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Abstract: Improvement in water use efficiency of crops is a key component in addressing the
increasing global water demand. The time and depth of the soil water monitoring are essential when
defining the amount of water to be applied to irrigated crops. Precision irrigation (PI) is a relatively
new concept in agriculture, and it provides a vast potential for enhancing water use efficiency, while
maintaining or increasing grain yield. Neutron probes (NPs) have consistently been used as a robust
and accurate method to estimate soil water content (SWC). Remote sensing derived vegetation indices
have been successfully used to estimate variability of Leaf Area Index and biomass, which are related
to root water uptake. Crop yield has not been evaluated on a basis of SWC, as explained by NPs
in time and at different depths. The objectives of this study were (1) to determine the optimal time
and depth of SWC and its relationship to maize grain yield (2) to determine if satellite-derived
vegetation indices coupled with SWC could further improve the relationship between maize grain
yield and SWC. Soil water and remote sensing data were collected throughout the crop season and
analyzed. The results from the automated model selection of SWC readings, used to assess maize
yield, consistently selected three dates spread around reproductive growth stages for most depths
(p value < 0.05). SWC readings at the 90 cm depth had the highest correlation with maize yield,
followed closely by the 120 cm. When coupled with remote sensing data, models improved by
adding vegetation indices representing the crop health status at V9, right before tasseling. Thus, SWC
monitoring at reproductive stages combined with vegetation indices could be a tool for improving
maize irrigation management.
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1. Introduction

An accurate understanding of soil water content behavior is important for soil hydrological
research in areas, such as irrigation scheduling and site-specific agriculture [1]. Part of the solution for
sustainable productivity is the improvement of water use efficiency. It is important to irrigate when
the yield response to water is at maximum. Plant water use efficiency (WUE) is defined as the amount
of carbon gained per unit of water and used on a unit of land area [2]. The impact of a water deficit
on the WUE varies throughout the growing season depending on how sensitive the crop is at that
specific growth stage. Therefore, both, the amount of water availability, as well as the timing of water
availability, are critical.

Water extraction is not uniform across a field [3], which leads to the need for an investigation
on the effect of spatial distribution of vegetation and its influence on the spatial pattern of soil water
content. Hupet and Vanclooster [1] discussed a non-negligible role of the evapotranspiration of plants
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in the soil moisture patterns for the shallow layers. However, their conclusions were different in
experiments that studied deeper soil water readings [4]. Little research has focused on the importance
or explanatory significance of soil water content readings at different depths. Longchamps, Khosla,
Reich and Gui [3] proposed the use of variable rate irrigation only when the roots are deep enough,
and soil water content shows more stable spatial patterns.

Given these conditions, it may be necessary to add a crop attribute to account for the spatial
variability in water consumption. Vegetation indices derived, from remote sensing, have been
successfully used to estimate the spatial variability of crop LAI and biomass [5] and yield [6]. One
of the oldest and most popular indices is the Normalized Difference Vegetation Index (NDVI) [7].
However, when LAI in maize canopies are higher than 2.0, NDVI is normally insensitive to changes [8].
Viña, et al. [9] found that among various vegetation indices evaluated, the Red-Edge Chlorophyll
Index (RECI) could also be used to accurately estimate LAI for crop canopies ranging from 0 to more
than 6 m2 of vegetation per m2 of soil. Delegido, et al. [10] found that the Red-Edge Normalized
Difference Vegetation Index (RENDVI) does not saturate at high LAI values, and is strongly related to
the physiological status of the plant, for a wide range of crops and conditions.

The review of current literature indicates that soil water content (SWC) and grain yield relationship
has not been thoroughly studied from a time and depth perspective, and least of all at the field scale.
Hassan-Esfahani, et al. [11] presented one of the few studies on the estimation of SWC at the root zone,
using high resolution remote sensing data, and demonstrated the potential of vegetation indices to
estimate SWC, but did not link SWC to crop yield. A recent review paper have identified the need
for a combined soil-based and crop-based approach to better estimate crop water needs [12]. The link
between SWC, high resolution vegetation indices, and yield may be key to developing agronomically
sound precision irrigation strategies, suitable for precision agricultural systems. The hypothesis of this
study is that soil water content, measured at different times and depths is spatially related to grain
yield. This could provide useful information for developing and installing soil water sensors for the
field scale water management. With a stronger spatial dependency of the soil water content (SWC) at
greater depth, fewer sensor locations would be necessary to measure soil moisture and characterize
the soil water content profile.

The objectives of this study were (1) to determine the optimal time and depth of soil water
measurements and its relationship to maize grain yield at the field scale, and (2) to determine whether
satellite-derived vegetation indices, coupled with soil water measurements, could further improve the
relationship between maize grain yield and soil water measurements.

2. Materials and Methods

2.1. Study Sites

This study was conducted in 2015 at the Agricultural Research Development & Education Center
(ARDEC), Fort Collins, CO, USA (40◦39′57.4” N, 104◦59′53.1” W, Figure 1). This site was under a
continuous maize cropping system and irrigated by a center-pivot irrigation system with variable
rate prescription capability. The soil type is a Kim loam (Fine-loamy, mixed, active, calcareous, mesic
Ustic Torriorthents). These soils are characterized as being very deep, well drained, with 1 to 3 percent
slopes [13].
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Figure 1. Map showing neutron probe access tube locations at Agricultural Research, Development
and Education Center.

2.2. Soil Water Data Collection

Soil water data was collected at five soil depths (30, 60, 90, 120, and 150 cm) utilizing a neutron
probe (Model 503 DR Hydroprobe, CPN International, Martinez, CA). In addition to the original five
NP readings, three average SWC for depths 30–60, 30–90 and 30–150 cm were computed, assuming
constant bulk density of soil for those depths. The NP readings were taken 21 times during the crop
growing season, on a bi-weekly basis, from July 22th to September 24th. A total of 18 access tubes were
installed (Figure 1), and their geo-location was logged, using a differential-corrected TrimbleTM Ag
114 global position system (DGPS) unit. Access tubes were positioned within crop rows, and 12 of
the 18 were located under a variable rate irrigation (VRI) (Figure 1). The reason for the access tubes
distribution was to measure variability in water availability with irrigation applications of 40%, 60%,
80%, 100%, 120%, and 140% of the crop evapotranspiration (ET), while the uniform rate was always
100% of the ET. Estimated ET requirements, or the amount needed to replenish water used by the
plants and lost to evaporation, are based on weather conditions such as solar radiation, windspeed,
and humidity. For information on calculating crop water requirements, refer to [14]. Every time the
NP is used, a standard measurement was acquired with the sensor located in the probe enclosure to
obtain a “count ratio” which consists of the division of the actual field readings by the standard.

2.3. Remote Sensing Data

Satellite images were obtained by the RapidEye system (BlackBridge, Berlin, Germany), for a
total of seven dates, distributed across the crop growing season. The imagery was corrected for
radiometric error and geo-rectified by the provider, FarmLogs (Ann Arbor, MI, USA). Three different
vegetation indices (NDVI, RECI, and RENDVI) were calculated, thus a total of 21 high-resolution maps
(at 5 m spatial resolution) were obtained (Table 1). Ancillary vegetation indices from the Moderate
Resolution Imaging Spectroradiometer (MODIS) sensors (250 m spatial resolution) were provided by



Agronomy 2019, 9, 174 4 of 12

The Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC). The Enhanced
Vegetation Index (EVI) was used given its high sensitivity over dense maize vegetation conditions and
less interference of the soil background (Table 1). Ancillary imagery were obtained every 16 days for
the 2015 season, resulting in a total of 11 vegetation indices.

Table 1. Vegetation indices evaluated in the study.

Index † Formulation ‡ Source Resolution Reference

NDVI NIR−Red
NIR+Red RapidEye 5 m [7]

RECI NIR
Red_edge − 1 RapidEye 5 m [15,16]

RENDVI NIR−Red_edge
NIR+Red_edge RapidEye 5 m [10]

EVI 2.5 × NIR−Red
1+NIR+6×Red−7.5×Blue MODIS 250 m [17]

† NDVI, Normalized Difference Vegetation Index; RECI, Red Edge Chlorophyll Index; RENDVI, Red Edge
Normalized Difference Vegetation Index; EVI, Enhanced Vegetation Index; ‡ The NDVI, RECI and RENDVI
formulation names NIR, Red, Red edge refers to RapidEye’s band 5 (760–850 nm), band 3 (630–685 nm), and band 4
(690–730 nm), respectively. The EVI formulation names NIR, Red, Blue refers to MODIS’s band 2 (841–876 nm),
band 1 (620–670 nm), and band 3 (459–479 nm), respectively.

2.4. Crop Yield Data

The site was harvested at maize physiological maturity. Aboveground biomass was harvested by
hand around the neutron probe locations and weighed. Each sampled point consisted of harvesting
maize ears on 4 lines, of 3 m each, surrounding the neutron probe access tube locations.

2.5. Statistical Analysis

Data analysis was performed using the R statistical software [18]. Correlation analysis (Pearson’s
Correlation with p value = 0.05) was performed to study the relationship between SWC, remote sensing
data, and yield values. Further, polynomial models were tested given the quadratic relationship
between SWC and yield shown in the literature [19]. Coefficient of determination of the quadratic
relationship between SWC and maize yield was obtained by fitting polynomial models to the SWC
values against yield using the “poly” function, R package “stats” [18]. Regression and analysis of
variance were also performed by fitting linear models to assess maize yield using SWC, and SWC
coupled with remote sensing data. Automated model selection was performed with the “dredge”
function, R package “MuMIn” [20], which generated a list of all possible models sorted by explanatory
power. The corrected version of the Akaike Information Criteria (AICc), which adjusts for finite
sample sizes, guided selection of the preferred model [21]. Comparison of full and simpler models
for significant differences were executed using the “ANOVA” function from the base R package
(p value = 0.05).

2.6. Best Model’s Selection

Automated model selection computes every possible predictor combination (soil water
measurements) to estimate the response variable (maize yield). Therefore, due to restrictions in
the number of degrees of freedom for modeling, filtering the available dates by highest correlations
with yield, was necessary. Only the dates, with correlation coefficients higher than 0.5, were used.
Likewise, to decrease the number of predictors and increase the statistical power, only linear regression
models were included.

2.6.1. Best Dates Model

Automated model selection was performed for each of the five depths (i.e., 30, 60, 90, 120, and
150 cm) to detect which dates were more often correlated across all models. In other words, in search
for the dates when correlation with yield was the strongest.
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2.6.2. Best Depth Models

Best Depth for Each Date Model:

For each of the most relevant dates (correlation coefficients with yield higher than 0.5), automated
model selection was performed, using the depths as independent variables (from 30 to 150 cm), in
search for the most frequent depths when correlation with yield was strongest.

Best Depth Including All Relevant Date Model:

The r2 values were calculated using only the most relevant dates (i.e., correlation coefficients with
yield higher than 0.5) for each depth (from 30 to 150 cm). The purpose was to compare full models and
estimate the potential explanatory power for each depth.

2.6.3. Imagery Model

Automated model selection was used to test the inclusion of vegetation indices as plant soil water
uptake explanatory variables to the chosen dates in the previous SWC “best dates model”. The average
soil water content for depths down to 150 cm (mean of the entire profile) were used as the base model.
For imagery of the seven available dates, one vegetation index at a time was combined with the base
model to assess yield.

3. Results

Maize tasseling was observed around 8 August (DOY 220). The mean yield value was
14.5 Mg ha−1 and yield ranged from 11.2 Mg ha−1 to 15.8 Mg ha−1. Neutron count ratios (NCR)
ranged from 1.10 to 1.97 across all dates and depths (higher values were directly related to SWC). The
polynomial transformation of the NCR values improved the explanation of the yield variance, and
therefore, were used as inputs for further analyses. Multiple significant coefficients of determination
(r2) from the quadratic model between NCR readings and maize yield were observed (Table 2). Stronger
correlations between SWC and yield at the beginning of tasseling, validate that, during this stage,
the impact of soil water levels on yield is highest. There was a notable decrease in the neutron probe
reading values one week after the start of tasseling, (DOY 226), indicated with a bold arrow in Figure 2.
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Figure 2. Neutron count ratios (NCR) average for soil depths from 30 to 150 cm along the crop growing
season in Day of the year (DOY). General decrease in all NCR after tasseling is marked with a bold
arrow that occurred at August 14th (DOY 226).

3.1. Best Dates Model

From the coefficients of determination (Table 2), only the NCR from the 11 latest dates (i.e., from
DOY 205 to DOY 240) were significant. Table 3 shows the dates selected by the best models to explain
maize yield at each measurement depth. The SWC measurements from the DOY 222, 226, and 237 had
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the highest number of significant contributions to the model across soil depths with 3 of 5 possible
appearances each. The first variable (DOY 222) coincides with the beginning of tasseling, which
was observed for the first time at DOY 220. The next variable (DOY 226) coincides with a noticeable
decrease in soil water reading values, when maize plant water uptake is expected to be at the maximum
rate, due to high demand [22]. Finally, the last variable (DOY 237) provided important information
about the water status at the end of the reproductive stages, when yield is still being defined.

Table 2. Coefficient of determination (r2) between neutron probe (NP) and yield at different depths and
days of the year (DOY). The r2 was indicated when a significant (p value < 0.05) correlation coefficients
was observed, and non-significant relationship were indicated by a hyphen (-).

NP DOY † Depth

30 cm 60 cm 90 cm 120 cm 150 cm −
X 30–60 cm

−
X 30–90 cm

−
X 30–150 cm

170 - - - - - - - -
175 - - - - - - - -
177 - - - - - - - -
181 - - - - - - - -
184 - - - - - - - -
188 - - - - - - - -
191 - - - - - - - -
195 - - - - - - - -
198 - - - - - - - -
202 - - - - - - - -
205 0.36 - - - - - - -
209 0.48 - - - - - - -
212 0.62 0.33 - - - - 0.38 -
216 0.66 0.37 - - - - 0.46 0.45
219 - 0.50 - 0.34 0.56 0.47 0.37 0.44
222 0.70 0.48 - - 0.50 0.70 0.57 0.58
226 0.36 0.48 0.62 0.66 - 0.43 0.54 0.58
230 0.71 0.54 - 0.64 0.41 0.74 0.60 0.64
233 0.70 0.59 0.44 0.61 0.60 0.76 0.72 0.74
237 0.65 0.59 0.46 0.57 0.74 0.74 0.72 0.75
240 0.72 0.58 0.57 0.76 0.70 0.77 0.75 0.76

† Neutron probe Day of year measurement.

Table 3. Dates selected by the best model for each depth. Total number of significant contributions to
the model across soil depths for each day of the year is indicated in the bottom row of the table. Dates
selected by the best model are highlighted in bold.

Depth NP DOY †
r2 p Value

205 209 212 216 219 222 226 230 233 237 240

30 cm - - X - X - - - - X - 0.83 <0.001
60 cm - - - - - X X - - - X 0.72 <0.001
90 cm - - - - - X X - - X - 0.80 <0.001

120 cm - X - - X X X X - - - 0.89 <0.001
150 cm - X - - - - - - - X - 0.64 <0.001
Total 0 2 1 0 2 3 3 1 0 3 1 - -

† Neutron probe Day of year measurement.

3.2. Best Depth Models

3.2.1. Best Depth for Each Date Model:

Table 4 shows the depths selected by the best models to explain maize yield at each measurement
date. The explanatory power of the models strongly depends on the date of acquisition, with r2 values
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ranging from 0.30 (DOY 205) to 0.71 (DOY 240). Nevertheless, the 30 cm soil depth SWC reading
appears to be the most explicative one, for 8 of the 11 dates (73% of the time).

Table 4. Neutron count ratios acquired on various days of the year (DOY) at specific soil depths and
corresponding coefficients of determination for the best model to assess maize yield for each. The most
often selected soil depth is highlighted in bold.

NP † DOY † Soil Depth
r2 p Value

30 cm 60 cm 90 cm 120 cm 150 cm

205 X - - - - 0.30 0.02
209 X - - - - 0.41 0.00
212 X - X - - 0.60 0.00
216 X - - - - 0.59 0.00
219 - - - X - 0.34 0.01
222 X - - - - 0.63 0.00
226 - - - X - 0.59 0.00
230 - - X X - 0.67 0.00
233 X - - - - 0.59 0.00
237 X - - - - 0.65 0.00
240 X - - - - 0.71 0.00

Total 8 0 2 3 0
† Neutron probe Day of year measurement.

3.2.2. Best Depth for All Relevant Dates Model:

The r2 values were calculated for SWC for each soil depth, with all 11 dates included as model
predictors (Table 5). The SWC readings at 90 cm soil depth had the strongest relationship (r2 = 0.93)
with maize yield.

Table 5. Soil depths and corresponding coefficients of determination for the model that included all
dates on which soil water content was acquired to assess maize yield.

Soil Depth r2

30 cm 0.85
60 cm -
90 cm 0.93
120 cm 0.92
150 cm -

The r2 was indicated when a significant (p value < 0.05) correlation coefficient was observed, and non-significant
relationship were indicated by a hyphen (-).

3.3. Imagery Model

The temporal variation of biomass, described by the EVI, is depicted in Figure 3. The peak growth
period occurred around DOY 237. Figure 4 (40◦39′57.4” N, 104◦59′53.1” W) illustrates the spatial
variability in crop biomass, as characterized by the three vegetation indices, acquired near the peak
growth stages.

The NDVI ranged from 0.11 to 0.79, RECI ranged from 0.21 to 3.53, and RENDVI ranged from
0.06 to 0.45, across all dates for which SWC was acquired. The DOY 221 was a cloudy day and the
three indices had to be discarded due to a substantial cloud coverage over the ground cover. The RECI
and RENDVI values for DOY 242 imagery (i.e., latest imagery acquired for the season) were the only
ones that showed significant correlation with maize grain yield (Table 6).
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Figure 3. Temporal biomass variation as estimated by EVI. Peak value highlighted by a bold point
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Figure 4. Normalized Difference Vegetation Index (NDVI), Red-edge NDVI (RENDVI) and Red-edge
Chlorophyll Index (RECI) showing the spatial variability of the biomass for Day of Year 242.

Table 6. Vegetation indices, day of year (DOY) and corresponding correlations coefficient in relation to
maize yield.

Vegetation Index †
Correlation Coefficient

DOY

155 164 178 192 204 242

NDVI - - - - - -
RECI - - - - - 0.72

RENDVI - - - - - 0.63
† Significant (p value < 0.05) correlation coefficients are reported and non-significant correlation are indicated with a
hyphen (-).

The significant dates identified in the best dates model (3.1) for the average of the entire soil
profile were DOY 219, 226, and 237. The three NP readings dates mentioned were set to be consistently
part of the output models, and the six available imagery dates, one index at a time, were tested for the
improvement of the best date model. Outputs from the automated model selection for NDVI, RECI
and RENDVI are shown on Table 7.
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None of the NDVI values, calculated for six dates, were selected to improve the reduced model
(SWC-only model), therefore the best model remained the same as the “best dates model” (r2 = 0.77,
AICc = 297.3). The RECI and RENDVI automated model selection included the indices of DOY 204 in
both cases and was a significant (p value < 0.05) improvement to the SWC-only model. The wide range
of values of RECI and sensitivity of RENDVI over NDVI is noticeable in Figure 4, where lower contrast
is observed for the latter index. The NDVI failed to explain maize biomass variability, probably due to
saturation of this index at high leaf area index values, as previously suggested [23].

Table 7. Results from the automated model selection for the imagery models. Selected variables
of the best model for each index are indicated with an X. Numbers next to variables indicate the
corresponding Day of the year.

NDVI † Model

NP
219

NP
226

NP
237

NDVI
155

NDVI
164

NDVI
178

NDVI
192

NDVI
204

NDVI
242 r2 AICc #

X X X - - - - - - 0.77 297.3

RECI ‡ Model

NP
219

NP
226

NP
237

RECI
155

RECI
164

RECI
178

RECI
192

RECI
204

RECI
242 r2 AICc

X X X - - - - X - 0.84 294.9

RENDVI § Model

NP
219

NP
226

NP
237

RENDVI
155

RENDVI
164

RENDVI
178

RENDVI
192

RENDVI
204

RENDVI
242 r2 AICc

X X X - - - - X - 0.83 296.4
† Normalized Difference Vegetation Index Day of year; ‡ Red-edge Chlorophyll Index Day of year; § Red-edge
Normalized Difference Vegetation Index Day of year; ¶ Neutron probe Day of the year; # corrected Akaike
Information Criteria.

4. Discussion

The deeper SWC readings (i.e., 90 to 150 cm) showed significant relationships with maize yield
later during the growing season. Similar trends were detected by Hupet and Vanclooster (2002),
explaining that plants’ water uptake affects the deeper soil layers (50 to 100 cm), as a result of the
transpiration from the well developed maize crop, combined with a high climatic demand. The
common wisdom among farmers in Colorado (personal communication) is that ample irrigation at the
beginning of the crop season builds a storage of water in the soil to be used later in the season when
water requirements are the highest, known as soil water “banking” [24]. The results from this study
seem to provide a scientific basis to support farmer’s technique. It was observed that, generally, in
the crop growing season, shallow SWC was the most important parameter for yield determination.
However, at early to mid-reproductive crop growth stages, when crop water demand is the highest,
deeper SWC was crucial and played the largest role in the grain yield formation. Furthermore, a
significant decrease in SWC of the entire profile was observed one week after the onset of tasseling.

The findings from this study suggest that, at the tasseling growth stage (VT), there is a narrow
window of perhaps five days, when the SWC of the entire profile is critical. During this period, root
water uptake rate might be remarkably high, and depending on the soil type, the irrigation may not
be able to physically keep up with the crop water consumption [24]. Therefore, deeper soil water
availability might be the largest yield limiting factor at this stage, and accumulating water in the soil
profile (e.g., water “banking”) could be a feasible solution. This suggests that site-specific irrigation
management, targeting spatially variable SWC, would have a maximum impact later in the season,
when water patterns are more related to crop’s yield. Likewise, Longchamps, et al. [3], suggested that
variable rate irrigation may be more practical when roots are deep enough (below 45 cm), where SWC
spatial patterns are more stable. Uniform irrigation may be adequate for most of the growing season,
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but aiming for site-specific amounts of water during the period bracketing, flowering could further
improve the efficiency of the irrigation.

The first important component found in this study was the neutron probe readings acquired
around the reproductive stage (DOY 222, 226 and 237), which successfully described the soil water
availability during the critical growth period (Table 3). The second component was the significant
modeling contribution of RECI or RENDVI image of the crop before tasseling (DOY 204), which
corresponded to the V9 (9-leaf) growth stage of maize (Table 7). At this stage, maize already had nine
expanded leaves and was at the beginning of the most resource-demanding period of its life-cycle.
Root depth, leaf area, and water use increase rapidly during this period, reaching peak daily water
use rates during pollination [22]. A water stress during this period would have the greatest impact
on the crop yield [22]. Therefore, an image acquired at V9 growth stage of maize is a snapshot of
the plant’s potential to use all of the available resources during the upcoming critical growth period,
which defines most of the grain yield. The better performance of RECI and RENDVI indices explain
the higher biomass amounts, which may be due to the inclusion of the red edge band instead of the
red band in the NDVI. While the red band capitalizes on the sensitivity of the vegetation, the red
edge band responds to small changes in LAI, the latter being located between the main absorption
and reflection peaks of the spectrum [25]. The red edge band is spectrally located between the red
and NIR band, where the reflectance highly increases from the red portion towards the NIR plateau
for green vegetation [26]. Viña, Gitelson, Nguy-Robertson, and Peng [9] tested the performance of
NDVI, RECI, and MERIS Terrestrial Chlorophyll Index (MTCI), which also includes the red edge band,
to estimate maize and soybean LAI. The RECI and MTCI exhibited more sensitivity to moderate to
high LAI, than the widely used NDVI. Depending on the development, growth, type of crop, and
the minimum requirements of the variability assessment, the widely used NDVI may not always be
the best index. Indices, such as those including the red edge band in their formulation, could be a
potential replacement to NDVI in scenarios where the LAI values are high and NDVI saturates.

Practical Implications

Our results suggest that the superficial soil layers would be the most appropriate to monitor,
when the purpose of soil water measurements is to ascertain crop water requirements throughout the
crop growing season. This would be especially useful for soil water monitoring when only a limited
number of sensors can be installed at a single soil depth. If the depth of measurement can change
during the growing season, in particular during the early-mid reproductive growth period, deeper
SWC monitoring would be more appropriate for a more efficient irrigation management.

The imagery model, which is a combination of soil water measurements and remote sensing data,
provides some new insights on how to develop high frequency soil water maps. Frequent maps of the
vegetation cover as estimated by remote sensing combined with maps of the crop potential yield could
provide useful information about the plant’s water status for the entire field. Such maps could be used
to address the high temporal variability previously reported in the SWC at the soil surface [1,3]. Soil
moisture probes could be used to acquire data on SWC variability at deeper soil depths which tends to
be relatively stable [3]. Combining the crop imagery with deep soil moisture probe data may render
possible the estimation of SWC of the entire root zone soil profile (0–100 cm).

The advent of new technologies (e.g., drones, nano-satellites), makes high temporal and/or
spatial resolution imagery of fields, accessible and easier than ever. Santesteban, et al. [27] tested
new light-weighted thermal cameras to estimate the plant water status within a vineyard, with
successful results. In addition, this information could be coupled with soil water management zones,
which consists of different levels of available water-holding capacities across the field [28]. In sum,
inter- and intra-zone variability could be more precisely described, representing valuable information
for an optimal irrigation water management along the crop growing season. Nonetheless, further
investigation, on how to precisely combine all the different sources of water information, has to be
further studied.
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5. Conclusions

Grain yield across a variable rate-irrigated maize field was shown to be related (r2 up to 0.89)
to the SWC, as measured by NP readings. When water was the main factor controlling grain yield,
the importance of the SWC values, in space and depth, varied across the crop growing season. From
the correlation analysis between single NP readings and yield values, there was a trend consisting of
higher correlation (r2 of 0.71 at DOY 240) after tasseling. Similarly, automated model selection chose
NP reading dates spread around reproductive growth stages to best assess maize grain yield. During
this period, deeper SWC readings had the strongest relationship with crop yield and may be the most
limiting factor defining yield. However, if the goal is to characterize water requirements apart from
the critical growth stages, the surface readings explained (p value < 0.05 for 8 out 11 dates) the maize
yield most of the time. To enhance the maize yield prediction by SWC, vegetation indices were also
included in an attempt to describe the plant biomass, which is highly related with the plant water
uptake. The RECI and RENDVI proved to be significant additions to the SWC-only model, improving
the grain yield assessment from an r2 of 0.77 to 0.84 and 0.83, respectively (ANOVA test, p value < 0.05).
The NDVI failed to improve the SWC-only model, suggesting that in order to account for the subtle
differences in biomass, the red-edge-based vegetation indices may be a better solution. The results from
this study showed that, different sources of information could be combined to obtain more accurate
models of soil water content and maize yield at the field scale, appropriate for precision irrigation.

Future Work

The incorporation of soil water management zones could be significant in developing site-specific
models, in order to account for spatial variability of the soil’s available water-holding capacity.
Combined with newer remote sensing technologies (e.g., higher spatial and temporal resolution,
thermal imagery), an enhanced characterization of the soil water status could be performed. All
sources of information together, properly integrated, could become a powerful tool for an optimal
irrigation management.
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