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Abstract: Agricultural scientists face the dual challenge of breeding input-responsive, widely
adoptable and climate-resilient varieties of crop plants and developing such varieties at a faster
pace. Integrating the gains of genomics with modern-day phenomics will lead to increased breeding
efficiency which in turn offers great promise to develop such varieties rapidly. Plant phenotyping
techniques have impressively evolved during the last two decades. The low-cost, automated and
semi-automated methods for data acquisition, storage and analysis are now available which allow
precise quantitative analysis of plant structure and function; and genetic dissection of complex traits.
Appropriate plant types can now be quickly developed that respond favorably to low input and
resource-limited environments and address the challenges of subsistence agriculture. The present
review focuses on the need of systematic, rapid, minimal invasive and low-cost plant phenotyping.
It also discusses its evolution to modern day high throughput phenotyping (HTP), traits amenable to
HTP, integration of HTP with genomics and the scope of utilizing these tools for crop improvement.

Keywords: adaptive and evolutionary traits; analysis pipelines; breeding efficiency; phenotyping
bottleneck; phenotyping platforms; resource use efficiency

1. Introduction

The world population is expected to grow to 8.30 billion by the end of 2030 and surpass 9 billion
by the end of 2050. Meeting the food, energy, and water demands of this population and of the
livestock, including cattle, poultry, piggery, etc. which indirectly support it is a daunting task for
the farmers, scientists and policymakers. To feed the world population, the crop yields are required
to grow at an annual rate of 2.4%, while the current growth rate is lagging at 1.3%. The yields are
stagnating in up to 40% of the area under cereal cultivation globally [1]. This targeted growth rate of
crop yield needs to be achieved when global agriculture is already encountering climatic changes such
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as an increase in seasonal temperatures at all latitudes, recurring droughts, an increase in atmospheric
carbon dioxide concentration and predicted changes in rainfall patterns [2]. Further, changes in the
disease and insect-pest scenario and a shift in the prevalence of biotic and abiotic stresses among
regions and production systems also pose a serious threat to agricultural production. Therefore,
addressing these challenges requires the development of ‘climate-resilient varieties of crop plants [3,4]
by connecting genotypes with phenotypes so that the fullest potential of a genotype can be realized
in given environments. The application of genomics in agriculture can be made more efficient and
meaningful by emphasizing upon the usage of phenotyping/phenomics in crop plants [5].

Farmers and plant breeders have been selecting the best genotypes based upon their phenotype
for a very long time. However, the traditional phenotyping methods deal with either one or few
specific plant characteristics at a given time and do not allow a thorough functional analysis of
constituent traits linking genotype with the phenotype. Furthermore, the invasive, labor-dependent
and time-intensive nature of phenotyping for many traits make measuring these traits in segregating
generations difficult, thereby, delaying selection to later generation and decreasing the breeding
efficiency. In plant breeding, field experiments at multiple locations are indispensable to evaluate
the adaptability of new candidate genotypes and to examine the pattern of genotype × environment
interaction [6]. Plant phenotyping needs to generate high-quality quantitative data on the dynamic
response of a genotype to the environment to adapt to the needs of modern breeding. Increased
accuracy, precision, and throughput at all levels, while reducing costs and minimizing labor through
automation, remote sensing, data integration, and experimental design, is the trend in modern plant
phenotyping [7].

Many next generation and high throughput plant phenotyping platforms (HTPPs) were
developed [8] to measure trait values accurately and assess variation among individuals after
realizing the need for rapid and precise phenotyping of multiple traits. Consequently, HTPPs
enabled better approaches to address the relationship between traits, plant development, growth
and reproduction under various conditions [9,10]. The strides in plant phenotyping have been so
swift that high-throughput phenotyping using non-invasive technologies is now a rapidly advancing
field [11,12]. This is based on various imaging techniques to record plant structure, estimate biomass,
and analyze phenology, plant health, tissue water relations, transpiration, photosynthetic activity, and
others. The phenotyping systems can operate in a field setting or in a controlled environment, where
plants are automatically weighed and watered. Low-cost, automated and semi-automated methods for
data acquisition and analysis are now being developed [13] that cost effectively provide physiological
and morphological data. These HTPPs collect accurate observations using modern tools with high
precision and automation and allow simultaneous analysis of the massive generated data. This leads
to a better understanding of the whole phenome of the plant under a wide range of environmental
and growth conditions. This review focuses on the advancements in plant phenomics including the
high throughput phenotyping and its implications in increasing breeding efficiency and speeding up
cultivar development in crop plants.

2. Advent of Phenomics

The word ‘phenome’ indicates the phenotype of a plant as a whole [14]. It also refers to the
expression of the genome in a given environment [15]. At the same time, a phenotype encompasses
a set of traits that can be observed by direct inspection or by using analytical tools and can also be
described as an interaction between the genotype and the environment [16,17].

Plant phenotyping is an age-old practice as plants were selected based on physical observations
since time immemorial by the farmers and later by the plant breeders. The early humans used to look
out for the most attractive and nutritious fruits, seeds and tubers. This selection inadvertently helped
propagation of specific species and varieties. Gradually, it became a known practice for selecting the
best genotype after studying phenotypic expression in different environments. This eventually led to
the inadvertent selection of the best types and establishing them in local environments and using them
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in hybridization programs leading to the development of further improved genotypes [18,19] for traits
of human interest. However, phenotyping is far more tedious and time-consuming than genotyping
owing to the variations caused by environmental interactions and other changes [5]. The genotype,
the environment and their interactions (G × E) influence quantitative traits in a complex and dynamic
manner [20] and therefore each phenotype responds differentially to the given environment. During
the middle of the 20th century phenotyping was used by ecologists to study phenotypic plasticity. They
suggested the role of the genotype and environmental conditions in the expression of plant phenotypes
under which it develops [21,22]. Subsequently, developments in ecology concerning phenotyping led
to trait-based approaches, in which phenotypic characteristics of a broader range of different species
are evaluated, either in the field [23] or under laboratory conditions [24,25]. They were used to derive
different strategies by which the ecological niche of species could be described [24] and to analyze the
interdependence of various traits [26].

All recent developments in plant phenotyping are driven by the technological advancements in
imaging sensors, robotics and software pipelines for analysis of images and the data. Therefore, based
on the available technologies, phenotyping was classified into four groups [17]. RGB (red-blue-green)
imaging or laser triangulation for measuring size, morphology, architecture or growth of plants
and their canopies; thermal imaging to phenotype temperature and other indicators; spectral
reflectance/fluorescence of leaves, plants or canopies for investigation of their pigments and
biophysical/biochemical parameters; and studies of the root system to understand their architecture
and physiology. Plant phenomics uses a set of recordings and analytical tools for quantitative
measurement of several phenotypes, yielding high-dimensional phenotypic data of an organism.
The data recording and observation tools may be as simple as a scale to measure plant height or
pod length or as complex as a high throughput phenotyping platform (HTPP) using sensor-based
data capture, computerized automation, robotics, and a high-end informatics pipeline analyzing
high-resolution real-time data.

3. Phenotyping Bottlenecks

There has been impressive progress in molecular profiling and next-generation sequencing
technologies in crop plants in the past two decades leading to the deciphering of a multitude of
plant genomes besides development of numerous genomic resources and molecular technologies.
These resources have found numerous applications in crop science such as marker-assisted breeding,
association studies and genome-wide selection which may be deployed to increase the breeding
efficiency in crop plants. However, phenotyping techniques did not develop at a competitive pace to
connect genotypes with phenotypes. Integration of new molecular tools towards dissection of complex
quantitative traits has remained a major constraint due to our limited ability to phenotype the plants
accurately and efficiently. Therefore precise phenotyping under natural conditions is still a major
bottleneck in most of the varietal improvement programmes [7].

The quality of phenotyping data developed through experiments depends to a great extent on the
prevailing environmental conditions in which plants are grown [27]. However, regardless of the cost
and precision of a phenotyping platform, the field variation may increase the error, thereby masking
important genetic variation for key traits and reducing repeatability [28]. It has been observed that
natural field conditions for experimentation are often highly heterogeneous and there is little or almost
no control over the environment. Visual observations and manual recording of data further increase
the chance of errors and therefore increase the probability of identifying false positives. Greenhouse
conditions are also not ideal as they do not adequately imitate the natural field conditions [29] and offer
experimental bias due to biased effects of light and temperature gradients [30]. Moisture extraction
from the soil in the field is slower than in pot culture due to the limited container volume, leading to
faster depletion of soil moisture in pots [31]. Even in more ‘nature-like’ conditions such as net houses
or protected fields, plants are mostly grown in isolation in single pots or small plots as compared to a
field, where these are cultivated in larger plots or cluster, having border plants and a ‘closed’ canopy
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resulting in crucial differences in plant development [30]. In any case, most of the above situations,
how perfect they are, cannot be extrapolated in real field situations and most of the times these tend to
remain variable in one or the other environmental parameter as compared to the field.

Irregular monitoring of environmental and soil variables, especially at remote experimental places,
also aggravates the phenotypic bottleneck. Many times, a few stresses may also go unnoticed while
concentrating on the major stresses which are specifically targeted for evaluation. Therefore, one of the
strategies to address all the above issues can be to dramatically improve the phenotypic prediction
based on the genetic composition of lines or cultivars [32]. Keeping the above in view, the focus has now
shifted to a rapid and precise simulated phenotyping of traits on a large scale. As a result, non-invasive
imaging technologies are now being increasingly deployed for high-throughput phenotyping.

4. High-Precision Phenotyping and Automation

Connecting genotypes to phenotypes improves breeding and contributes to increased agricultural
production to satisfy the demand of a growing human population [33]. Traditional phenotyping needs
human efforts and tools are labor-intensive, time-consuming and mostly invasive. Human error and
high genotype × environment interaction make traditional phenotyping less efficient and sometimes
erroneous. Sensor technologies and algorithmic applications for automatic phenotyping overcome
the defects of manual techniques and provide a multi-trait assessment with automatic measurements
and save considerable time besides offering the advantages of non-destructive measurements, precise
observations, regular assessment, and direct storage.

Spectral reflectance of plant architecture has been extensively deployed for monitoring of many
complex traits. Field spectrometers (and spectroradiometers) are used to measure spectral reflectance
in ranges of 350–2500 nm [34]. The physiological changes of a crop canopy including constituent
parameters viz., chlorophyll content and photosynthetic capacity, plant water status, carotenoid
content, etc. can be measured using spectral reflectance. Likewise, grain yield has also been estimated
using spectral reflectance indices [35,36].

For precisely measuring plant features, digital imaging analysis has provided the most rapid
and used option in plant phenotyping till now. Digital images have several advantages such as easy
recording, transmission, and storage in a database. Spectral imaging provides spectral information
under disorganized outdoor conditions. Imaging technology can be best put to use to characterize
traits such as plant height as plant shape is well characterized by this method [35]. Digital photos
of the canopy and sides of plants are combined into a three-dimensional (3D) image in the imaging
system. However, converting images into quantifiable measurements is tedious and laborious. In such
a situation, specific algorithms can be deployed to gather and analyze a huge amount of data [37].
LiDAR (Light Detection and Ranging) has been successfully used to rapidly and easily measure
plant size. However, the resolution of this technique is low (in the cm range), hence, measuring a
single plant difficult [38]. Laser triangulation has emerged as an accurate and fast method to measure
plant size and determine plant architecture [39]. Plant photosynthetic activity is characterized by
chlorophyll fluorescence imaging while for plant roots and their architecture, magnetic resonance
imaging (MRI) has been deployed. MRI allows the imaging of 3D root geometry mimicking the real
soil-like situation. Near-Infrared Imaging (NIR) enables us to study in detail the watering status of
plants [40]. The calibration problem in watering status may be addressed through recently developed
sensors [41]. The temperature of the canopy of the field can be analyzed in a short period using thermal
imaging and reliable data can be produced in the field [42].

5. Phenotyping for Important Traits

While traditional phenotyping mostly focused on yield and yield-related traits, advanced
phenotyping options have now encouraged plant scientists to shift to phenotyping of adaptive and
evolutionary traits. The digital imaging systems and sensor technologies involving high-end sensors,
spectral imaging systems, robotics and automation, and high-algorithmic calculations have made it
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possible to evaluate a host of complex traits such as plant architecture; root growth and functions;
plant growing period; physiological traits; and many other quantitative parameters. The complexity
of quantitative and adaptive traits can now be well understood by evaluating related traits and their
response to changing environments.

5.1. Root Growth and Functions

Root systems are one of the most complex and vital plant structures that have an important role
in water and nutrient acquisition. Plant root system architecture (RSA) directly controls the plant
health and survival [43]. This is complemented by the spatial configuration of different types and ages
of roots emerging from a single plant [44]. Traditionally, roots were excavated, and soil cores were
washed for measurement of root traits to understand root architecture. This method was destructive,
making it impossible to study RSA in segregating generations. However, strengthening phenotyping
capabilities has led to a definite and increased focus on RSA and its development. This also provides
detailed insights into the genetic control of root growth [45]. Understanding the root phenes associated
with higher yields and increased stress tolerance would furnish definite objectives for breeders to
choose genotypes having better root phenotypes, which can be used as parents as well as to develop
breeding lines to proceed through the process of crop improvement. Identification of root traits linked
to improving the capacity of soil mining for nutrients and water would assist to increase yield under
water stress environment, which has been discussed in some earlier reviews [46,47].

The roots being highly dynamic below ground parts pose extreme difficulty in obtaining
information on the genetic control of RSA under variable and complex field conditions. Of late,
in situ non-destructive methods involving rhizotron (Figure 1), magnetic resonance, and computed
tomography have been developed to facilitate nondestructive spatial and temporal investigations into
root system grown in soil [48]. Rhizotron is an underground laboratory or a facility for viewing and
measuring underground parts of plants through transparent walls either placed against a continuous
native soil profile or of compartments isolated from the native profile and separated from each other.
These facilities allow an investigator simultaneous access to roots and shoots of plants growing in a
field-like environment [49]. The gellan gum growth systems with very high optical clarity facilitate
non-invasive two-dimensional (2-D) [50] and 3-D [51] imaging and temporal studies of plant root
systems. Using this system, Clark et al. [52] grew plants of two rice genotypes in a glass cylinder
containing transparent gellan gum, under sterile conditions. To image the plant roots, the gel-filled
cylinder was submerged in a rectangular glass-walled water-filled tank to minimize refraction, and then
it was imaged over as the root system (and plant) was rotated through 360◦, with 2D images taken
every 9◦ (40 images per 360◦ of rotation to image the plant roots). Image processing was done using
the RootReader 3D software for classification of root types and quantification of 27 different root traits.
Simulation and modeling studies linking rhizosphere and growth data help to link the predictive
and field studies. For investigating both static and dynamic 3D RSA characteristics of plant root
systems, the RSA phenotyping platform using the 3D imaging and RootReader 3D Reconstruction
and Analysis Software platform is a unique imaging and analysis platform. It helps in measuring root
traits with a high degree of spatial and temporal resolution and facilitates novel investigations into the
development of entire root systems or the selected components of the root systems [52]. RSA has been
successfully deployed for evaluating the sensitivity of a number of genotypes growing under varied
stress environments, such as in the case of tomato [53] and maize [54].
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Figure 1. (a–g). Root trait phenotyping of chickpea varieties by mini-rhizotron: Scanned root images
of five chickpea genotypes viz., RSG 888, Pusa 362, KWR 108, PG 96006 and PG 5. (b–f): Root profile
of genotypes RSG 888, Pusa 362, KWR 108, PG 96006 and PG 5 at different soil depths and densities
when grown in 1.5m long polyvinyl chloride (PVC) tube (20 cm diameter). The tubes were filled with
1:1 nutrient-rich mixture of cocopeat and soil and saturated to 20% moisture at initial level so that
full expression of roots can be attained. After 60 days of sowing, intact roots were extracted from
PVC tubes by washing with a flush of water and pictures were taken. (a,g): In-situ root profile of
chickpea contrasting genotypes RSG 888, and PG 96006 monitored at different time intervals using
mini-rhizotron. The genotype RSG 888 had high root density in the top soil (0–30 cm) while less density
was observed below 30cm. This genotype is well adapted to those water-limiting cooler environments
where the upper soil layer often gets saturated due to adequate dew precipitation. Genotype PG 96006
had less root density in the top soil (0–30 cm) but high root density beyond 30 cm. This genotype
adapts well in those water limiting environments where top layer quickly gets dried but adequate
moisture is available at the deeper level.

5.2. Seedling Vigour

Plant health, canopy development and biomass at any given point of time during development
depend upon the seed mass, time of germination and relative growth rate. Germination and seedling
establishment rates are crucial for plant production and for designing experimental protocols in
the lab [20]. While shoot phenotyping has received most phenotyping attention followed by root
phenotyping, systematic seed phenotyping has remained neglected. Traditional phenotyping for
seed-related traits mostly depended upon invasive or destructive methods. Rapid and simple analyses
of seed size and other geometric features are now possible using flatbed scanners and transmitted
light [55]. Automated phenotyping platforms for measuring early vigour based on RGB (Red, Green,
Blue) imaging have been reported, which allow for quantitative analyses of thousands of seeds
together [56]. As a result, seed mass and germination timings are now amenable to non-invasive,
automated and high-throughput phenotyping. NIR spectroscopy enables large scale studies on
seeds and allows the quantification of water, protein, oil, starch and other potential compounds [57].
Further, to dissect macroscopic traits, MRI and X-ray computerized tomography techniques can
be employed [58]. Thus, it is evident that substantial progress has been made in automation and
non-invasive phenotyping methodologies for seed and seedling vigor and considerable benefits have
been accrued in crops like maize [59].
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5.3. Plant Architecture

Plant height, number of branches, angle of branching and crop canopy are measurable traits that
evaluate plant architecture. In most of the plant phenotyping experiments, plant height is an important
trait to plant breeders, especially under natural field conditions, and is very often recognized as a
substitute for biomass [60]. Plant height is also known to dictate the response of a crop to lodging [61]
and water stress [62]. The traditional measurement of plant height using a ruler and measuring a
predefined sample size for each microplate is low throughput, cost- and labor intensive, and is also
prone to errors in the sampling. Advanced methods have now been developed either from LiDAR,
also known as laser scanning [63], ultrasonic sensors also known as sonar [64], or depth camera also
called time of flight camera [65], and RGB high-resolution imagery associated with structure from
motion algorithms [66].

Several manned or semi-autonomous GPS (Geo-Positioning System)-navigated vehicles have
also been developed very recently where vertically scanning LiDARs have been set up [66]. However,
owing to low cost and high versatility, RGB image-based retrieval of crop height remains the most
widely used approach [67]. The advances in sensors and improvements in computer performances
along with advances in algorithms have contributed to the recent success of such techniques [68].

5.4. Leaf Area and Senescence

Leaf area measurements are vital in terms of deciphering plant growth and development since all
green surfaces on plant relate to light interception and ultimately its photosynthetic activity [69]. While
traditionally leaf area was studied through drawings, photographing, blueprinting and planimeter,
the electronic leaf area meter is now being used increasingly. Nowadays state-of-the-art digital cameras
are deployed for high-quality imaging and analysis using the appropriate software. Leaf area is also
accessible to laser triangulation measurements [39]. It has been effectively used in screening for stress
tolerance in few crops such as rice [70], potato [71], mungbean [72], pigeon pea [73] and faba bean [74].

During senescence, chloroplasts differentiate into pigmented plastids and leave loose chlorophyll.
Leaf senescence assessment is usually made on the proportion of canopy; and green and non-green
surface. Traditionally, it has been done by visual assessment. A stay-green phenotype facilitates
crops to maintain green leaves for a longer duration post anthesis in comparison to senescent types,
likely enhancing the yield. In modern-day phenotyping spectral reflectance and visual imaging [75],
NMR [76] and Soil-Plant Analysis Development chlorophyll meter reading are being deployed for
phenotyping leaf senescence.

5.5. Leaf Water Potential

Leaf water potential of xylem indicates the water status of the plants, which is traditionally
measured through chamber pressure method [77]. Water potential can also be measured through spatial
thermal imaging and spatial analysis identifying canopy temperature. Near-infrared spectroscopy
(NIS) has also been used as a remote sensing study to predict plant water stress in grapevine [78]. Leaf
water potential has also been measured effectively with simple techniques such as a ground-based
camera in potato [79] where random plants were selected in plots to classify and isolate young leaves
from the older ones and convert the obtained images using principal component analysis. Leaf
water potential has been used as a screening trait for tolerance to drought in tomato [80], rice [70],
triticale [81].

5.6. Chlorophyll Content

The chlorophyll content has been reported to have a positive relationship with seed yield [82],
dry root biomass [83], tolerance to iron-deficiency chlorosis [84], nodulation and nitrogen fixation
status [85]. For measuring chlorophyll content, a handheld portable SPAD chlorophyll meter is a
popular device that has been used widely [86]. Of late, chlorophyll content can be quickly measured
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using a portable optical meter (absorbance of red light at 650 nm and infrared light at 940 nm) [36].
SPAD chlorophyll reading has been used as an effective tool for rapid assessment of relative chlorophyll
status in different crops, especially under stress conditions, including peanut [87], wheat [88],
sugarcane [89] and lentil [90]. Similarly, the efficiency of photosynthesis as a result of different
genes and environmental conditions, especially stress environments, can be successfully measured
using chlorophyll fluorescence which can be measured using hyper-spectral spectroradiometers [90].
These essentially optical methods can be readily implemented using narrow band [91] or hyperspectral
imaging [92]. Chlorophyll fluorescence reflects the photosynthetic ability of the plants which declines
under stress environments. Photosynthesis is highly sensitive to high temperature at the level of PS II
complex and flow of electrons through the thylakoid membrane. The dark or light-adapted leaves are
excited with a saturated light pulse to obtain different photosynthetic parameters like F0, Fm, Fv/Fm
(quantum yield), ETR (electron transport rate) and Qp and NPQ (photochemical and no-photochemical
quenching). The analog values are then converted to pixels and images to get the pictures of different
fluorescence parameters and used to assess the degree of damages occurred at particular stress.

Chlorophyll fluorescence imaging helps to dissect the genetics of photosynthesis at the different
levels of both plant physiology and development [93]. Therefore, it has been used as an effective
screening tool for stress tolerance, as in strawberry, mungbean, cotton, peanut and chickpea
(Figure 2). Due to the simplicity and effectiveness of measuring this trait, it is now being applied
successfully for different environmental stresses, and an excellent review is available on this technique
(Yadav et al. [94]).
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Figure 2. Chlorophyll fluorescence imaging of chickpea leaf for phenotyping heat tolerance. Here upper
half of the leaves were not heat treated while bottom halves were heat treated at 46 ◦C for 1 h. High
photosynthetic activity was detected by deep blue colour (higher quantum yield Fv/Fm) while orange,
yellow and green or complete black colour represented the diminishing photosynthetic activity. Treated
leaves were exposed to saturating light intensity for a fraction of second and depending upon the
extent of damage of the photosynthetic system, the emitted light wavelength changed and appeared in
different colours. Based on light emission, the probe captured and transformed into different numerical
values which were calibrated with different colour codes. The leaf samples 1 and 2 fall in the range of
heat sensitive ones as heat treatment completely damaged photosynthetic system either at Photosystem
II level or destroying thylakoid membrane restricting electron flow and consequently no images (black)
were detected. The leaf samples 3 and 4 were categorized as heat tolerant as they appeared yellow to
green in colour indicating lower photosynthesis but still active even after heat shock. The deep blue
colour (upper half of all leaves) represented high photosynthesis (non-stressed).
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5.7. Canopy Temperature

Canopy temperature has been considered as an indicator of plant water status and affects
many parameters simultaneously including stomatal conductance, photosynthesis activity, water-use
efficiency, transpiration rate, leaf area index, sink strength, vascular capacity and ultimately crop
yield [38]. Therefore, phenotyping of canopy temperature is now increasingly used to study
different parameters of stress tolerance in crop plants [95], and to explore plant–environment
interactions. Thermal infrared thermometers, as well as remote thermal imaging systems, are
non-invasive techniques of measuring canopy temperature which are now being routinely used
in plant phenotyping [96] (Figure 3). Thermal images are usually taken with a radiometric infrared
video camera. The canopy under phenotyping is observed and at the same time its cumulative
leaf water potential (LWP) is measured using pressure chamber along with its temperature which is
calculated from the images. Regression models have been developed between leaf temperature and
the respective leaf water potential. The LWP of any given canopy is predicted deploying the regression
model directly using the temperature of the thermal images according to the empirical formulation of
the crop water stress index (CWSI). Statistical analysis revealed that the relationship between CWSI
and LWP was more stable and reliable [42]. Wireless infrared thermometers [97] installed in air-borne
imaging systems allow screening of fields about 6000–9000 ft above the ground. This technique being
non-invasive is non-destructive, does not need contact with the plants and can be efficiently employed
for screening large populations under heat with or without drought stress. Canopy temperature to
indicate water status and many other parameters have been successfully used in crops plants including
maize [98]; cotton [99]; vineyard [100]; peach [101]; chickpea [102]; and wheat [96].
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5.8. Stomatal Conductance. 

Figure 3. Infra-red thermal imaging describes the canopy temperature. Here two pigeonpea contrasting
genotypes (a) AK 101 (drought sensitive) and (b) TGT 501(drought tolerant) have been used for imaging.
Lower canopy temperature is related to a high transpiration rate and could be due to high rooting
depth. The genotype (a) under drought is showing higher canopy temperature while the genotype (b)
is showing cooler canopy, hence more drought tolerant under low moisture condition. (Thermal scale
is shown with different colors and temperatures ranging between 27.8 to 38.3 ◦C).
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5.8. Stomatal Conductance

Stomatal conductance controls photosynthetic activity and growth of the plants and responds
rapidly to soil water content [103]. It also influences the leaf and plant canopy temperature as well as
water availability since the leaf temperature rises when the stomata close. Some transgenic studies
on tobacco have corroborated the role of stomatal conductance in drought and heat tolerance [104].
Porometer is a small handheld device which helps in the rapid measurement of stomatal conductance
in irrigated trials. Stomatal changes in field conditions, as well as canopy temperature, can also
be screened by infrared tomography [103]. Stomatal conductance has been used as a reliable and
useful screening technique for identifying genotypic variation in plants growing under varied stress
environments, for example, wheat [105], barley [106] for salt tolerance and cotton [107] for heat
tolerance. Stomatal conductance is linked to changes in leaf temperature, especially under heat and
drought stress, and can also be measured using infrared imaging [108], which is relatively easy and
convenient for screening a large number of genotypes for cooler leaves under stresses.

5.9. Pollen Traits

Pollen production is the most vulnerable developmental stage under heat stress and heat tolerance
in tomato, pepper, and many other fruit-bearing crops is expressed in the form of their increased
pollen viability. In the past, manual sampling and pollen staining or germination tests were required to
measure this trait [109,110]. Recently a chip-based pollen viability measurement device was developed,
allowing rapid, simple and accurate measurements [111].

5.10. Fruit Color

Fruit color is considered one of the most important traits with great commercial value in many
horticultural crops. Traditionally, fruit color was phenotyped visually, which most of the times led to
variable results. In a highly commercialized and agriculturally competitive world, computer-based
analysis pipelines use digital images of objects to produce very precise results. Specialized software
is now used to analyze fruit color and shapes. For example, ‘Tomato analyzer’ has been successfully
used to scan tomato color [112]. Yoshioka and Fukino (2009) [113] used a full flatbed scanner with a
black background to color phenotype melon using the color signature method.

6. Plant Phenotyping Platforms

The phenotyping platforms are located in growth chambers or greenhouses and are fully
automated facilities. These are equipped with automation, precise environmental control and remote
sensing facilities duly supported by sensors and robotics, to assess overall growth and development of
the plant [30]. Phenotyping systems can be either sensor-to-plant [114,115] or plant-to-sensor [116]
type. In the first type of platform, the plants occupy a fixed position in the plot and an imaging
and phenotyping setup moves to the plants to take measurements. In the second type of platform,
the plants are generally planted in pots and are moved to a platform or imaging station which then
takes measurements.

Most of the phenotyping platforms have been designed to work in a set of conditions and therefore
suit only to the specific type of plants and experiments. While phenotyping platforms were mostly
designed to undertake measurements on individual plants, most of the agronomically important traits
in crop plants are best expressed when these are grown in a population under the relevant edaphic and
environmental condition and therefore field-based phenotyping platforms invoke more interest from
the researchers. The initial platforms were vehicle mounted and proposed the deployment of sensors.
These included a cart based platform [117] with multiple ultrasonic sensors to surround a single row
of a crop, tractor or a harvester mounted reflectance sensors for collection of spectral data [118] and a
machine vision system to measure internode length [119]. However, these systems had a limitation
in measuring multiple traits. Later several platforms were developed which integrated sensors for
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leaf area index (LAI), crop canopy, height, normalized difference vegetation index (NDVI), multiple
spectral imaging and hyperspectral reflectance in hand as well as motor driver carts/tractors [120,121].
Nevertheless, these phenotyping systems also had one or the other limitation such as involvement
of manual labor, land clearance issues and less high throughput than required to keep pace with
developments in genotyping [30].

7. High Throughput Plant Phenotyping Platforms (HTPPS)

There are mainly two categories of high throughput plant phenotyping platforms (HTPPs):
Ground-based HTPPs that enable the data to be captured at plot level and aerial HTPPs which
encompass a very high level of automation and state-of-art precision and can cover larger plots
and even entire fields. Ground level HTPPs involve the use of carts, tractors or gantry mounted
sensors, while aerial HTTPs mostly deploy small airplanes, helicopters and unmanned aerial platforms
(UAPs) such as poly copters and drones. The recent alternatives to airplanes in aerial HTPPs include
‘phenotowers’ [122] and ‘blimps’ [123]. Few of such HTPPs have been deployed for phenotyping
several crop plants such as Arabidopsis [114,124], cotton [121], barley [8], maize [125], wheat [126,127],
rice [128], sorghum [8,129], etc. and most of these are run by large seed companies and advanced crop
research institutes around the world.

Some of the popular HTPPs are LemnaTec [130], Digital Phenotyping- KeyGene [131], The
international plant Phenomtyping Network [132], The Julich Plant Phenotyping Centre [133], LEPSE-
Montpellier Plant Phenotyping Platform [134], PPHD-INRA, Dijon [135], Phenopsis, Arabidopsis
Platform, INRA [135]; PhenoFab, Wageningen [136]; the Biotron, Canada (KeyGene + LemnaTec) [137];
The Australian Plant Phenomics Facility [138]. Table 1 describes the most popular HTPPS which are
currently used for precise phenotyping of crops while Table 2 summarizes popular software packages
used for advanced analysis of morphometric parameters captured using common HTPP tools.
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Table 1. Commonly used high throughput plant phenotyping platforms (HTPPs) across agricultural and model crops.

Name Target Plant Organ Parameters Description References

PHENOPSIS Leaf Plant growth parameters An automated platform for reproducible phenotyping of plant responses to soil
water deficit in Arabidopsis thaliana [114,139]

WIWAM Leaf Growth parameters Used to impose stress early during leaf development [140]

PHENOSCOPE Shoots Vegetative growth and
homogeneity

An integrated device, allowing a simultaneous culture of individual Arabidopsis
plants and high-throughput acquisition, storage, and analysis of quality phenotypes [141]

GROWSCREEN Leaf 3D surface area of leaf discs Platform to study plant leaf growth fluorescence and root architecture from seedling
under control conditions in Arabidopsis thaliana, barley and maize [142,143]

TraitMill Flowers, grains, etc. Growth and yield parameters Automated high resolution phenotypic platform, uniquely placed to identify genes
that improve the yield of cereals [144]

PlantScan Whole plant Vegetative growth parameters Automated high-resolution phenomic center providing non-invasive analysis of
plant structure, morphology and function in Gossypium, wheat and maize [145]

LemnaTec Leaf Growth and yield parameters Visualize and analyze 2D/3D non-destructive high-throughput imaging, monitor
plant growth and behavior under fully controlled conditions [146]

LeasyScan Leaf, whole plant Canopy traits Phenotyping for traits controlling plant water use with precision in pearl millet [147]

HRPF Whole plant Growth and yield parameters High-throughput rice phenotyping facility [128]

GlyPh
(self-construction) Whole plant Soil water content and growth

estimation
Low-cost platform for phenotyping plant growth and water use under a broad

range of conditions [148]

BreedVision Whole plant Growth and physiological
parameters

Measures various agronomic traits and leads to non-destructive phenotyping for
crop improvement and plant genetic studies [149]

PlantScreenTM Shoot
Chlorophyll fluorescence imaging

and non-imaging chlorophyll
fluorescence, growth parameters

Evaluates various parameters of chlorophyll fluorescence obtained from kinetic
chlorophyll fluorescence imaging [150]

OloPhen Whole plant Rosette area, growth and
survival rate

Suitable for analysis of rosette growth in multi-well plates, suitable to evaluate plant
stress tolerance. [124]

Color eye
(RBG scanner) Leaf Leaf greenness, lesions Data can be overlayed over laser triangulation data obtained by plant eye [151]

LabVIEW Canopy Growth parameters Low-cost, accurate, and high-throughput phenotyping system with
custom algorithms [126,127]

Shovelomics Root Root growth parameters Identification and selection of useful root architectural phenotypes for annual
legume or dicotyledonous crops. [152]
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Table 1. Cont.

Name Target Plant Organ Parameters Description References

Phenodyn/Phenoarch Leaf Leaf elongation rate Follows QTL-dependent daily patterns in maize lines under naturally fluctuating
conditions, located in INRA, France [153]

LemnaGrid Root and leaf Plant and root growth parameters Compares growth behaviors of different genotypes, discriminates plant root zone
water status [154]

Integrated
Analysis

Platform (IAP)
Leaf Plant leaf orientation

Provides user-friendly interfaces with highly adaptable core functions, supports
image data transfer from different acquisition environments and large-scale

image analysis
[155]

LAMINA Leaf Leaf parameters Tool for automated analysis of images of leaves, designed to provide classical
indicators of leaf structure [156]

Rosette Tracker Shoot Area, perimeter diameter stockiness Allows to simultaneously quantify plant growth, photosynthesis, and leaf
temperature-related parameters [157]

Leaf Analyser Leaf Leaf architecture Provides a high-throughput method to evaluate leaf shape variation in
higher-dimensional phenotypic space [158]

Self-construction Root Root growth parameters Algorithms allow the automatic extraction of many root traits in a
high-throughput fashion [159]

Phenovator Leaf Photosynthesis High-throughput phenotyping facility for photosynthesis developed at Wageningen
University and Research [91]



Agronomy 2019, 9, 126 14 of 25

Table 2. Non-exhaustive list of popular software packages used for advanced analysis of morphometric parameters captured using common HTP tools.

Name of the Software Target Plant Organ Parameters Description References

MATLAB Leaf Leaf architecture
Uses image processing algorithms for high-throughput analysis

of images for estimating phenotypes/traits associated with
tested plants

[127]

HTPheno Shoot Height, width and
shoot area

Analyzes colour images of plants and different phenotypical
parameters for each plant [8]

GiaRoots Root Morpho-geometric
parameters

Semi-automated software tool for high-throughput analysis of
root system images [160]

RootReader 3D Roots Root types and phenotypic
root traits

Imaging and software platform for HTP of 3-D root traits
during seedling development [52]

PhenoPhyte Leaf Leaf and plant growth
parameters

Tool to analyze the non-destructive imaging of plants can be
used in suboptimal imaging conditions also [161]

RootNav Root Root system architecture Image analysis tool for semi-automated quantification of
complex root system architecture in a range of plant species [162]

SmartGrain Seed Seed structure parameters
Software for high-throughput measurement of seed shape,

makes possible to distinguish between lines with small
differences in seed shape

[163]

SmartRoot Root Root system architecture
Operating system-independent freeware and relies on

cross-platform standards for communication with
data-analysis software

[164]

DART Root Root system architecture Uses human vision tracing to avoid analytical biases [165]

Tomato analyzer Fruit Fruit colour Analyzes tomato fruit colour [112]
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8. Connecting Genomics to Phenomics

Genome science has now rapidly moved beyond the model organisms and advanced the detailed
study in any living organism that has traits of interest. Genomes of many crop plants are now being
sequenced at much faster rates at drastically reduced costs and next-generation resequencing methods.
High-density single nucleotide polymorphism (SNP) genotyping is routinely applied to plants to
investigate genetic variation and support trait-driven efforts to clone and understand specific genes.
The phenotyping databases along with available genomic databases have made it feasible to dissect
the genetic architecture of complex trait besides helping to discover new genes/QTL, identification
of the function of a gene sequence and subsequently increase the genetic gain for traits having low
heritability [166]. Forward and reverse phenomics can enable us to harness the potentiality of genomic
resources [167].

Genomic tools made it possible to predict the function, location, nature, and interactions of genes.
However, precise prediction of genes and their exact functions require validation by phenotyping
using next-generation phenotyping tools. The precision of recording phenotyping data decides the
precision with which the relevant QTLs or chromosomal regions are identified, and their effects
are accurately estimated to establish the phenotype-genotype association [168]. The possibility to
assess both genotype and phenotype at a high level of detail provides an opportunity to dissect
complex, quantitative traits [93]. Precise phenotyping is of tremendous utility in crop genomics
and practical breeding. Most of the quantitative characters have low to moderate heritability, which
impairs the probability of detecting the presence of QTLs [169] thereby increasing Type II errors.
A large-scale phenotyping of a large population over the years and several locations decrease the
probability of Type II errors and increase the probability of detecting the QTLs. Likewise, genome-wide
selection (GWS) without the need for QTL identification relies heavily on the molecular profiling and
precise phenotyping of each progeny [170]. Simultaneous treatment of phenotypic data from multiple
environments provides a significant increase in statistical power of QTL detection and accuracy of
the estimates of QTL position and effect [171]. High-throughput phenomics platforms have been
used for genetic dissection leading to the discovery of genes/QTLs for several traits in crops like rice,
wheat, barley and mustard [172]. These techniques are being applied to screen sequenced mutation
populations to identify mutants with modified root system architecture [173].

Genomics and phenomis together have a potential to revolutionize the way new varieties are
bred in crop plants. Integration of these two branches of science has already been initiated and is
leaping forward due to large scale data generation by HTP and next-generation sequencing tools.
Quantitative trait locus (QTL) mapping is a widely used tool to unravel several quantitative traits
in crop plants. For example, popular QTL mapping populations such as random inbred lines (RILs)
and near isogenic lines (NILs) have been widely used to unravel genetic variation and information on
genes that contribute to variation in photosynthetic efficiency for a wide variety of species [174,175].
While new techniques to identify and exploit the genetic diversity within wild wheat relatives have
enabled plant breeders to tackle the challenges of additional food production, advances in phenomics
have unlocked rapid screening of populations for many traits of interest [176]. There are pieces of
evidence that genomics and marker assisted selection incorporated into breeding programs, have led
to near two-fold genetic gain as compared to standard phenotypic selection [177]. Even in so called
‘orphan crops’ likes food legumes, advancements have been made towards deployment of molecular
markers and phenotyping techniques for introgression of disease resistance genes in chickpea [178,179].
Due to a drastic reduction in cost and efficiency of obtaining genomic information on large numbers
of individuals as compared to collecting the phenotyping data over years and environment, the
breeding community has developed genomic selection for predicting phenotypes [180,181]. Phenomics
will certainly contribute to genetic improvement through genomic selection [29]. Breeders are now
adopting genomic selection strategy, particularly for complex traits to accomplish their goals [182].
Precise phenotyping data of a trait in a training population allows geneticists/breeders to dissect the
complex traits into genotype, phenotype and the environment contributions.
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9. Summary and Conclusions

Precise plant phenotyping using next-generation HTPPs has significantly improved our
understanding of plant growth and development, the response of genotypes towards changing
environments, designing newer plant types and ultimately leading to the development of better
plants addressing the constraints of phenotyping bottleneck.

The vast amount of genomic resources developed in a plant species can now be linked with its
phenotypes using the modern HTP approaches available through automated phenotyping platforms.
Several public and private funded phenomics projects are currently underway and evidently, a large
amount of money is invested in such projects which need to be amply justified by the development
of large scale high-quality phenotypic data. Success of such phenomics projects will depend upon
several factors including the species; population and traits used for phenotyping; the degree of genetic
diversity; the phenotypic assays performed and methods of collection; storage and interpretation of
data; and the extent to which the generated data is available in the public domain and preserved for
future use. Likewise, the involvement of a multi-disciplinary team comprising biologists, engineers,
and statisticians will increase our competitiveness in generating the best possible quality data and
utilizing it in multifarious ways. Analysis of a large amount of data requires user-friendly supporting
platforms [164]. The establishment of International Phenotyping Network in setting up standards,
indexing, and searchable features would pave the way for efficient management of the stored data.
Simulation studies can play an important role in understanding the dynamic response of plants to
changing environments as these have the potential for optimizing sensor acquisition and evaluation of
the robustness of algorithms prior to field measurements. The idea of virtual phenotyping has already
been deployed in clinical therapy [183], in which the genetic information is transformed into the most
likely associated phenotype and also finds great promise in crop plants. In plants also, the option
of integrated simulation environments–such as Robotics Operating System (ROS 2013)–have been
applied for simulating the data acquisition for different sensors in a field-like situation [184].

Plant phenotyping also encounters certain limitations or disadvantages such as high data
generation and processing costs, complex handling algorithms limiting practical application and lack
of efficient analysis pipelines. Unlike genotyping, many traits in plant phenotyping are inter-related
and therefore are dependent on each other. For example, canopy temperature is related to plant
water status and water use efficiency, stomatal conductance, transpiration rate, leaf area index, and
others. However, this trait itself is dependent on the developmental phase of the plant or crop, time
of the day and the season and therefore its measurement also affects the interpretation of the related
traits. The collection, storage, and retrieval of vast amounts of phenotyping data isstill a challenge
irrespective of the method applied for phenotyping. Integration of data from different users and
different phenotyping platforms poses an additional challenge to utilize such data generated and
therefore needs attention.

Since phenomics uses several types of sensors simultaneously, systematic data acquisition is
crucial from the beginning of experiments to develop efficient input data for interpretation of crop
properties. Keeping in view the importance of seed in early plant establishment, plant stand and
biomass, analysis of seed-related traits and root system architecture are likely to gain more impetus,
especially in high-resolution phenotyping. Although phenotyping has mostly been applied to cereals
and other major field crops, food legumes, forage and turf species offer a vast potential to determine
their response to dynamic environments and therefore non-invasive phenotyping methodologies hold
great promise in these species. Next-generation phenotyping is an emerging discipline and if properly
integrated with genomics will be crucial in quantifying plant growth and development in real time as
well as metabolic pathways governing these processes. Virtual phenotyping is now emerging as an
important tool to reduce the complexity of sensor-based high throughput phenotyping. Extrapolation
of the experimental setup before establishing field trials will further improve our efficiency in designing
climate-resilient genotypes.
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104. Macková, H.; Hronková, M.; Dobrá, J.; Turečková, V.; Novák, O.; Lubovská, Z.; Motyka, V.; Haisel, D.;
Hájek, T.; Prášil, I.T.; et al. Enhanced drought and heat stress tolerance of tobacco plants with ectopically
enhanced cytokinin oxidase/dehydrogenase gene expression. J. Exp. Bot. 2013, 64, 2805–2815. [CrossRef]
[PubMed]

105. Rahnama, A.; James, R.A.; Poustini, K.; Munns, R. Stomatal conductance as a screen for osmotic stress
tolerance in durum wheat growing in saline soil. Funct. Plant Biol. 2010, 37, 255–263. [CrossRef]

http://dx.doi.org/10.1016/j.compag.2010.11.003
http://dx.doi.org/10.4141/cjps91-070
http://dx.doi.org/10.4161/psb.24564
http://www.ncbi.nlm.nih.gov/pubmed/23603954
http://dx.doi.org/10.3923/ajps.2010.368.374
http://dx.doi.org/10.3389/fpls.2017.00744
http://www.ncbi.nlm.nih.gov/pubmed/28579994
http://dx.doi.org/10.1186/s13007-016-0113-y
http://www.ncbi.nlm.nih.gov/pubmed/26884806
http://dx.doi.org/10.1104/pp.16.01447
http://www.ncbi.nlm.nih.gov/pubmed/28049858
http://www.ncbi.nlm.nih.gov/pubmed/30548574
http://dx.doi.org/10.1093/jxb/ert029
http://www.ncbi.nlm.nih.gov/pubmed/23599272
http://dx.doi.org/10.3389/fpls.2016.01808
http://www.ncbi.nlm.nih.gov/pubmed/27999580
http://dx.doi.org/10.1016/j.compag.2010.12.017
http://dx.doi.org/10.1111/j.1439-037X.2012.00537.x
http://dx.doi.org/10.1007/s11119-009-9111-7
http://dx.doi.org/10.1016/j.agwat.2010.06.014
http://dx.doi.org/10.1093/jxb/erq199
http://www.ncbi.nlm.nih.gov/pubmed/20605897
http://dx.doi.org/10.1093/jxb/ert131
http://www.ncbi.nlm.nih.gov/pubmed/23669573
http://dx.doi.org/10.1071/FP09148


Agronomy 2019, 9, 126 22 of 25

106. Jiang, Q.; Roche, D.; Monaco, T.; Hole, D. Stomatal conductance is a key parameter to assess limitations to
photosynthesis and growth potential in barley genotypes. Plant Biol. (Stuttg.) 2006, 8, 515–521. [CrossRef]
[PubMed]

107. Rahman, H.; Murtaza, N.; Shah, K.; Qayyum, A.; Ullah, I.; Malik, W. Genetic variation for stomatal
conductance in upland cotton as influenced by heat-stressed and non-stressed growing regimes. Acta Agron.
Hungarica 2008, 56, 11–19. [CrossRef]

108. Torres-Ruiz, J.M.; Diaz-Espejo, A.; Perez-Martin, A.; Hernández-Santana, V. Role of hydraulic and chemical
signals in leaves, stems and roots in the stomatal behaviour of olive trees under water stress and recovery
conditions. Tree Physiol. 2015, 35, 415–424. [CrossRef] [PubMed]

109. Heslop-Harrison, J.; Heslop-Harrison, Y.; Shivanna, K.R. The evaluation of pollen quality, and a further
appraisal of the fluorochromatic (FCR) test procedure. Theor. Appl. Genet. 1984, 67, 367–375. [CrossRef]
[PubMed]

110. Pressman, E.; Peet, M.M.; Pharr, D.M. The effect of heat stress on tomato pollen characteristics is associated
with changes in carbohydrate concentration in the developing anthers. Ann. Bot. 2002, 90, 631–636.
[CrossRef] [PubMed]

111. Heidmann, I.; Schade-Kampmann, G.; Lambalk, J.; Ottiger, M.; Di Berardino, M. Impedance flow cytometry:
A novel technique in pollen analysis. PLoS ONE 2016, 11, e0165531. [CrossRef] [PubMed]

112. Gonzalo, M.; Brewer, M.; Anderson, C.; Sullivan, D.; Gray, S.; Knaap, E. Tomato fruit shape analysis using
morphometric and morphology attributes implemented in tomato analyzer software program. J. Am. Soc.
Hortic. Sci. 2009, 134, 77–87. [CrossRef]

113. Yoshioka, Y.; Fukino, N. Image-based phenotyping: Use of colour signature in evaluation of melon fruit
colour. Euphytica 2009, 171, 409. [CrossRef]

114. Granier, C.; Aguirrezabal, L.; Chenu, K.; Cookson, S.J.; Dauzat, M.; Hamard, P.; Thioux, J.-J.; Rolland, G.;
Bouchier-Combaud, S.; Lebaudy, A.; et al. PHENOPSIS, an automated platform for reproducible phenotyping
of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession
with low sensitivity to soil water deficit. New Phytol. 2006, 169, 623–635. [CrossRef] [PubMed]

115. Harbinson, J.; Prinzenberg, A.E.; Kruijer, W.; Aarts, M.G.M. High throughput screening with chlorophyll
fluorescence imaging and its use in crop improvement. Curr. Opin. Biotechnol. 2012, 23, 221–226. [CrossRef]
[PubMed]

116. Deikman, J.; Petracek, M.; Heard, J.E. Drought tolerance through biotechnology: Improving translation from
the laboratory to farmers’ fields. Curr. Opin. Biotechnol. 2012, 23, 243–250. [CrossRef] [PubMed]

117. Ruixiu, S.; Wilkerson, J.B.; Wilhelm, L.R.; Tompkins, F.D. A microcomputer-based morphometer for bush-type
plants. Comput. Electron. Agric. 1989, 4, 43–58. [CrossRef]

118. Montes, J.M.; Melchinger, A.E.; Reif, J.C. Novel throughput phenotyping platforms in plant genetic studies.
Trends Plant Sci. 2007, 12, 433–436. [CrossRef] [PubMed]

119. Mccarthy, C.; Hancock, N.; Raine, S. Apparatus and infield evaluations of a prototype machine vision system
for cotton plant internode length measurement. J. Cotton Sci. 2010, 14, 221–232.

120. White, J.W.; Conley, M.M. A Flexible, Low-Cost Cart for Proximal Sensing. Crop Sci. 2013, 53, 1646–1649.
[CrossRef]

121. Andrade-Sanchez, P.; Gore, M.A.; Heun, J.T.; Thorp, K.R.; Carmo-Silva, A.E.; French, A.N.; Salvucci, M.E.;
White, J.W. Development and evaluation of a field-based high-throughput phenotyping platform. Funct. Plant
Biol. 2013, 41, 68–79. [CrossRef]

122. Rascher, U.; Blossfeld, S.; Fiorani, F.; Jahnke, S.; Jansen, M.; Kuhn, A.; Matsubara, S.; Märtin, L.L.;
Merchant, A.; Metzner, R.; et al. Non-invasive approaches for phenotyping of enhanced performance
traits in bean. Funct. Plant Biol. 2011, 38, 968–983. [CrossRef]

123. Losos, J.B.; Arnold, S.J.; Bejerano, G.; Brodie, E.D., III; Hibbett, D.; Hoekstra, H.E.; Mindell, D.P.; Monteiro, A.;
Moritz, C.; Orr, H.A.; et al. Evolutionary biology for the 21st century. PLoS Biol. 2013, 11, e1001466. [CrossRef]
[PubMed]

124. De Diego, N.; Fürst, T.; Humplík, J.F.; Ugena, L.; Podlešáková, K.; Spíchal, L. An automated method for
high-throughput screening of arabidopsis rosette growth in multi-well plates and its validation in stress
conditions. Front. Plant Sci. 2017, 8, 1702. [CrossRef] [PubMed]

125. Trachsel, S.; Kaeppler, S.M.; Brown, K.M.; Lynch, J.P. Shovelomics: High throughput phenotyping of maize
(Zea mays L.) root architecture in the field. Plant Soil 2011, 341, 75–87. [CrossRef]

http://dx.doi.org/10.1055/s-2006-923964
http://www.ncbi.nlm.nih.gov/pubmed/16906488
http://dx.doi.org/10.1556/AAgr.56.2008.1.2
http://dx.doi.org/10.1093/treephys/tpu055
http://www.ncbi.nlm.nih.gov/pubmed/25030936
http://dx.doi.org/10.1007/BF00272876
http://www.ncbi.nlm.nih.gov/pubmed/24258660
http://dx.doi.org/10.1093/aob/mcf240
http://www.ncbi.nlm.nih.gov/pubmed/12466104
http://dx.doi.org/10.1371/journal.pone.0165531
http://www.ncbi.nlm.nih.gov/pubmed/27832091
http://dx.doi.org/10.21273/JASHS.134.1.77
http://dx.doi.org/10.1007/s10681-009-0071-9
http://dx.doi.org/10.1111/j.1469-8137.2005.01609.x
http://www.ncbi.nlm.nih.gov/pubmed/16411964
http://dx.doi.org/10.1016/j.copbio.2011.10.006
http://www.ncbi.nlm.nih.gov/pubmed/22054643
http://dx.doi.org/10.1016/j.copbio.2011.11.003
http://www.ncbi.nlm.nih.gov/pubmed/22154468
http://dx.doi.org/10.1016/0168-1699(89)90013-6
http://dx.doi.org/10.1016/j.tplants.2007.08.006
http://www.ncbi.nlm.nih.gov/pubmed/17719833
http://dx.doi.org/10.2135/cropsci2013.01.0054
http://dx.doi.org/10.1071/FP13126
http://dx.doi.org/10.1071/FP11164
http://dx.doi.org/10.1371/journal.pbio.1001466
http://www.ncbi.nlm.nih.gov/pubmed/23319892
http://dx.doi.org/10.3389/fpls.2017.01702
http://www.ncbi.nlm.nih.gov/pubmed/29046681
http://dx.doi.org/10.1007/s11104-010-0623-8


Agronomy 2019, 9, 126 23 of 25

126. Bai, G.; Ge, Y.; Hussain, W.; Baenziger, P.S.; Graef, G. A multi-sensor system for high throughput field
phenotyping in soybean and wheat breeding. Comput. Electron. Agric. 2016, 128, 181–192. [CrossRef]

127. Zhang, C.; Pumphrey, M.; Zhou, J.; Gao, H.; Zhang, Q.; Sankaran, S. Development of Automated
High-Throughput Phenotyping System for Controlled Environment Studies. In Proceedings of the ASABE
Annual International Meeting, Spokane, WA, USA, 16–19 July 2017. [CrossRef]

128. Yang, Y. Early detection of rice blast (Pyricularia) at seedling stage in Nipponbare rice variety using
near-infrared hyper-spectral image. African J. Biotechnol. 2012, 11, 6809–6817. [CrossRef]

129. Golzarian, M.R.; Frick, R.A.; Rajendran, K.; Berger, B.; Roy, S.; Tester, M.; Lun, D.S. Accurate inference of
shoot biomass from high-throughput images of cereal plants. Plant Methods 2011, 7, 2. [CrossRef] [PubMed]

130. LemnaTec. Available online: http://www.lemnatec.com/plant-phenotyping/ (accessed on 5 March 2019).
131. KeyGene The Digital Phenotype. Available online: http://www.keygene.com/products-tech/digital-

phenotyping/ (accessed on 5 March 2019).
132. International Plant Phenotyping Network. Available online: https://www.plant-phenotyping.org/ (accessed

on 5 March 2019).
133. Jülich Plant Phenotyping Center. Available online: http://www.fz-juelich.de/ibg/ibg-2/EN/_organisation/

JPPC/JPPC_node.html (accessed on 5 March 2019).
134. Montpellier Plant Phenotyping Platform. Available online: https://www6.montpellier.inra.fr/lepse/

Presentation-generale/Montpellier-Plant-Phenotyping-Platform-M3P (accessed on 5 March 2019).
135. PPHD-INRA Dijon. Available online: http://www.dijon.inra.fr/Plateformes-Dispositifs/Plateformes-

techniques/PPHD (accessed on 5 March 2019).
136. La plate-forme PHENOPSIS. Available online: http://bioweb.supagro.inra.fr/phenopsis/InfoBDD.php

(accessed on 5 March 2019).
137. PhenoFab. Available online: https://www.keygene.com/technology/2-the-digital-phenotype/ (accessed

on 5 March 2019).
138. Biotron. Available online: https://www.uwo.ca/sci/research/biotron/ (accessed on 5 March 2019).
139. Bresson, J.; Vasseur, F.; Dauzat, M.; Labadie, M.; Varoquaux, F.; Touraine, B.; Vile, D. Interact to survive:

Phyllobacterium brassicacearum improves Arabidopsis tolerance to severe water deficit and growth recovery.
PLoS ONE 2014, 9, e107607. [CrossRef] [PubMed]

140. Clauw, P.; Coppens, F.; De Beuf, K.; Dhondt, S.; Van Daele, T.; Maleux, K.; Storme, V.; Clement, L.;
Gonzalez, N.; Inzé, D. Leaf responses to mild drought stress in natural variants of Arabidopsis. Plant Physiol.
2015, 167, 800–816. [CrossRef] [PubMed]

141. Tisné, S.; Serrand, Y.; Bach, L.; Gilbault, E.; Ben Ameur, R.; Balasse, H.; Voisin, R.; Bouchez, D.;
Durand-Tardif, M.; Guerche, P.; et al. Phenoscope: An automated large-scale phenotyping platform offering
high spatial homogeneity. Plant J. 2013, 74, 534–544. [CrossRef] [PubMed]

142. Jansen, M.; Gilmer, F.; Biskup, B.; Nagel, K.; Rascher, U.; Fischbach, A.; Briem, S.; Dreissen, G.;
Tittmann, S.; Braun, S.; et al. Simultaneous phenotyping of leaf growth and chlorophyll fluorescence
via GROWSCREENFLUORO allows detection of stress tolerance in. Funct. Plant Biol. 2009, 36, 902–914.
[CrossRef]

143. Nagel, K.; Putz, A.; Gilmer, F.; Kathrin, H.; Fischbach, A.; Pfeifer, J.; Marc, F.; Blossfeld, S.; Michaela, E.;
Dimaki, C.; et al. GROWSCREEN-Rhizo is a novel phenotyping robot enabling simultaneous measurements
of root and shoot growth for plants grown in soil-filled rhizotrons. Funct. Plant Biol. 2012, 39, 891. [CrossRef]

144. Reuzeau, C.; Pen, J.; Frankard, V.; De Wolf, J.; Peerbolte, R.; Broekaert, W.; Van Camp, W. TraitMill:
A Discovery Engine for Identifying Yield-enhancement Genes in Cereals. Plant Gene Trait 2010, 1. [CrossRef]

145. Sirault, X.; Fripp, J.; Paproki, A.; Kuffner, P.; Nguyen, C.; Li, R.; Daily, H.; Guo, J.; Furbank, R. PlantScan:
A three-dimensional phenotyping platform for capturing the structural dynamic of plant development
and growth. In Proceedings of the 7th International Conference on Functional-Structural Plant Models,
Saariselkä, Finland, 9–14 June 2013.

146. Neumann, K.; Klukas, C.; Friedel, S.; Rischbeck, P.; Chen, D.; Entzian, A.; Stein, N.; Graner, A.;
Kilian, B. Dissecting spatiotemporal biomass accumulation in barley under different water regimes using
high-throughput image analysis. Plant. Cell Environ. 2015, 38, 1980–1996. [CrossRef] [PubMed]

147. Vadez, V.; Kholová, J.; Hummel, G.; Zhokhavets, U.; Gupta, S.K.; Hash, C.T. LeasyScan: A novel concept
combining 3D imaging and lysimetry for high-throughput phenotyping of traits controlling plant water
budget. J. Exp. Bot. 2015, 66, 5581–5593. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.compag.2016.08.021
http://dx.doi.org/10.13031/aim.201700581
http://dx.doi.org/10.5897/AJB11.3269
http://dx.doi.org/10.1186/1746-4811-7-2
http://www.ncbi.nlm.nih.gov/pubmed/21284859
http://www.lemnatec.com/plant-phenotyping/
http://www.keygene.com/products-tech/digital-phenotyping/
http://www.keygene.com/products-tech/digital-phenotyping/
https://www.plant-phenotyping.org/
http://www.fz-juelich.de/ibg/ibg-2/EN/_organisation/JPPC/JPPC_node.html
http://www.fz-juelich.de/ibg/ibg-2/EN/_organisation/JPPC/JPPC_node.html
https://www6.montpellier.inra.fr/lepse/Presentation-generale/Montpellier-Plant-Phenotyping-Platform-M3P
https://www6.montpellier.inra.fr/lepse/Presentation-generale/Montpellier-Plant-Phenotyping-Platform-M3P
http://www.dijon.inra.fr/Plateformes-Dispositifs/Plateformes-techniques/PPHD
http://www.dijon.inra.fr/Plateformes-Dispositifs/Plateformes-techniques/PPHD
http://bioweb.supagro.inra.fr/phenopsis/InfoBDD.php
https://www.keygene.com/technology/2-the-digital-phenotype/
https://www.uwo.ca/sci/research/biotron/
http://dx.doi.org/10.1371/journal.pone.0107607
http://www.ncbi.nlm.nih.gov/pubmed/25226036
http://dx.doi.org/10.1104/pp.114.254284
http://www.ncbi.nlm.nih.gov/pubmed/25604532
http://dx.doi.org/10.1111/tpj.12131
http://www.ncbi.nlm.nih.gov/pubmed/23452317
http://dx.doi.org/10.1071/FP09095
http://dx.doi.org/10.1071/FP12023
http://dx.doi.org/10.5376/pgt.2010.01.0001
http://dx.doi.org/10.1111/pce.12516
http://www.ncbi.nlm.nih.gov/pubmed/25689277
http://dx.doi.org/10.1093/jxb/erv251
http://www.ncbi.nlm.nih.gov/pubmed/26034130


Agronomy 2019, 9, 126 24 of 25

148. Pereyra Irujo, G.; Gasco, E.D.; Peirone, L.; Aguirrezábal, L. GlyPh: A low-cost platform for phenotyping
plant growth and water use. Funct. Plant Biol. 2012, 39, 905. [CrossRef]

149. Busemeyer, L.; Mentrup, D.; Möller, K.; Wunder, E.; Alheit, K.; Hahn, V.; Maurer, P.H.; Reif, C.J.; Würschum, T.;
Müller, J.; et al. BreedVision — A multi-sensor platform for non-destructive field-based phenotyping in plant
breeding. Sensors 2013, 13, 2830–2847. [CrossRef] [PubMed]
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