen of the genes
were differentially expressed in rice roots during nematode infection [66], and 51 were differentially
expressed in giant cells [67], discussed further in Section 5. Genes that were predicted to encode lectin
domain proteins or other lectin-associated proteins were well represented in the candidate gene pool.
The candidate pool also contained orthologues of the barley Mla gene for powdery mildew resistance,
and genes encoding peroxidase, enzymes for ROS generation. In a study of H. filipjevi resistance in
wheat, Pariyar et al. [57] reported 11 resistance QTL and 9 candidate protein-coding genes in the
regions of the QTL. The candidate proteins included transcription factors that control the expression of
specific genes, and regulators of cellular processes.

Alternatively, molecular genetics and biochemical approaches have been used to discover the roles
of specific genes for defense functions in the host. For instance, the Cre3 genes from wheat, Triticum
turgidum, and its wild wheat relative, Aegilops tauschii, encode resistance gene analogs, a subset of a
large and complex family of nucleotide binding site leucine-rich repeat (NBS LRR) proteins [68,69]. The
NBS-LRR proteins have a role in early pathogen recognition leading to resistance. A majority of plant
genes required for qualitative (race-specific) resistance contain NBS and LRR motifs. The H. avenae
resistance genes Cre3, Cre 5, and Cre 7 in wheat acted through a cytosolic ascorbate peroxidase gene [70].
The ascorbate peroxidase gene was induced earlier and to a greater extent in resistant genotypes
compared to susceptible ones, and its expression was high around the nematode feeding site. This
finding indicated that ROS were contributing to resistance in the case of these Cre genes.

Clues to defense pathways in the host can be obtained from studies of single genes. The wild
grass, Aegilops variabilis, carries CreX- and CreY-mediated resistance to H. avenae, which has been



Agronomy 2019, 9, 188 6 of 22

deployed in wheat [71]. A gene encoding tryptophan decarboxylase1 was strongly induced in Ae.
variabilis roots during early stages of nematode infection compared to non-infected controls, but
when silenced using the barley striped mosaic virus gene silencing system, the plant roots showed
enhanced susceptibility to infection [72]. Tryptophan decarboxylase converts tryptophan to tryptamine,
a precursor for the synthesis of secondary metabolites and the phytohormone IAA. Subsequent studies
with the Ae. variabilis gene were done in tobacco, a more tractable host for gene disruption and
overexpression experiments. These studies showed that overexpression of the tryptophan decarboxylase1
gene bolstered resistance, and confirmed that gene disruption or inhibition of its protein reduced
resistance [72]. The tryptophan decarboxylase gene manipulations resulted in changes in ferulic acid,
a cell wall strengthener in the grasses; caffeic acid, an antioxidant and precursor to ferulic acid;
serotonin, thought to affect root development and antagonize IAA [73]; and expression of the gene
for tryptamine-5-hydroxylase, the enzyme that converts tryptamine to serotonin [74]. However, IAA
and IAA biosynthetic genes were not affected. The findings suggest that the Aegilops Cre-mediated
resistance involves the production of secondary metabolites that condition cell wall rigidity and
root development.

To examine the role of phytohormone signaling in M. graminicola resistance, expression of genes
for salicylic acid, jasmonate, and ethylene signaling was compared in resistant and susceptible rice
cultivars [4]. The resistant cultivar showed reduced numbers of galls, females, and eggs relative to
the susceptible cultivar. In this cultivar, a gene for ethylene biosynthesis, and genes for jasmonic acid
biosynthesis and jasmonate signal transduction were induced throughout early infection, whereas
in the susceptible cultivar, expression was attenuated or transient. Two genes for phenylpropanoid
biosynthesis (salicylic acid pathway), genes for callose and lignin biosynthesis, and a gene for callose
metabolism were also elevated during infection in the resistant cultivar. Mechanisms of resistance
appear to involve ethylene and jasmonate signaling and modification of cell wall components.

Barley plants carrying the Rha2 gene for resistance to H. avenae differed from susceptible plants in
nematode-related morphological changes in the roots, including faster syncytial development, rapid
deterioration of the feeding site, and altered syncytial cell wall composition [22]. In resistant barley,
levels of (1,3;1,4)-β-glucan also were higher in the cell walls of the feeding site compared to susceptible
barley. The authors examined the expression of genes involved in cell-wall synthesis and found higher
expression of a cellulose synthase-like F10 gene in resistant barley. This study indicated that resistance
was accompanied by alternations in cell wall metabolism and composition.

For the soilborne fungi, there are fewer recent leads about how specific genes or resistance-related
QTL contribute to reduced disease symptoms. In a comparison of wheat cultivars with resistance or
susceptibility to F. culmorum, applications of the phytohormone methyl jasmonate alleviated crown and
foot rot severity in the susceptible cultivar [75]. Six defense genes were induced in the resistant wheat,
but only three were induced in the susceptible cultivar, suggesting that the latter had an attenuated
jasmonate signal pathway. A number of studies have linked changes in lignin to both the nematode
infection process and to host-nematode interactions [4,6,13,58,76]. Thompson et al. [25] found that the
resistant landrace IWA8608077 had higher lignin content than the susceptible Louise [77]. Lignin has
roles in plant growth, long-distance water transport, and defense, so enhancing its defense function
without perturbing development or secondary metabolism will require a more complete understanding
of host transcriptional and metabolic pathways for lignin metabolism [78].

5. Mining ‘Omics Data for Leads to Novel Defense Genes

Whole genome sequencing (genomics), and global profiling of gene expression (transcriptomics)
and protein expression (proteomics) are valuable in comparing both host and pathogen genotypes.
Genome sequencing provides the ultimate genotyping data, and can aid in predicting whether an
organism has the capacity to produce a phenotype based on the presence or absence of known genes.
The transcriptome represents a collection of expressed genes in a selected group of cells from a selected
genotype, at a given time, and under specific conditions. At best, it gives insight into the abundant
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genes and major molecular pathways associated with a biological response, such as a host resistance.
However, it is not always clear how to select specific genes for further testing in the laboratory or field
from global gene expression data. The size and quality of reference databases continue to be a critical
aspect of gene identification (annotation) in ‘omics studies.

A comprehensive comparative genomics approach recently was used to discover pathogenicity
genes of the root-knot nematode, Meloidogyne incognita [18]. The authors collated 15,952 genes common
to plant-parasitic nematodes that were not found in other nematode genomes and identified 993 genes
predicted to encode secreted nematode proteins with potential to interact with host proteins and
result in disease. Sixteen genes that were present as single-copy in M. incognita were targeted for gene
silencing experiments. RNA-based gene silencing is discussed in more detail in Section 6. Of the
16 target genes, 12 resulted in reduction in nematode egg masses and/or gall counts in root infection
assays when gene function was disrupted. This approach identified novel pathogenicity proteins and
narrowed the candidate gene pool to a feasible number for further testing

A transcriptome study of root responses to M. graminicola infection was carried out using the
resistant African rice, Oryza glaberrima, and a susceptible japonica cultivar of O. sativa [6]. In the resistant
rice, nematode penetration was reduced, and females were smaller and laid fewer eggs compared to
the susceptible rice. Over 3-fold more host genes were induced in root tips or whole roots at early
infection in the resistant compared to susceptible rice, and about 5.5-fold fewer genes were repressed
in the resistant compared to the susceptible genotype. The expression of genes encoding the antifungal
protein thionin was high in root tips of the resistant rice without nematode challenge, whereas genes
for the phenylpropanoid pathway enzyme phenylalanine ammonia lyase (PAL), for lignin biosynthesis,
and the pathogenesis-related proteins PR-2 (glucanase) and PR-10 (RNase-like) were strongly induced
during infection. A gene for callose degradation was also induced upon infection in the resistant rice.
These findings indicated that resistance involves the jasmonate and ethylene signal pathways, and
changes in cell-wall composition. However, cultivar differences in lignin content were not supported
by observations of autofluorescence around the giant cells. Finally, the authors examined 10 genes
from their study that corresponded to O. sativa candidate-resistant genes shown to be physically linked
to QTL for M. graminicola resistance [3]. These included genes for the phenylpropanoid and lignin
biosynthetic pathways, thionin and thaumatin-like antifungal genes, jasmonic acid biosynthesis, and a
stripe rust resistance gene orthologue.

Transcriptomic responses to H. avenae were reported for roots of resistant and susceptible wheat
genotypes [79]. The resistant wheat roots harbored fewer mature nematodes, which was attributed to
slowed development of J3- and J4-stage nematodes. The roots of the resistant genotype also displayed
a bi-phasic release of ROS, an early transient, and a later sustained burst, typical of many resistance
responses in leaves [80,81]. Resistance was associated with induction of genes for phenylpropanoid
biosynthesis, a chitin elicitor receptor kinase, the brassinosteroid insensitive1-associated kinase,
peroxidases, and lipoxygenases. The latter two genes were thought to be involved in the ROS bursts.
Induction of genes involved in oligo- and monosaccharide transport, RNA methylation, DNA repair, and
sulfite metabolism were also observed. In a related study, Qiao et al. [82] examined genes induced by H.
avenae in the roots of the susceptible wheat at early- to mid-stage infection. The genes encoded cell-wall
degrading enzymes, peptide transporters, auxin biosynthesis and signaling, peroxidases, gluthathione
S-transferases, and UDP-glycosyltransferases (for glycosylation of secondary stress metabolites and
phytohormones). The antifungal lipid transfer proteins, 1,3-β-glucanases, and chitinases also were
induced. Additional experiments could be done to demonstrate a genetic or physiological correlation
between susceptibility and candidate gene induction, as some of the genes might be involved in the
non-specific root immunity response to biotic stress [83]. Twelve of 16 NBS-LRR genes were repressed
during nematode challenge, indicating that susceptibility was associated with damping early pathogen
recognition mediated by NBS-LRR resistance proteins. The same susceptible wheat cultivar used
in the above two studies was challenged with mobile J2 H. avenae to characterize root interactions
with the pre-penetration stage of the nematode [84]. Wheat roots produced 27 induced genes and 66
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repressed genes, and the nematodes showed 867 induced genes and 12 repressed genes. The repressed
wheat genes were enriched for ROS metabolism, whereas over 40% of the induced nematode genes
were orthologues of known candidate parasitism genes; genes for primary metabolism and nematode
body wall development were also observed. One nematode-expressed gene of interest encoded a
chitinase-like protein that suppressed the host cell death resistance response in the tobacco assay.

There is a void of information about how the roots of small-grain cereals respond to R. solani or
F. culmorum on a global gene expression scale. However, the resistance response to R. solani AG-8
was examined in the model brassica A. thaliana using the Affymetrix ATH1 Genome array, a DNA
hybridzation-based platform [85]. The study revealed that R. solani AG-8 induced root genes for ROS
metabolism, including peroxidases, an alternative oxidase, the respiratory burst homolog subunit
RbohD of the NADPH oxidase complex, FAD-binding proteins, and glutathione S-transferases. Genes
for heat shock proteins, expansins, and modification of xyloglucan, pectin, polygalacturonic acid, and
other cell wall-associated proteins components were also induced. The authors generated mutations
in two Rboh subunit genes NADPH oxidase that resulted in an enhanced degree of susceptibility to
R. solani AG-8. In general, the data indicated that Arabidopsis roots responded to a fungal necrotroph
in ways reported for small-grain cereal roots after nematode challenge. One exception was the lack of
evidence for the jasmonate signal pathway. Specifically, though, the study pointed to the importance
of a functional NADPH oxidase in disease resistance.

A proteomics approach was used to identify R. solani AG-8 genes induced in the presence of wheat
seedlings [12]. This interaction represented the susceptibility response of the host, and the pathogenic
response for R. solani. Protein fractions were obtained from cultured mycelium and mycelium growing
on nitrocellulose membranes laid over wheat seedlings in a system. Among the secreted proteins
found only in mycelium exposed to the host, cell-wall-degrading enzymes and proteins associated
with ROS metabolism were well-represented. Culture filtrates constitutively expressed proteins for
lignin breakdown. In the process of mapping the peptide fragments to the genome of R. solani AG-8,
the authors noted that only 1 of 36 pectate lyase genes encoded by the fungal genome was expressed in
wheat-exposed mycelium, whereas at least 9 were expressed during infection of the clover Medicago
truncatula. These observations suggest that the pathogen adapts its gene expression to the host species,
with implications for the specificity of host resistance strategies.

6. Host-Induced Gene Silencing (HIGS)

Gene silencing is a natural process by which organisms manipulate expression of their own
genes or the genes other organisms. The process, which involves inhibition of specific genes by
hybridization with complementary inhibitory RNA (RNAi), has been elucidated at the molecular
level and has been adapted for gene expression studies in plants [86,87]. Host-induced gene silencing
makes use of the natural phenomenon of RNA exchange among plants and microbes, through
processes not yet fully understood. In the HIGS approach, the host plant is made to produce an
RNAi molecule complementary to a pathogen target gene, such as a pathogenicity or virulence gene,
which is transferred to the pathogen during infection. Phytopathogenic nematodes and fungi produce
parasitism or disease-inducing proteins, also called effectors, which are introduced into host cells
or tissues, and interact with host proteins to produce the susceptible response (disease condition).
Genes encoding toxins, cell-wall-degrading enzymes, ROS detoxifying enzymes, or other proteins that
undermine host defense processes are attractive candidate HIGS targets [7,88,89].

Single-gene approaches for P. thornei or H. avenae resistance were enabled by the identification of
orthologues of known parasitism genes. Silencing of genes for two components of nematode body wall
muscle structure and function, troponin C and calponin, reduced reproduction of P. thornei and P. zeae
(maize pathogen) in a carrot disk culture system [90]. Nematodes soaked in a solution containing the
troponin C and calponin RNAi molecules showed a 77%–81% reduction in numbers of juveniles, adults,
and eggs. Genes from either species were effective for both species, but P. thornei was more responsive
to silencing than P. zeae, and there was a gene-by-species effect. Two other H. avenae orthologues
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of parasitism genes from other nematode species were silenced in wheat roots [91,92]. The RNAi
molecules were introduced using the barley striped mosaic virus HIGS system. Numbers of H. avenae
juveniles and females were reduced by 66%–73% and 47%–73%, respectively, compared to non-silenced
controls. One parasitism gene was expressed in pre-parasitic J2 [91], whereas the other was highest in
J4-stage nematodes [92]. Additional experiments done in tobacco indicated that both parasitism genes
suppressed specific points in the innate plant immunity response.

Alternatively, transcriptomics has been used to survey nematode genes expressed during infection,
with the aim of identifying nematode parasitism genes that would be effective targets for HIGS. For
instance, the transcriptome of H. avenae during colonization of roots of resistant Ae. variabilis was
examined at the pre-penetration, early, and late stages of infection [23]. The study led to the identification
of 56 predicted parasitism genes, 32 of which encoded cell-wall-modifying proteins, possibly for host
wall penetration or breakdown, and 10 for ROS formation or detoxification. The findings suggested
that resistance in Ae. variabilis surmounted or circumvented the action of these parasitism genes.
Three nematode targets having no orthologues in humans, insects, and plants were selected for
HIGS experiments. The silencing was accomplished by soaking J2 nematodes in solutions of the
RNAi molecules. The silencing of the protease calpain and neuropeptide FLP-4 genes promoted
nematode mortality.

A similar study of the global transcriptional response of Pratylenchus penetrans (Cobb, 1917)
Chitwood and Oteifa, 1952 to soybean root colonization provided molecular leads for HIGS in a relative
of P. thornei and P. neglectus [93]. This Pratylenchus species is not a major pathogen of wheat in the PNW,
but recently has been a problem in certain locations [94–96]. Candidate parasitism genes identified in
the study included 12 orthologues from other nematode species and 41 genes encoding ROS-associated
genes, and five types of cell wall-modifying enzymes, thought to protect nematode from host defenses.

The transcriptome of M. graminicola was obtained from J2 stage nematodes collected from rice
roots [97]. Of 1328 candidate secreted protein genes, the authors focused on four that were expressed
in the esophageal gland cells or olfactosensory organs, and were common to Meloidogyne and cyst
nematodes, but without sequence orthologues in humans, plants, and insects. Two genes lacked
functional annotation (hypothetical protein), the third encoded a prion-like (Q/N-rich) domain-bearing
protein [98] associated with conversion of soluble protein to protein aggregates in other organisms,
and the fourth encoded a trehalose-6-phosphate phosphatase, thought to reduce accumulation of
toxic trehalose-6-phosphate in the nematode gut [99]. After HIGS, nematode viability was 20%–56%,
compared to 100% for the water control. Furthermore, the M. graminicola transcriptome [97] was used
to obtain a full-length copy of a novel parasitism gene called MgGPP [100]. This gene encoded a
protein that had limited sequence identity (37%–41%) to a family of Meloidogyne virulence proteins of
unknown function. The MgGPP protein was expressed in the esophageal gland cells of the nematode
and accumulated in early parasitism. Overexpression of the gene resulted in enhanced susceptibility
of transgenic rice lines to M. graminicola; female nematode numbers increased 23%–67%, depending on
the line. Conversely, rice plants transformed with RNAi species showed reduction in MgGPP gene
expression and 50%–72% reduction in female nematode numbers. Clues to possible mechanism(s) of
MgGPP action were revealed using molecular and histochemical approaches. The protein underwent
host-mediated post-translational modifications that resulted in suppression of the normal host cell
death resistance response and localization of the modified protein to the nucleus.

Fungal pathogenicity factors, including secreted cell-wall degrading enzymes, phytotoxins, and
cell death-inducing proteins, have been described [89,101]. Certain isolates of F. culmorum produce
the toxins nivalenol and deoxynivalenol, which contribute to yield losses caused by F. graminearum
in Fusarium head blight of cereals [8,35,102,103]. A possible candidate for HIGS in F. culmorum
arose from observations of developmental and metabolic defects associated with mutations in the
StuA transcription factor gene [30]. The stuA mutants of F. culmorum displayed reduced conidiation,
delayed spore germination, decreased mycelial diameter, length and density, decreased catalase and
polygalacturonase activities, and loss of pathogenicity to the stem and root [30,104]. These phenotypes
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were independent of toxin production, rendering StuA a promising target for HIGS of stem and
root rot of wheat and barley. Another promising HIGS target for F. culmorum is the CYP51B gene,
which encodes a lanosterol C14-α-demethylase essential for plasma membrane permeability and
ascospore germination. Simultaneous silencing of the CYP51A, CYP51A, and CYP51C genes in F.
graminearum resulted in abnormal morphology and growth inhibition of the mycelium, and the
resistance response in detached leaves of the model plant Arabidopsis and transgenic barley expressing
the RNAi molecules [105].

7. Building a Molecular Toolbox for Engineering of Targeted Disease Resistance

7.1. Materials and Methods for Transcriptomics of Pratylenchus-Challenged Wheat Roots

Pratylenchus neglectus and P. thornei, obtained from soil samples, were kind gifts from Drs. Yan
and Smiley, Oregon State University, Pendleton, Oregon, USA. Nematodes were cultured on sterilized
carrot disks according to Yan et al. [106]. Seeds of susceptible spring wheat cultivar Scarlet [107] were
sown singly in 6-inch plastic cones (Stuewe and Sons, Corvallis, OR, USA) containing autoclaved
sand. Seedlings were grown at 25 ◦C, 16h lt/20 ◦C, 8 h dk. Nematodes were introduced to roots of
14-day-old plants as soil drenches of 2000 mixed-stage (J2-J4) juveniles. Each experiment consisted
of four treatments, three plants per treatment: (1) Pratylenchus neglectus only (Pn); (2) P. thornei only
(Pt); (3) a 1:1 mixture of P. neglectus and P. thornei (PnPt); and (4) no-nematode control (Cont). After a
21-day treatment period, roots were rinsed to remove sand, blotted gently, and pooled by treatment
into tubes containing liquid nitrogen. Harvested roots were stored at −80 ◦C prior to RNA isolation.
The experiment was repeated twice for a total of three biological replications and 12 RNA samples.

Total RNA was obtained from treated roots using a modified TRIzol method [83]. RNA samples
were processed and sequenced by MRDNA, Shallowater, TX, USA. RNA concentration was determined
using the Qubit® RNA Assay Kit (Life Technologies, Carlsbad, CA, USA), and information for RNA
quality and average library size was obtained using an Agilent 2100 Bioanalyzer (Agilent Technologies,
Santa Clara, CA, USA). RNA quality was based on sizes of all RNA fragments obtained using the
Bioanalyzer and the Agilent 2100 software [108]. Libraries of each of the 12 RNA samples were
prepared from 1.0 µg of total RNA using the TruSeq™ RNA LT Sample Preparation Kit (Illumina,
San Diego, CA, USA) according to the manufacturer’s instructions. Libraries were indexed and
prepared for polymerase chain reaction amplification using barcodes and adaptors. A total of 2 nM of
each library were pooled; 5 pM of the pooled mix was subjected to Illumina HiSeq 2500 paired-end
2 × 150 sequencing.

Raw sequence reads were filtered for quality, and adaptors, index barcodes, and ambiguous bases
were removed using the CLC Genomics Workbench Trim Sequences tools (Qiagen Bioinformatics,
Redwood City, CA, USA). De novo assembly of filtered reads was conducted using the De Bruijn
graphing algorithm [109]. Paired-end reads exhibiting overlapping sequences were merged and reads
greater than 85 bp (20–22 bp overlap) were assembled into contiguous sequences (contigs) representing
the expressed transcripts. Expressed transcript groups were mapped to the Triticum aestivum available
at the International Wheat Genome Sequencing Consortium (IWGSC) RefSeq v1.0 coding sequence
database [110]. The IWGSC database represented putative coding sequences on the long and short
arms of each of the seven chromosomes of the A, B, and D genomes of hexaploid wheat. Transcript
groups also were annotated using Blast2GO (BioBam Bioinformatics S.L., Valencia, Spain), which
provided initial sequence and gene function information. Numbers of transcripts among samples
were normalized using reads per kilobase of transcript per million mapped reads (RPKM) [111] so that
transcript abundance between treatments could be compared. Transcript groups having an RKPM
value >50 for at least one of four treatments (Pn, Pt, Pn and Pt, or control) were examined further
to identify those that were induced in the presence of nematodes. Transcript groups that showed
a Pn/Cont, Pt/Cont, and/or PnPt/Cont RPKM ratio of >2.0 were considered to be induced during
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Pratylenchus challenge. The arbitrary cutoff of RPKM >50 was intended to rise above “background”
expression and increase the identity of causative loci.

7.2. Results and Discussion of the Pratylenchus-Wheat Root Transcriptome

Properties of the RNA and RNA libraries generated for the wheat root-Pratylenchus transcriptomes
are shown in Supplementary Table S1. Total RNA concentrations were sufficient for library preparation.
RNA quality (RIN), ranging from 3.9 to 5.4, indicated partial degradation, likely occurring during
the root washing step prior to freezing in liquid nitrogen. However, the RNA produced libraries of
sufficient quantity and size for Illumina HiSeq sequencing, and allowed us to analyze RPKM data for
candidate pathogen-inducible promoters.

A total of 262,908 wheat transcript groups were annotated using Blast2GO (BioBam Bioinformatics
S.L.) and the IWGSC coding sequence database for hexaploid wheat; 4,17 groups harbored at least
one treatment having an RPKM value >50.0. The 24 non-paired read files are available as accession
numbers SAMN10686471-10686492 under NCBI BioProject ID PRJNA512537.

We selected 44 transcript groups in which induction of >2.0 was observed for one or more of the
Pratylenchus treatments relative to the non-challenged control (Table 1). One important caveat of our
RNA-seq data was that initial RNA sample quality was lower than ideal. Therefore, induction of an
annotated gene was deemed more reliable if they were represented by multiple transcript groups,
all of which were up-regulated by nematode treatment. Nine annotated transcripts, such as those
encoding three late embryogenesis abundant proteins, were comprised at least two members and
accounted for 36 of the 44 transcript groups. Induction was often specific to one nematode species,
indicating that the two species of Pratylenchus were interacting differently with the roots of cv. Scarlet.
For instance, ascorbate peroxidase and catalase peroxidase genes showed induction by P. neglectus, and
the glutathione S-transferases and late embryogenesis abundant proteins were induced by P. thornei
at the time of root harvest. A similar degree of induction was observed in the corresponding PnPt
treatments, indicating that the presence of the second species did not have a strongly positive or
negative effect on transcription. The CAP superfamily, actin-11, and three transcript groups of the
major pollen allergen appeared to be induced by both Pn and Pt. Induction of the CAP superfamily
also seemed to be additive. Authentication of induction will require additional experiments, such as
quantitative reverse-transcription PCR. Gene expression will also be quantified using the resistant
Scarlet mutant [112]. A similar approach could be used to find regulatory DNA segments that respond
to other pathogens.

Table 1. Wheat root transcripts showing induction after challenge with root lesion nematodes
Pratylenchus neglectus and/or P. thornei.

RPKM 1 Fold-induction 2

Annotation/locus ID 3 Cont Pn Pt Pn+Pt Pn Pt Pn+Pt

Actin-11 LENGTH=377
Traes_5DS_54E3C6084.1 7.51 66.43 15.96 67.9 8.84 2.12 9.04
Traes_5DS_54E3C6084.2 5.12 66.32 20.31 55.05 12.95 3.97 10.75

Aldose reductase
Traes_2DL_787806003.1 16.81 16.47 77 75.05 ns 4.58 4.46
Ascorbate peroxidase

Traes_4BL_19FA6DCAD.1 71.83 411.76 87.15 374.33 5.73 ns 5.21
Traes_4BL_19FA6DCAD.2 54.76 392.67 61.9 331.86 7.17 ns 6.06

CAP superfamily
Traes_3AL_A5024B415.1 9.84 50.01 21.86 68.9 5.08 2.22 7
Traes_3DL_4345A6DD4.1 10.04 53.19 27.22 79.85 5.3 2.71 7.95

Catalase peroxidase
Traes_4AS_9EEABCE1C.1 150.71 758.44 185.84 706.01 5.03 ns 4.68
Traes_4DL_8CE055F15.1 109.26 436.8 126.79 421.09 4 ns 3.85
Traes_4DL_8CE055F15.3 87.02 314.44 101.59 300.4 3.61 ns 4.18
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Table 1. Cont.

RPKM 1 Fold-induction 2

Annotation/locus ID 3 Cont Pn Pt Pn+Pt Pn Pt Pn+Pt

Dehydrin DHN2
Traes_5DL_134F29727.1 26.6 18.52 161.92 133.76 ns 6.09 5.03
Germin-like protein 2

Traes_5BL_72B476ADC.1 37.71 43.4 101.9 89.97 ns 2.7 2.39
Traes_5DL_935157A12.1 33.74 32.37 192.6 182.7 ns 5.71 5.41

Glutathione S-transferase family protein
Traes_1BS_DDE53AF02.1 59.14 82.81 121.57 136.68 ns 2.06 2.31
Traes_1AS_00BD72553.1 36.93 55.63 174.03 198.09 ns 4.71 5.36
Traes_1DS_1A966E69F.1 7.32 9.47 59.26 56.77 ns 8.09 7.75

Traes_1AL_1A9EB2CBB.1 43.74 53.71 150.97 154.02 ns 3.45 3.52
Traes_5DL_D6E35133A.1 27.55 19.76 156.28 153.48 ns 5.67 5.57
Traes_5BL_051A88B95.2 27.22 24.66 111.51 121.77 ns 4.1 4.47
Traes_5BL_051A88B95.3 24.72 22.7 125.01 121.75 ns 5.06 4.92

Late embryogenesis abundant protein 76
Traes_1DL_9942FD49C.1 9.53 7.57 438.41 362.76 ns 46 38.07
Traes_1AL_26674CB2F.1 3.57 1.61 184.77 157.89 ns 51.71 44.19

Late embryogenesis abundant protein 155
Traes_3B_4F509404E.1 5.3 3.02 236.19 235.9 ns 44.56 44.5
Traes_3B_4F509404E.2 3.73 3.35 217.61 213.13 ns 58.37 57.17
Late embryogenesis abundant protein, group 3

Traes_1BL_85E4C2FE1.1 10 6 263.51 249.8 ns 26.35 24.98
Traes_1AL_34404D5D8.2 7.34 3.79 149.17 140.26 ns 20.31 19.1
Traes_1BL_5CD8FB94C.2 4.09 2.62 152.77 145.16 ns 37.36 35.5
Traes_1AL_34404D5D8.4 3.91 1.83 80.85 74.72 ns 20.68 19.12
Traes_1BL_5CD8FB94C.3 3.12 2.58 132.86 128.74 ns 42.58 41.26
Traes_1BL_85E4C2FE1.2 2.61 2.46 69.06 64.1 ns 26.46 24.56
Traes_1BL_8EA4F6001.1 2.42 1.2 61.75 64.26 ns 25.49 26.52
Traes_1BL_5CD8FB94C.5 2.31 1.21 51.63 47.21 ns 22.35 20.44
Traes_1BL_8EA4F6001.1 2.09 1.94 63.53 69.99 ns 30.35 33.44
Traes_1BL_5CD8FB94C.1 1.89 0.88 55.33 49.77 ns 29.31 26.36

Major pollen allergen Bet v 1-D/H
Traes_4AS_C5AE1BBDD.1 21.2 60.77 150.59 169.3 2.87 7.1 7.98

Major pollen allergen Bet v 1-F/I
Traes_2DL_B766A2857.1 45.11 94.39 201.8 215.2 2.09 4.47 4.77
Traes_2DL_B766A2857.2 41.7 87.33 179.9 191.89 2.09 4.31 4.6
Traes_4DL_5C688784F.1 36.53 56.19 145.46 154.27 ns 3.98 4.22

Traes_2DL_194C61EBA.1 33.63 53.16 137.44 145.51 ns 4.09 4.33
Metacaspase 1

Traes_5AL_8D5A83BF8.1 98.48 82.64 122.31 216.42 ns ns 4.2
Pathogenesis-related protein 1

Traes_2DL_9D278D4C1.1 39.84 65.82 169.57 167.29 ns 4.26 4.2
Unknown protein

Traes_1DS_5F13D45E6.3 171.05 368.87 177.81 365.82 2.16 ns 2.14
Traes_1DS_5F13D45E6.1 48.48 119.79 52.23 122.46 2.47 ns 2.53

1 Cont, control; Pn, P. neglectus; Pt, P. thornei; PnPt, P. neglectus and P. thornei. 2 Fold-induction in nematode-treated
roots compared to the control. ns = fold-change <2.0. 3 Transcript annotation was assigned using Blast2GO (BioBam
Bioinformatics S.L., Valencia, Spain); transcript locus identifiers (ID) were determined by mapping transcript group
sequences to the International Wheat Genome Sequencing Consortium (IWGSC) RefSeq v1.0 database [110].

7.3. Materials and Methods for the Wheat Orthologue of Arabidopsis DORN1

The action of extracellular ATP in Arabidopsis, acting through its receptor DORN1, has led
us to consider characterizing the wheat orthologue of DORN1 in interactions with nematodes and
fungal necrotrophic root pathogens. A collection of wheat and barley orthologues predicted to contain
lectin-binding, kinase, and transmembrane domains were obtained from published literature [113,114].
Candidate wheat or barley orthologues were identified using HMMER 3.0 [115] and TMHMM [116]
and databases IWGSC URGI and International Barley Sequencing Consortium genome coding
sequences [110], for wheat and barley, respectively. Another wheat orthologue search based on amino
acid sequence identity was conducted in 2019 using Blast and the IWGSC RefSeq v1.0 coding sequence
database. For this search, GenBank accessions of DORN1 nucleotide sequences from the brassicas
Arabidopsis thaliana, A. lyrata, and Camelina sativa were obtained. The coding regions of the brassica
sequences were used to find IWGSC (wheat) accessions with the highest sequence identity. Deduced
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amino acid sequences of the cereal DORN1 candidates were compared to those from the brassica
species using Clustal Omega [117], and regions of identity were visualized using GeneDoc [118].

7.4. Results and Discussion of Candidate Wheat Orthologues of DORN1

Because DORN1 is highly expressed in roots [47], DORN1-mediated resistance is dependent upon
the jasmonate signal pathway [45,46,119], and wheat roots appear to possess an active jasmonate signal
pathway [120], we hypothesize that expression of the wheat orthologue of the DORN1 gene will confer
resistance to the necrotroph R. solani AG-8, hemibiotroph F. culmorum, and possibly to nematodes that
cause cellular damage while migrating through host root tissue.

Searches of the wheat and barley databases using HMM and TMHMM resulted in 23 candidate
barley DORN1 orthologues containing both lectin-binding and transmembrane domains, but not
the kinase domain. In contrast, 205 candidate wheat orthologues were retrieved that contained
lectin-binding and kinase domains, regardless of whether transmembrane domains were present.
The numbers of candidates and the absence of at least one key domain discouraged us from
pursuing cereal DORN1 genes at the time. More recently, three accessions (Traes_2BS_80806CA5F.1,
Traes_2AS_DE7DCB294.1, and Traes_1BS_A999A190E.3) from the IWGSC RefSeq v1.0 database were
identified based on highest amino acid sequence identity to DORN1 from A. thaliana, A. lyrata, and
Camelina sativa, respectively (Supplementary Table S2). Identification of the wheat orthologue was not
clear-cut, as certain features of the DORN1 protein vary among species [42]. The brassica amino acid
sequences shared 90.4%–96.4% identity with each other, whereas the candidate wheat orthologues
were 58.4%–59.3% identical to each other at the amino acid level. For the sake of clarity, the candidate
wheat orthologues were compared only to the A. thaliana-deduced amino acid sequence (Figure 1).
Wheat sequences 80806CA5F.1, A999A190E.3, and DE7DCB294.1 showed 45.9%, 45.5%, and 44.0%
identity, respectively, to the Arabidopsis DORN1, but there was no single wheat orthologue that stood
out for future gene transfer to wheat and subsequent testing in soilborne fungal pathogenicity assays.
However, the pool of wheat DORN1 candidate sequences was narrowed from 205 to 3 genes.

Identifying gene orthologues can be complicated by evolutionary differences among different
species. For instance, recognition of extracellular ATP by a transmembrane receptor might depend on
conservation of structural features rather than on conserved amino acid sequences. The wheat DORN1
gene, once identified, might function in barley and vice versa, due to the molecular relatedness of these
species, whereas the Arabidopsis gene might or might not be operational in the small-grain cereals.
The parasitism genes orthologues from H. avenae and M. gramincola often did not share high sequence
identity with known parasitism genes. Yang and coauthors [92] noted significant diversity among
G16B09 parasitism genes from H. avenae, H. glycines, H. schachtii, and two Globodera spp. Likewise, the
annexin orthologue from H. avenae shared 76% amino acid sequence identity to the G. pallida-deduced
protein, and differed substantially from proteins of other Heterodera spp. and Globodera spp. It is
likely that the H. avenae genes were the correct orthologues, based on their ability to suppress host
defenses. In a comparison of fungal CYP51 proteins, Koch and Kogel [121] found 80.9% and 64.8%
identity between F. graminearum and F. solani or Magnaporthe oryzae, respectively. The application of
CYP51B HIGS for suppression of R. solani AG-8 is being explored. In this case, there is substantial gene
sequence diversity relative to Fusarium CYP51B to merit design of a new RNAi molecule for R. solani.

The relatively low efficiency of wheat transformation limits the number genes that can be reasonably
tested in planta. However, rice is much more amenable to Agrobacterium transformation [122,123], and
a rapid and efficient system for barley root transformation has been developed [124].
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Figure 1. Alignment of deduced amino acid sequence of DORN1 from A. thaliana (derived
from GenBank NM_001085304.1) with three candidate wheat orthologues Traes_2BS_80806CA5F.1,
Traes_2AS_DE7DCB294.1, and Traes_1BS_A999A190E.3. Loops are extracellular and contain ATP
binding residues (blue dots). Boxes delineate a conserved transmembrane domain (TM) and kinase
domains (KD). Domain KD-X is poorly conserved and is not indicated [113,114].

8. Conclusions

In conclusion, deploying effective genetic resistance to soilborne nematode and necrotrophic
fungal pathogens of the small-grain cereals remains a challenge. Genetic resistance is dependent on
the genotypes of the host and pathogen, and can be location-dependent, as was noted for nematode
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resistance [7]. Nevertheless, marker technology and linkage analysis software are screens of adapted
or semi-adapted cereal genotypes. Lignin accumulation and ROS were recurring defense pathways
in cereal root-pathogen interactions. A second pathway for the biosynthesis of the lignin precursor
4-coumaric acid has been described in maize and Brachypodium distachyon. Many other grasses,
including rice, wheat, and barley, harbor one to six copies of the requisite gene in their genomes [78,125].
It is very likely that enhancement of lignin content to the right degree and at the right time in the root
could protect against a range of nematode and fungal pathogens. The use of ‘omics approaches for
resistance gene discovery has yielded orthologous and novel parasitism genes from plant-parasitic
nematodes, and remains to be fully realized for identifying parasitism genes from the fungal pathogens.
Sequencing of coding regions of the genome (exome) can be applied to move from phenotype to
genotype at the single polymorphism level with development of species-specific probes [65,126–128].
With the increasing number of genome sequences available each year, the pan-genome mining
approach [18] will become feasible for more host and pathogen species. One caveat of certain roots is
the potential for ectopic expression of genes normally found in other organs, such as chlorophyll- and
photosynthesis-related genes [67,76,129]. It is not clear whether the resistance interaction provides
better leads for novel gene discovery than the susceptible interaction; both are informative. Many ‘omics
studies produced sequences lacking functional annotation (e.g., “hypothetical protein”). These might
be considered for HIGS approaches if species- and gene-specificity are desired. Pathogen targets
that are important for growth and life cycle in the host should be better HIGS candidates than those
involved in the “arms race,” which are continually under selection. Off-target effects of the RNAi
molecule will be minimized by selecting for single copies of the RNAi molecule in the host and will
need to be monitored in the recipient pathogen. In most cases, the effect(s) of each candidate gene on
pathogen suppression and disease severity ultimately needs testing in the field. There is no single
approach guaranteed to produce a gene, genetic locus, or trait that is easy to deploy and is effective in
the field. However, a variety of approaches, each with advantages and drawbacks, are available.
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