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Abstract: In recent decades, anthropogenic activity and climate changes have reshaped global weed
dispersal and establishment in new territories. This study aimed to evaluate the effectiveness of
propane flaming approach in the control of perennial invasive and native Mediterranean broadleaf
and grass weeds. The invasive weeds, Cyperus rotundus, Sorghum halepense, and Ecballium elaterium,
were treated multiple times with a single propane dose (2.5 kg propane km−1), using the broadcast
technique. The local annual weeds, Sinapis arvensis, Lavatera trimestris, and Avena sativa, were treated
once at five propane doses (0–2.5 kg propane km−1), using the cross-row technique. Dose-response
analysis was performed. Three applications provided effective control (up to >90%) for all tested
perennials, and affected seed and flower production in Sorghum halepense and Ecballium elaterium,
respectively. However, the timing of the sequential application had a significant impact on the degree
of control, in terms of dry weight reduction and seed production. Weed density had an impact on
control efficacy but was only a significant determinant for Ecballium elaterium. Cross-row application
was effective during early growth stages of broadleaf weeds (ED50 < 1.2 kg propane km−1), but was
less effective during later growth stages (ED50 > 2.6 kg propane km−1). For grass weeds, both early and
late application were ineffective (ED50 > 4.1 kg propane km−1). More research is needed to optimize
this weed control tactic for various cropping systems and weed species. Implementation of this novel
approach into integrated weed management programs will increase the control efficacy of invasive
weed under the projected climate changes and reduce the evolution of herbicide-resistant weeds.

Keywords: broadcast; broadleaf; cross-row; climate change; grasses; growth-stage; perennial weeds

1. Introduction

Invasive weeds pose a great threat to ecological and agronomical systems throughout the world,
by reducing crop productivity, disturbing the ecosystem functions and reducing species biodiversity [1,2].
The economic impact of invasive plant species is estimated at $137 billion per one year only in the U.S.,
and extreme scenarios may result in irreversible damage to the environment, such as the extinction of
native species and abandonment of highly infested fields [3]. While herbicides are the most common
tool for invasive weed control [4], in recent years, use of alternative non-chemical weed control practices
and/or integration of new weed management strategies have been gaining attention [5,6]. This trend was
mainly motivated by the rapid development of herbicide-resistant weeds and the need to conserve viable
herbicides and modes of actions. Other catalysts have been increasing environmental awareness and the
rising demand for pesticide-free food [7].
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One of the non-chemical alternatives for weed control is the use of propane weed flaming, i.e., flaming.
This method has become the major thermal weed control tactic in organic cropping systems in the US,
such as soybean (Glycine max), corn (Zea mays), and sorghum (Sorghum bicolor (L.) Moench), as it provides
effective weed control while minimizing the negative environmental effects associated with herbicide
application [8,9]. Flaming kills plants by rupturing plant cell membranes, which eventually causes tissue
desiccation [10,11]. The burners can create flame temperatures of up to 1900 ◦C, which is lethal to the target
plant tissues [12].

Broadcast and cross-row are the two major strategies used in weed flaming [13,14]. For broadcast
flaming, the burners are mounted parallel to the crop row, and the entire area of the field is covered
with overlapping flames [15]. This strategy is suitable for perennial crops (e.g., vineyards) and for
some row crops (e.g., corn, and onion (Allium cepa)) and can be applied as a sole method before (PRE)
and after (POST) crop emergence [16]. In cross-row flaming, the burners are mounted in a staggered
position, angled to the crop row, while the flames are targeted exclusively to the intra-row area from
both sides of the row, leaving the inter-row area untreated [17]. The cross-row technique is suited for
row crops, as it can be adjusted to different crop sizes and row spacings. Most studies that evaluated
weed flaming control efficacy of specific species, used the broadcast techniques, and to the best of our
knowledge, only one study used the cross-row technique [13].

Flaming efficacy varies by the weed species and its growth stage [7,14,18]. Previous studies
testing the selectivity of broadcast flaming for some grasses (barnyardgrass (Echinochloa crus-galli)) and
broadleaf (e.g., bindweed (Convolvulus arvensia) and kochia (Kochia scoparia)) weeds, at different growth
stages (third leaf to flowering) and propane doses (0–87 kg propane ha−1), found that flaming efficacy
differs among the different species, their growth stage and applied dose. In general, the grass weeds
were more tolerant to flaming than the broadleaf weeds, regardless of the growth stage. However,
these studies were performed on local weed species in the northern parts of America (e.g., Nebraska,
USA) and in Europe. To the best of our knowledge, there are only a few studies assessing the potential
impact of flaming on local Mediterranean weed species [19]. Furthermore, Mediterranean cropping
systems (perennial and row crops) are highly infected by perennial and invasive weeds, such as
Cyperus rotundus (purple nutsedge), Sorghum halepense (Johnsongrass) and Ecballium elaterium (squirting
cucumber). Nonetheless, there is no information about the potential use of flaming in controlling these
species. The present study aimed to evaluate the potential use of flaming in perennial and annual
weed control and to characterize typical Mediterranean weed species response to such treatment at
different phenological stages.

2. Materials and Methods

2.1. Plant Material and Growth Conditions

Annual weed: Lavatera trimestris and Avena sativa were collected from a naturally infested field
near the Newe Ya’ar Research Center in Israel (lat 32◦42′, long 35◦10′) that had not been treated with
herbicides for six years. Seeds were collected between 2016–2018. The seed-bearing parts of the plants
were collected in the field and air-dried for one month in a dry-environment greenhouse (~40 ◦C at
noontime) until the seeds separated naturally from the plants. Seeds were cleaned from plant debris
and stored at room temperature under dark and dry conditions, until use. Black mustard (Brassica
nigra) seeds of the common cultivar in Israel were used for the experiments.

Perennials and invasive weeds: The plant material was collected at the same time and place as
mentioned for the annual weeds. Cyperus rotundus tubers were collected one week before planting, wrapped
in damp filter paper and stored at 4 ◦C until use. Tuber sprouting was 95% under constant-temperature
conditions (25 ◦C). Ecballium elaterium seeds were collected into paper bags by touching the fruit capsules
and inducing the natural dispersal mechanism. Then, seeds were treated as described for annual species.
Sorghum halepense was collected and treated as described for annual species.
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Experiments were conducted at the Newe Ya’ar Research Center between 2016 and 2018. Two-liter
pots were filled with clay soil (57% clay, 23% silt, and 20% sand, on a dry-weight basis and 2% organic
matter) and seeded with five weed seeds then thinned to one plant per pot seven days after emergence.
When the impact of plant density was evaluated (Section 2.2), higher density was obtained by leaving
some of the pots without thinning, resulting in five plants per pot. Plants were placed in a net-house
and watered by an automated mini-sprinkler irrigation system as needed. For the flaming treatments,
pots were taken from the net-house, placed 50 cm apart on a 10-m-long line, and the flaming was
performed in a straight line such that the pots were between the burners. Following treatment, pots were
placed back in the net-house and after 14 days, shoots were harvested, and their fresh weight was
weighed. Dry weight was measured and recorded after 72 h of drying in a 70 ◦C oven.

2.2. Flaming Experiments

Some annual weeds can be adequately controlled by a single flaming application, while perennials
require multiple applications [7]. Thus, two different flaming strategies, broadcast, and cross-row,
were examined across a variety of factors. Broadcast flaming was tested on three perennial weed species
at different densities, growth stages, number of applications and timing of the last application. Cross-row
flaming was tested on three annual weeds species at different growth stages and propane doses.

Broadcas: Experiments were performed on the perennials and invasive weeds using an un-shielded
Red Dragon two-burner system equipped with two liquid-phase torches (LT 1 1/2× 6; Flame Engineering
Inc., LaCrosse, KS, USA). The burners were connected to a 12-kg propane tank mounted on a cart to
simulate commercial tractor application. The burners were mounted 30 cm apart, positioned 20 cm
above the soil surface, parallel to the crop row and angled 30◦ to the soil, resulting in a treated bandwidth
of 50 cm. The cart was manually pushed over the pots at a speed of 3 km h−1, with a constant pressure
of 50 psi. Propane doses were converted to kg propane km−1 as described in previous studies [13,17],
leading to an application dose of 2.5 kg propane km−1. Each experiment was conducted twice.
Experiments were conducted using a complete randomized design with seven replicates.

The first experiment aimed to determine the impact of weed density and growth stage on control
efficacy. To this end, the weeds were planted at two densities, one or five plants per pot, and treated 23
or 33 days after planting (DAP). These timings represent well-established growth stages at which weed
control poses a challenge. Additionally, during the main growth season of these weeds (between May
and September), a 10-day interval is significant in terms of biomass accumulation and reproductive
growth (Horesh, personal observation). Efficacy was evaluated by measuring the dry weight of the
above-ground plant parts.

The second experiment aimed to determine the impact of sequential propane applications on
control efficacy. To this end, weeds were treated once, twice or three times, with two days interval
between applications. For E. elaterium, the first application was performed at 33 DAP, while for C.
rotundus and S. halepense, treatment was applied at 23 DAP. These timings were selected according to
results from the first experiment, where treatment was not always effective.

The third experiment evaluated the impact of the timing of the last application on control efficacy.
Cyperus rotundus and S. halepense were each treated three times and E. elaterium was treated twice.
However, the last application of all three species was performed at two different stages, 1 or 10 days
after previous treatment (DAPT). Table 1 summarizes the weed species, application timings and growth
parameters evaluated in this experiment.
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Table 1. Weed species, application timings (days after planting (DAP)) and evaluated growth parameters
following the second\third application on the perennial and invasive weeds.

Weed Species Applications (DAP) Growth Parameters

First Second Third

Ecballium elaterium 33 34/43 Above-ground dry weight, number of flowers

Cyperus rotundus 23 25 26/35 Above-ground dry weight, roots dry weight,
number of tubers

Sorghum halepense 23 25 26/35 Above-ground dry weight, roots dry weight,
number of rhizomes, seeds weight

Cross-row: Experiments were performed on the annual weeds using an unshielded Red Dragon
two-burner system equipped with two liquid-phase torches (LT 1 1/2 × 8; Flame Engineering Inc.,
LaCrosse, KS, USA), that were both connected to the same cart. Burners were set in a cross-row design,
at a 45◦ angle with respect to the zenith, and 20 cm from the crop line, resulting in a 30-cm treated
bandwidth. Burners were mounted in a staggered position to avoid intersecting flames. The same
driving speed was used, however, different propane doses were tested by using a gas-valve regulator
connected to the gas system and adjusted to pressures between 6.5–50 psi, resulting in doses between
0.9–2.5 kg propane km−1. Table 2 summarizes the weed species, growth stages and propane doses
used in this experiment. Each experiment was conducted twice, using a complete randomized design,
with five replicates for each dose.

Table 2. Weed species, growth stages and propane doses used in the cross flaming experiment.

Weed Species Growth Stage Propane Doses (kg propane km−1)

Sinapis arvensis 4 and 8–10 leaves 0.95, 1.45, 1.8 and 2.5
Lavatera trimestris 3 and 6 leaves 0.95, 1.45, 1.8 and 2.5

Avena sativa 3 and 6 leaves 0.95, 1.45, 1.8 and 2.5

2.3. Data Analysis

Broadcast: For the first experiment, weed dry weights were analyzed by ANOVA, and a two-way
analysis was performed to determine the interaction between weed density (one and five plants per
pot) and growth stage (23 and 33 DAP) on control efficacy. For the second and third experiments,
the evaluated growth parameters were analyzed by ANOVA, and means were separated using the
Tukey–HSD test, p ≤ 0.05 and t-test, respectively.

Cross-row: Dry weight data were analyzed using a three-parameter log-logistic function [20]:

y =
m

1 + ( x
x50

)b
(1)

where y is the shoot dry weight of the weeds (g), m is the upper asymptote value (maximum), x is the
propane dose (kg propane km−1), x50 is the propane dose when y is 50% of the maximum (also known
as ED50), and b is the slope at x50 [21].

3. Results

3.1. Broadcast Flaming is an Effective Means to Control Invasive Mediterranean Weeds

The experiments in this section evaluated the impact of growth stage and weed density on the
control efficacy of invasive Mediterranean weeds by flaming and examined how sequential propane
applications affected the control level and phenology of these weeds. The weed growth stage at
application had a significant impact on the weed above-ground dry weight measured at the end of
the experiment (Table 3, p ≤ 0.026 for all tested species). For example, S. halepense treated at early
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(23 DAP) and late (33 DAP) growth stages, showed an above-ground dry weight of 20% and 47% of
the non-treated control, respectively. Sorghum halepense and C. rotundus weed density did not have a
significant impact on the above-ground dry weight, and for both species, the flaming treatment resulted
in an above-ground dry weight of ~35% of the non-treated control at both tested densities. However,
an interaction between the main factors (weed density and growth stage) was observed in E. elaterium
(p < 0.0001), and the mean separation of the above-ground dry weights revealed that the low-density
weeds (one plant pot−1) treated at early (23 DAP) versus late (33 DAP) growth stages, resulted in the
lowest (3%) versus highest (81%) above-ground dry weight values, respectively. In contrast, when
treating the high-density weeds (five plants pot−1) at the early or late growth stages, above-ground dry
weight values were not significantly different (40% and 36%, respectively; Table 3).

Table 3. Interaction between weed density (seeds pots−1) or growth stage (days after planting (DAP))
and weed dry weight (% of non-treated control). Values with different letters are significantly different
according to Tukey–HSD test.

Dry Weight (% of Non-Treated Control)

Main Effect Sorghum halepense Cyperus rotundus Ecballium elaterium a

DAP
23 20 B 29 B
33 47 A 41 A

Density (DS)
1 plant pot−1 34 A 36 A
5 plant pot−1 34 A 33 A

Source of variance d.f. Sum of squares

DAP 1 5814 *** 962 * 10342 ***
DS 1 1.33 68 97

DAP × DS 1 0.22 101 12833 ***
Total

a Mean separation by Tukey–HSD test for Ecballium elaterium: 33 DAP and one plant pot−1: 81 A; 23 DAP and
five plant pot−1: 40 B; 33 DAP and five plant pot−1: 36 B; 23 DAP and one plant pot−1: 3 C.* and *** indicates a
significant difference of p < 0.05 and p < 0.0001, respectively.

Sequential propane applications using the broadcast technique revealed that any additional
treatment contributed significantly (p < 0.0001) to the control of C. rotundus and S. halepense (Figure 1).
The mean above-ground dry weights of C. rotundus dropped from 66% of the non-treated control
(range of 20–100 %) after a single treatment, to 25% of the non-treated control (range of 7–51 %) and 10%
of the non-treated control (range of 2–38 %) after two and three applications, respectively (Figure 1).
Overall, the percent of plants with high (> 90%) level of control increased from 0% to 56% following a
single versus triple application, respectively (Table 4). Sorghum halepense was more resistant to the
flaming treatments, with only 12% of the plants showing high (>90%) weed control following three
applications (Table 4). In contrast, the number of treatments had no significant impact on E. elaterium
(p = 0.217). However, the dry weights following a single application varied from 0 to 81% of control,
compared to 0% of control for all plants following a triple application (Figure 1). Correspondingly,
the percent of plants exhibiting high (> 90%) control levels increased from 31% to 100% following a
single versus triple applications, respectively (Table 4).
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Figure 1. The impact of sequential flaming applications on the dry weight (% of control) of Sorghum
halepense (A), Cyperus rotundus (B) and Ecballium elaterium (C). Different letters indicate significant
differences, as determined by Tukey LSD test (p ≤ 0.05). Values are means ± SD (n = 7).

Table 4. Plants (%) with >90% dry weight reduction following one, two or three applications of flaming
(n = 7).

Plants (%) with >90% Dry Weight Reduction

Number of Applications #1 #2 #3

Sorghum halepense 0 0 12
Cyperus rotundus 0 6 56

Ecballium elaterium 31 68 100

The timing of the second/third application had a significant impact on the degree of weed control,
and for all tested species, the later application (10 DAPT) was more effective compared to the earlier
one (1 DAPT). Nevertheless, not all morphological parameters were equally affected by the timing
of the last treatment. More specifically, for S. halepense, the above-ground, roots, rhizome and seed
weights following the later (10 DAPT) treatment were 48%, 59%, 73%, and 59%, respectively, lower
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compared to after the earlier treatment (1 DAPT). For example, the mean rhizome dry weight was
42% (range 0–81 %) and 11% (range 0–35 %) of the non-treated control following the early and later
applications, respectively (Figure 2). Cyperus rotundus was less affected by the timing of the last
treatment. The mean above-ground dry weight was reduced from 66% (range 53–91 %) to 43% (range
29–75 % control) of the non-treated control following the early and late applications, respectively,
while no significant difference in root dry weights was observed between the treatments (p = 0.063,
Figure 3). Ecballium elaterium was the most sensitive species to the flaming treatments and to their
timings. The mean above-ground dry weight was reduced from 44% (range 9–69 %) to 10% (range
0–33 %) of the non-treated control following the early and later applications, respectively (Figure 4).
The number of flowers was even more markedly affected by the timing of the last treatment, with a
mean reduction in flower number from 10% (range of 0–36 %) to 0% of non-treated control following
the early and later applications, respectively (Figure 4).
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3.2. Cross-Row Flaming is Effective for Broadleaf Weeds

The experiments in this section used the dose response assay to evaluate the efficacy of cross-row
flaming for Mediterranean annuals and evaluated the impact of weed species and growth stage on the
outcomes. The dose-response analysis revealed a significant log-logistic relationship between propane
dose and above-ground dry weight for all tested species and growth stages (except S. arvensis at the
eighth leaf), indicating the positive impact of propane dose on control efficacy (Table 5). Computed
ED50 was significantly lower in all species at the early as compared to the later growth stage (Table 5),
demonstrating the negative impact of application at late growth stages on weed control efficacy.
For example, the ED50 of L. trimestris was 1.2 ± 0.1 kg propane km−1 and 2.6 ± 0.8 kg propane km−1 in
the early versus later growth stages, respectively (Table 5). The ED50 was higher in A. sativa compared
to S. arvensis and L. trimestris, regardless of growth stage. In the early growth stage, the computed
values of these weeds were 1.4, 0.6 and 1.2 kg propane km−1, respectively (Table 5), with no significant
difference measured between L. trimestris and A. sativa. At the later application, ED50 of L. trimestris
and A. sativa increased to 2.6 ± 0.8 and 5.9 ± 1.3 kg propane km−1, respectively, suggesting higher
tolerance of grasses compared to broadleaf weeds to flaming treatment.

Table 5. Equation coefficient of the three-parameter log-logistic regression1 between propane dose
(kg propane km−1) and dry weight (% of non-treated control), with 95% confidence interval (CI) of
the X50 coefficient and the regression computed p-values, probability (p), and root mean square error
(RMSE) values.

Weed
Growth Stage

Coefficients P RMSE

Species A p (a) b p (b) X50 95% Lower CI 95% Higher CI p (X50)

Sinapis arvensis 4 leaf 99.8 0.006 1.39 0.164 0.6 0.1 1.1 0.116 0.026 8.2
8–10 leaf 101.9 0.001 1.94 0.148 4.1 1.9 6.3 0.065 0.086 4.6

Lavatera trimestris
2–3 leaf 100.1 0.0005 1.58 0.007 1.2 1.1 1.4 0.002 0.002 2.2
5–6 leaf 109.8 0.0002 0.35 0.042 2.6 1.8 3.4 0.023 0.002 1.5

Avena sativa
2 leaf 100 <0.0001 0.41 0.006 1.4 1.3 1.5 0.001 0.0004 0.6
6 leaf 99.9 <0.0001 0.66 0.006 5.9 4.6 7.1 0.011 0.001 0.7

1 y = m
1+( x

x50
)b .

4. Discussion

Controlling perennial invasive weeds by flaming is a challenging task, as the flames do not
penetrate the soil surface to affect the root-system nor have residual activity in the soil [22]. Our findings
demonstrated that repeat flaming treatments can be useful for controlling such weeds, including C.
rotundus and S. halepense, which are considered highly invasive and among the most noxious weeds
in the Mediterranean region (Figure 1). Furthermore, it is possible that earlier applications than
those used in this study (e.g., 23 DAP for C. rotundus) would result in a higher degree of control with
fewer applications. Our findings are in agreement with previous flaming studies aimed to control
perennial weeds in apple orchards and urban hard surfaces [22–24], which emphasized the necessity
for multiple applications, up to 10 treatments in the case of Lolium perenne, and the importance of
the timing of sequential applications. These applications should be timed after regrowth initiation
but before weeds are too developed. The fact that the number of applications had no significant
impact on E. elaterium control and the high range of above ground dry weight values following the
first treatment (0–81%), suggests a higher sensitivity of this weed and wide phenotypic diversity at
application timings. For smaller plants, one treatment was sufficient to reach full control (Figure 1 and
Table 4).

To the best of our knowledge, this study was one of the first to evaluate the efficacy of flaming
using several phenological parameters and not exclusively biomass. A significant impact of the
flaming treatment on flower and seed production of E. elaterium and S. halepense and on the sub-soil
development of S. halepense was observed, suggesting a potential reductive effect on the seed bank by
repeated flaming treatments. This effect on the seedbank may be of value for the long term control
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of invasive weeds in agricultural and ecological systems. The lack of impact on C. rotundus sub-soil
development may be due to its propagules (tubers) and their resilience following various control
treatments, including cultivation and hoeing [25,26]. In the current study, plants from S. halepense
seeds were used, which may have introduced reduced baseline resistance and recovery compared to
rhizome-originated plants. However, the fact that broadcast flaming covers the entire weed canopy
and S. halepense seeds develop above the soil surface, may result in seed bank reduction of this weed.
In recent years, climatic changes have resulted in a wider distribution of S. halepense and changes in the
growing season. For example, it can now germinate during the Mediterranean winter and infect wheat
and other winter crops. Thus, efficient control of seedlings has become highly important.

A previous weed flaming study suggested that weed density has only a minor impact on control
efficacy [16]. The highly significant interaction (p < 0.0001) between weed density and growth stage
demonstrated in E. elaterium indicates a potential impact of this factor. Other species (e.g., C. rotundus)
showed high sensitivity for intra-species competition during some growth stages that resulted in higher
control efficacy following herbicide treatments [27]. It can be assumed that a similar phenomenon
occurred here. However, our findings showed that for some species, weed density is a determinant of
successful flaming treatment.

In general, the efficacy of flaming for both annual and perennial invasive weeds varied dramatically
among different species. The two tested kinds of grass (A. sativa and S. halepense) showed higher
tolerance to flaming as compared to the broadleaf species (E. elaterium and S. arvensis). The higher
tolerance of grasses can be ascribed to differences in the anatomy and morphology of these weeds,
primarily to the meristems of young grass weeds, which are located below the soil surface and
are protected by the leaves during flaming [7,28]. Previous studies that compared the tolerance of
various weed species to flaming, observed similar trends for other grasses, like yellow foxtail (Setaria
pumila) and barnyard grass (Echinochloa crus-galli) [10,13,14]. Weed growth stage was also shown to
significantly influence weed control efficacy. Early growth stages of both annual and perennial invasive
weeds were more susceptible compared to the later stages (Tables 3 and 5). Likewise, previous studies
reported lower ED50 values in early growth stages compared to later ones in various weed species,
such as common lambsquarters (Chenopodium album) and tansy mustard (Descurainia pinnata) [14,29].
These authors argued that the thin leaves of young plants are highly sensitive to the heat of flaming
treatment, which results in higher control efficacy following treatments at early growth stages.

The ED50 values reflect the difficulty in controlling grass weeds (ED50 ≥ 1.4 kg propane km−1)
and developed broadleaf weeds (ED50 ≥ 2.6 kg propane km−1) when using a single treatment of the
cross-row technique. It is possible that our burner positioning, which directed treatment to the plant
bases from the row sides, rather than across the entire weed canopy, may have been unsuitable for
treatment of developed weeds, with shoot apexes that can avoid the flames. It is also possible that
the un-shielded burners resulted in lower temperatures and reduced control efficacy. Nonetheless,
our results emphasize the need for early and multiple applications in order to achieve effective and
long-term control of grass weeds while using the cross-row technique.

5. Conclusions and Future Perspectives

The threat of invasive weeds coupled with over-reliance on herbicides call for adoption of new
weed control practices. Flaming offers an effective novel approach that may address these needs.
Perennial and invasive weeds can be effectively treated by broadcast flaming, but multiple applications
are required, with the timing of the sequential applications and/or weed density being key determinants
of control efficacy. Phenological development is affected by sequential flaming treatments, and the
number of flower and seeds of treated weeds, such as E. elaterium and S. halepense, can be reduced.
This may affect their seed bank and improve long-term control. Flaming with the cross-row technique
is effective for broadleaf weeds, but application timing must be targeted for early growth stages.
Grass weeds are more tolerant of this technique, and a single application does not provide suitable
control levels. While further research is needed to optimize the number of applications for different
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cropping systems and environments, our findings demonstrate the potential of flaming for perennial
invasive and annual weed control in row and perennial crops. Thus, the implementation of this novel
approach into integrated weed management practices will facilitate control of invasive weeds and
slow the development of herbicide resistance.
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