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Abstract: Water stress can positively or negatively impact grape yield and yield quality, and there
is a need for wine growers to accurately regulate water use. In a four-year study (2010–2013),
energy balance fluxes were measured with an eddy-covariance (EC) system in a North Carolina
vineyard (Vitis vinifera cv. Chardonnay), and evapotranspiration (ET) and the Crop Water Stress
Index (CWSI) calculated. A multiple linear regression model was developed to upscale ET using
air temperature (Ta), vapor pressure deficit (VPD), and Landsat-derived Land Surface Temperature
(LST) and Enhanced Vegetation Index (EVI). Daily ET reached values of up to 7.7 mm day−1, and the
annual ET was 752 ± 59 mm, as measured with the EC system. The grapevine CWSI was between
0.53–0.85, which indicated moderate water stress levels. Median vineyard EVI was between 0.22 and
0.72, and the EVI range (max–min) within the vineyard was 0.18. The empirical models explained
75%–84% of the variation in ET, and all parameters had a positive linear relationship to ET. The Root
Mean Square Error (RMSE) was 0.52–0.62 mm. This study presents easily applicable approaches to
analyzing water dynamics and ET. This may help wine growers to cost-effectively quantify water use
in vineyards.

Keywords: crop water stress index; enhanced vegetation index; Landsat; land surface temperature;
remote sensing; tall fescue; Vitis vinifera

1. Introduction

Quantifying water use in a vineyard is critical because plant available water in the root zone
determines yield quantity and quality. The vines require no-stress conditions from bud break
subsequent to fruit set, while moderate water stress is required during fruit ripening. Moderate
water stress has an inhibitive effect on vegetative growth, which can enhance or positively impact
berry composition, and eventually wine quality. Depending on the grapevine phenological stage,
excessive water stress or oversupply of water can negatively impact yield and quality [1]. Water use in
vineyards can be regulated by estimating the daily actual evapotranspiration (ET), i.e., the amount of
water transpired by the crop, or evaporated from the soil and exposed surfaces. The goal in semi-arid
wine regions is to reduce ET [2–4], however, wine growers in North Carolina (NC) and other humid
regions seek to increase ET to a maximum because the high annual precipitation (P) inhibits vines to
enter any water stress period during fruit ripening. A variety of techniques have been used to estimate
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ET in vineyards. Estimating latent heat flux (LE) using the Eddy covariance (EC) method has the
advantage of generating continuous long-term ET datasets in vineyards on a sub-field or field level [5].

The Estimated Crop Water Stress Index (CWSI) is another method of quantifying plant water
stress based on canopy temperature (Tc) measurements [6,7]. CWSI is related to the ratio of ET and
potential ET (ETp) [7]:

CWSI = 1 − ET
ETp

(1)

The ET and Tc are related, because evaporative cooling of a transpiring plant reduces Tc, and
water stressed plants close their stomates reducing ET, which leads to increased Tc. Several studies
have successfully utilized the CWSI approach to quantify water stress [8,9]. More recently, the CWSI
was applied in vineyards to map vine water stress and demonstrated that CWSI was related to stem
water potential and yield parameters in grapevines [10–13].

There is a growing demand to cost-effectively quantify ET for whole vineyards. Previous studies
used different modelling approaches or included remotely sensed data to estimate large-scale ET.
One approach was the use of air-borne measured land surface temperature (LST) and air temperature
(Ta) to estimate sensible heat (H). The LE and ET were then calculated as the residual energy in the
energy balance equation [14]. Applying this concept, models for large-scale ET estimations have
been developed. The Surface Energy Balance Algorithm for Land (SEBAL) estimates H using LST on
very wet and dry conditions, i.e., at potential and zero LE [15]. A similar approach is the Mapping
Evapotranspiration with Internalized Calibration (METRIC), which combines the SEBAL approach
with micro-meteorological measurements on the ground [16]. The METRIC model was used to estimate
regional vineyard ET in Chile in comparison with EC measurements [2]. The Simplified Surface Energy
Balance Index (S-SEBI) model [17], another energy balance model based on LST, had previously been
utilized to simulate ET in a vineyard in the Mediterranean region [4]. The Alexi/Disalexi approach
uses a two-source energy balance (TSEB) model together with satellite-derived Normalized Difference
Vegetation Index (NDVI), LST, and other meteorological data in a data fusion method to create daily ET
products [3,18]. This approach was used for tempo-spatial estimation of ET in different agroecosystems,
such as in vineyards in California [3,18]. More methods of ET estimation have been described in the
literature [19].

While these modeling approaches are well developed to estimate ET, a more parsimonious model
to upscale ET from sub-field ground measurements to total production areas is more accessible to
growers. Volumetric soil water content (VWC) as a predictor of ET, and measured with EC stations,
was used to upscale ET in the North American monsoon region [20]. Another way to estimate ET
was the use of the reference evapotranspiration (ET0) multiplied with a crop coefficient (kc) [21],
of which the former was calculated from meteorological data, and the latter was substituted by a
satellite-derived vegetation index (VI) [14,22]. In addition, [23] reported that substituting ET0 with
Ta showed good agreement in upscaling ET, using a simple empirical model with the Enhanced
Vegetation Index (EVI) as a kc substitute in riparian vegetation in the Southwest U.S. Other climatic
variables may also be used to substitute ET0. Landsat imagery provides EVI and LST products at a
30 × 30 m resolution, which would allow ET to be estimated on a subfield level using parsimonious
regression models.

In this four-year study, actual ET and CWSI were estimated in a commercial vineyard in NC, USA,
using the EC method as a comparison to quantify associated ET. This study’s aim was to monitor the
water dynamics and quantify ET, and to eventually upscale ET from sub-field to vineyard level by
developing a parsimonious empirical model using micro-meteorological data and Landsat 7 imagery.
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2. Materials and Methods

2.1. Study Site

The study was conducted from April 2010 to November 2013 at a commercial vineyard (~8.7 ha)
near Dobson, NC (−80.777◦ W; 36.357◦ N; 366 m a.s.l.). The soil type was a fine, kaolinitic, mesic, Typic
Kanhapludult, and the soil texture was sandy clay loam. The vines (Vitis vinifera cv. Chardonnay)
were planted in 2001 in the north to south direction at 1.8 m spacing in 2.7 m wide rows. The vines
were cordon-trained and spur-pruned. The canopy height was 0.9 to 1.9 m from the ground. Canopy
width was 0.3 to 0.8 m. The vine rows were periodically treated with herbicide to control weeds under
vine vegetation. The interrows were seeded with tall fescue (Festuca arundinacea Shreb), yet native
vegetation was prevalent [24]. The vineyard was not irrigated. The climate was humid with mean daily
Ta ranging from −2.2 to 27.0 ◦C (Figure 1A) and mean annual precipitation (P) of 927 mm (Figure 1G).
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Figure 1. Daily air temperature (Ta) (A), evapotranspiration (ET) (B), and Bowen Ratio (β) (C), vapor
pressure deficit (VPD) (D), volumetric soil water content in 6 cm soil depth under tall fescue (VWC.f) (E),
and grapevines (VWC.v) (F), and daily precipitation (G) from 2010 to 2013 in a NC vineyard.
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2.2. Eddy Covariance System

One EC station was installed on the southern side of the vineyard from April 2010 to November
2013, and turbulent fluxes of LE and sensible heat flux (H) were computed using the EC method.
Fetch-to-height ratio was ≥40:1 in all directions. The EC station was equipped with a high frequency
open-path infrared gas analyzer (IRGA), that measured water vapor (LI-7500, LICOR Biosciences
Inc., Lincoln, NE, USA). High frequency instantaneous wind speed velocity components and sonic
temperature were measured with a 3-D sonic anemometer (CSAT, Campbell Scientific, Inc., Logan,
UT, USA). The instantaneous data were collected at 20 Hz, and 15-min averages were generated.
The H and LE fluxes were computed as the covariance between the instantaneous vertical wind
velocity, sonic temperature, and water vapor density. The LE and H fluxes were coordinate rotated [25],
and LE was additionally corrected for variations in temperature (Ta) and air density based on the
Webb–Pearman–Leuning algorithm [26]. Ancillary instrumentation included a net radiometer to
measure net radiation (Rn; Q7 net radiometer, Radiation Energy Balance, Seattle, WA, USA), an air
temperature and relative humidity (rH) probe (Vaisala HMP45c, Vaisala, Vantaa, Finland), a tipping
bucket rain gauge (Model TR525 USW, Texas Electronics, Dallas, TX, USA) to measure P, soil moisture
probes (CS615, Campbell Sci., Logan, UT, USA) at 6 cm soil depth to measure VWC, thermocouples to
measure soil temperature, heat flux plates (HFT-1, Radiation Energy Balance, Seattle, WA, USA) to
measure soil heat flux (G), and four infrared temperature (IRT) sensors (IRTS-P, Apogee Instruments
Inc., Logan, UT, USA) above the vines and fescue at 1.5 m, and above the grapevine row and grass
interrows in approximately 6.1 m to measure Tc (referred to as Tcv, Tcf, Tcr, Tcir, respectively).

The datasets were screened for sensor failures and statistical outliers and subsequently
interpolated to fill data gaps. All data that violated empirically set upper and lower thresholds
were excluded from further analysis. Additional screening features of the turbulent fluxes included
periods of precipitation [27], possible water condensation on the instruments [28], low wind turbulence,
wind direction opposite to the sensor head direction [29], and the manufacturer’s internal IRGA and
CSAT warning system. We also used the water vapor saturation measurement from the humidity
probe to screen LE, since the humidity sensor is not affected by dust or rainfall events [30]. Data were
also screened using the interquartile range (IQR) procedure, where outliers were defined as 1st/3rd
Quartile ± 3.5 × IQR. The 15-minute dataset was interpolated (or gap filled) following an inverse
weighted time average procedure [29]. Daily values were calculated as the daily average multiplied
by the number of samples per day. The Bowen ratio (β) was calculated as the quotient of H and LE.
The ET was calculated as the quotient of LE and the latent heat of vaporization (LV), of which the
latter was calculated as proposed by [31]. Further information on outlier screening and interpolation
procedures can be found in [32]. The annual ET was calculated as mean daily ET multiplied by the
number of days year−1.

2.3. Crop Water Stress Index (CWSI)

The CWSI was calculated as [6,7]:

CWSI =
dT − dTmin

dTmax − dTmin
(2)

Where: CWSI = Crop Water Stress Index of vines, fescue, grapevine row, and interrow (referred to as
CWSIv, CWSIf, CWSIr, CWSIir, respectively); dT = the difference between Tcv, Tcf, Tcr, Tcir and Ta (◦C);
dTmin = the lower, water-stress free limit (◦C), dTmax = the upper, highly water-stressed limit (◦C).

Data from full sun middays (11 AM–3 PM; Rn > 500 W m−2) between May and October were used
to calculate CWSI, where vines had full foliage, and cloud cover did not influence Tc. The boundaries
dTmin and dTmax describe the crop- and location-specific limits of non-stressed (plant at potential
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transpiration) and fully water stressed (virtually no transpiration) conditions of a crop canopy.
The lower boundary dTmin was calculated as [7,33]:

dTmin = rae × (Rn − G − SG)

(ρ × cp)

×
γ ×

(
1 +

rcp
rae

)
∆ + γ ×

(
1 +

rcp
rae

) − (es− ea)

∆ + γ ×
(

1 +
rcp
rae

) (3)

where: rae = effective aerodynamic resistance (s m−1), Rn = net radiation (MJ m−2 s−1), G = soil heat
flux (MJ m−2 s−1), SG = soil heat storage (MJ m−2 s−1), ρ = air density (kg m−3), cp = heat capacity of
air (MJ kg−1 ◦C−1), rcp = crop canopy resistance at potential transpiration (s m−1), ∆ = slope of the
saturated vapor pressure-temperature relation (kPa ◦C−1), γ = psychrometric constant (kPa ◦C−1),
es = saturated vapor pressure (kPa); ea = actual vapor pressure (kPa).

The upper boundary dTmax was calculated as [7,33]:

dTmax =
rae × (Rn − G − SG)(

ρ × cp
) (4)

es was calculated as a function of Ta [34], cp and ρ were calculated as described in [35], and
γ as described in [21]. The ea was calculated as es multiplied with rH. The ∆ was calculated with
the average of Tc (that is, Tcv, Tcf, Tcr, Tcir) and Ta [33]. The rcp was set to 5 s m−1 [7], and rae was
calculated according to [36]. The SG was calculated using the calorimetric method [37]. The CWSI
values were screened for outliers outside its limits of 0 (no water stress) and 1 (maximum water stress),
and subsequently gapfilled using the inverse weighted time average procedure.

2.4. Enhanced Vegetation Index (EVI) and Land Surface Temperature (LST) from Landsat 7

The EVI and LST Level-2 product of Landsat 7 satellite images were provided by the U.S.
Geological Survey (USGS) [38,39]. The Landsat 7 EVI product had a resolution of 30 × 30 m. Landsat 7
LST was calculated with the thermal band which had a 60 × 60 m resolution. The final LST Level-2
product was resampled to a 30 × 30 m resolution. Note that USGS Landsat Surface Temperature
Science Product may have reported unvalidated results for certain observational conditions [40].
In total, 37 EVI and 32 LST scenes with little or no cloud cover between May 2010 to October 2013 were
requested. Five LST products were not available, probably due to the current provisional nature of
LST. The EVI product as provided by USGS was calculated as:

EVI = 2.5 × ((ρNIR − ρRed)/(ρNIR + 6 × ρRed − 7.5 × ρBlue + 1)) (5)

where: EVI = Enhanced Vegetation Index, ρNIR, ρRed, and ρBlue were the surface reflectance of the
near-infrared, red, and blue wavelength bands, respectively.

The Scan Line Corrector (SLC) of the Landsat 7 failed in 2003, which caused an unequal ground
track of the satellite with duplicate and missing imaged areas. Landsat scenes with missing data were
not included in this study.

The EVI and LST scenes were cropped to field boundaries of the vineyard as well as to the 80%
daytime footprint area (i.e., two to three data points), assuming that the greatest share of LE was
derived from this footprint. The median EVI and LST around the EC station was then calculated and
used for further analysis.

2.5. Statistical Analysis and Data Preparation

In this study a multiple linear regression analysis with on-site Ta and VPD, as well as LST and EVI
within the EC footprint as the independent and ET as the dependent variable was established (p < 0.05).
These empirical and parsimonious models were then used to upscale ET for the whole vineyard with
vineyard EVI and on-site Ta, VPD or vineyard LST, respectively (referred to as ETTa, ETLST, and ETVPD,
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respectively). The relationship between ET and CWSI was analyzed with linear regression analysis.
The assumption was that Ta and VPD measured at the EC station did not differ substantially within
the vineyard. All data preparation, graphing, and analysis was carried out using R [41].

3. Results

Daily ET, Ta, and VPD showed the typical seasonal pattern with high values during summer and
low values during winter (Figure 1A,B,D). The VPD reached values of up to 1.90 kPa. Maximum ET in
the growing season (i.e., May to October) ranged from 5.6 mm day−1 in 2013 to 7.7 mm day−1 in 2012.
During the growing season median β was between 0.36 and 0.40, and in the off-season, it was between
0.47–0.84 (Figure 1C). The VWC in the surface 6 cm of soil under tall fescue ranged from 0.29 m3 m−3 in
2010 and 0.42 m3 m−3 in 2013, and under grapevines VWC was between 0.24–0.35 m3 m−3. The VWC
pattern closely followed rainfall-events (Figure 1E–G). Mean annual ET was 752 ± 59 mm year−1.
Note that the small annual ET in 2010 was related to the late onset of the study and a data gap from
DOY 153–175 (Table 1, Figure 1B). Precipitation (P) was above ET in 2010 –2013 with a mean P-ET ratio
of 1.21.

Table 1. Annual evapotranspiration (ET) from 2010–2013.

Year ET (mm year−1)

2010 579
2011 837
2012 807
2013 784

Mean 752 ± 59

The dTmin values of fescue, grapevines, and measurements at 6.1 m above row and interrow was
significantly related to VPD (p < 0.05), explaining 93–95% of the variation. The median CWSIf was
lowest in 2011 with 0.81 and highest in 2010 with 1.0, and for CWSIv was lowest in 2010 with 0.53
and highest in 2013 with 0.85, respectively. The annual median CWSIir and CWSIr ranged between
0.76 and 0.91 and between 0.77 and 0.91, respectively. The CWSI was highly variable among years
(Figure 2). There was a significantly negative linear relationship between ET and CWSIr (p < 0.05),
i.e., with increasing CWSI the ET decreased. However, the relationship could only explain 15% of
the variation.
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Figure 2. Daily Crop Water Stress Index (CWSI) for tall fescue (A), grapevines (B), above the vine row
(C) and interrow (D) in 6.1 m during the months of May to October, from 2010–2013.

Vineyard median EVI ranged from 0.22–0.72 (Figure 3), with a mean within-vineyard range
(calculated as the difference of maximum and minimum EVI) of 0.18. Median vineyard LST ranged
from 16.0–40.1 ◦C from 2010 to 2013, with a mean range within the vineyard of 4.44 ◦C (Figure 4).
Median EVI within the EC footprint followed a seasonal pattern and ranged from 0.28–0.65 (Figure 5A).
Median LST within the EC footprint also followed a seasonal pattern and ranged from 0.8 to 42.6 ◦C
(Figure 5B). The LST was significantly related to Tc at overpass time and lowest RMSE of 1.13 ◦C was
measured with an IRT sensor at 6.1 m above the grapevine row (Table 2).

Table 2. The RMSE (◦C), and R2 of linear regression models with Tc (◦C) measured with IRT sensors at
time of satellite overpass as independent variable, and LST (◦C) as dependent variable.

Tc R2 RMSE (◦C)

Tcf 0.99 2.18
Tcv 1.00 1.68
Tcr 1.00 1.13
Tcir 1.00 1.49

IRT = infrared temperature; RMSE = root mean squared error, R2 = coefficient of determination; LST = Land surface
temperature, Tc = canopy temperature.
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Footprint EVI and on-site Ta, LST, and VPD were used as independent variables to establish
multiple linear regression models with ET as the dependent variable (Table 3). All models were
significant at p < 0.05, explaining 75% to 84% of the variation. All parameters had a positive linear
relationship to ET, i.e., with increasing EVI, Ta, LST or VPD, the daily ET increased and vice versa.
A linear regression analysis between calculated ET and measured ET was significant at p < 0.05
and had a root mean square error (RMSE) of 0.52–0.62 mm (Table 3). Note that combining more
independent variables did not improve the empirical models, so the more parsimonious models were
chosen. While the overall EVI-LST model was significant, the LST parameter was only significant
at p < 0.1, due to higher variation in the LST dataset. The derived coefficients were then used to
calculate vineyard ET. Median daily vineyard ETTa, ETLST, and ETVPD ranged from 0.4–4.8, 0.7–4.6,
and 0.8–5.1 mm day−1, respectively (Figure 5C–E). The mean within-vineyard ET range was 1.31, 1.67,
and 1.48 mm for ETTa, ETLST, and ETVPD, respectively (Figure 6).
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Table 3. Coefficients of a multiple linear regression analysis with EVI and Ta, VPD, or LST as independent and ET as dependent variable. The RMSE refers to ET
measured with the EC station versus modeled ET within the 80% footprint area.

Model Coefficients Mean SE p Adj. R2 dF Variable range Adj. R2 Measured vs.
Modeled ET

RMSE Measured vs.
Modeled ET

ETTa Intercept −1.629 0.592 <0.05 0.76 28 0.77 0.60
EVI 7.181 1.821 <0.001 0.28–0.65

Ta (◦C) 0.069 0.025 <0.01 −4.55–29.32

ETVPD Intercept −2.131 0.457 <0.001 0.84 28 0.84 0.52
EVI 7.866 1.159 <0.001 0.28–0.65

VPD (kPa) 1.645 0.332 <0.001 0.23–1.89

ETLST Intercept −2.438 0.631 <0.001 0.75 24 0.76 0.62
EVI 8.877 2.017 <0.001 0.28–0.63

LST (◦C) 0.042 0.021 <0.1 2.81–40.15

Adj. R2 = adjusted coefficient of determination, dF = degrees of freedom, EVI = Enhanced Vegetation Index, LST = Land surface temperature, RMSE = root mean squared error, Ta = air
temperature, SE= standard error, p = significance level, VPD = vapor pressure deficit.
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Figure 6. Modeled daily ET for the whole vineyard in 2011 from DOY 80−304 as calculated from EVI in
conjunction with LST (ETLST), Ta (ETTa), and VPD (ETVPD), respectively. The cross shows the position
of the EC system with the 80% footprint area around the EC station.

4. Discussion

In this study, ET was measured using an EC system in a NC vineyard. Similar daily ET values
for interrrow areas had previously been measured with a micro-Bowen Ratio energy balance system
(MBR) [24], showing that the estimated ET values were reasonable. The authors also showed that the
interrow tall fescue increased ET compared to bare soil, and that the contribution of tall fescue to ET
was higher in the off season than during the growing season [24]. Note that ET measured with the
EC system was a shared signal of both, vines and tall fescue, as the EC footprint was greater than for
the MBRs.

The Landsat 7 EVI and LST were as well based on the reflectance of both, vines and grass at
a resolution of 30 × 30 m. The LST was best correlated with Tcr and Tcir (Table 2), probably owing
to the higher IRT footprint measuring a combined signal of interrow, soil, and vines. Significant
relationships with Landsat brightness temperature and IRT sensor measurements [42], and Landsat
LST and soil temperature [43] had previously been reported. The ET values presented were specific to
the local environment as well as vineyard management (as described by LST, EVI, and EC derived
data), and any upscaling approaches for other systems may need additional adjustments.
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The VWC at 6 cm soil depth was mostly above the wilting point of 0.27 m3 m−3 during the
study period [44], especially under tall fescue, which would indicate no severe water-stress soil
conditions. Yet, CWSI values were relatively high, an indicator that water-stress occurred, at least
during high-radiation time periods during midday. In a Mediterranean vineyard CWSI values from
0.45−0.65 were reported, which was lower than in this study [12]. The authors also found a positive
relation between yield parameters and CWSI, the higher the CWSI the higher the berry weight.
Assuming a similar yield response, mid-season CWSI would indicate water stress levels that would
benefit yield but would be too high at the onset of the growing season, when water stress is not
beneficial. Yet, yield also depends on berry and cluster number, and other factors such as trimming
can further influence yield. Thus, further analysis with a larger dataset including yield data would
be needed to confirm this relationship for our study. The linear relationship between ET and CWSIv

would indicate the effect of evaporative cooling on Tc (Equation 1), and similar relationships have
previously been reported for other agro-ecosystems [45]. Yet, CWSI was a weak predictor of ET
compared to EVI, Ta, LST, or VPD in this study. The footprint of EC derived ET was greater than
IRT-measured Tc. In addition, the CWSI was calculated for midday time periods on days with high
net radiation, that is periods of maximum water stress. This may explain the weak relationship with
EC-measured daily ET values.

In a previous study, EVI and Ta were used as substitutes for kc and ET0 to estimate ET from
riparian vegetation [14]. In this study, ETTa showed good agreement with measured ET, demonstrating
that EVI and Ta can be used to estimate ET. However, the best ET estimates were achieved with VPD as
the independent variable. [14] found a sigmoidal relationship with Ta and an exponential relationship
with EVI. This was not the case in this study, where a linear relationship was used. There was no
upper asymptote in the ET-Ta relationship, i.e., there was still an ET response even at maximum Ta.
However, this may not be the case for exceptionally dry and hot years, where the model presented
may overestimate ET.

Estimating ETTa requires only a point measurement of Ta and EVI maps. Yet, higher accuracy
(i.e., lowest RMSE) was achieved with VPD as the independent variable, however, this would require
two measurements, Ta and rH or water vapor density. ETTa and ETVPD estimation assumed that Ta
and rH did not substantially change within the vineyard. However, even on smaller scales (field-level)
we found substantial variation in LST, and it may be recommended to use satellite-derived LST
for ET upscaling [3,4]. The drawback using Landsat VI and LST products was that Landsat had a
16-day overpass-period, and cloud cover could impact the image quality. Data fusion approaches
or other interpolation methods may then be needed to generate datasets in shorter time periods [3].
Despite these caveats, it was possible to accurately upscale ET for the whole vineyard with these
parsimonious models.
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