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Abstract: An early and precise yield estimation in intensive managed grassland is mandatory for
economic management decisions. RGB (red, green, blue) cameras attached on an unmanned aerial
vehicle (UAV) represent a promising non-destructive technology for the assessment of crop traits
especially in large and remote areas. Photogrammetric structure from motion (SfM) processing
of the UAV-based images into point clouds can be used to generate 3D spatial information about
the canopy height (CH). The aim of this study was the development of prediction models for dry
matter yield (DMY) in temperate grassland based on CH data generated by UAV RGB imaging
over a whole growing season including four cuts. The multi-temporal study compared the remote
sensing technique with two conventional methods, i.e., destructive biomass sampling and ruler
height measurements in two legume-grass mixtures with red clover (Trifolium pratense L.) and
lucerne (Medicago sativa L.) in combination with Italian ryegrass (Lolium multiflorum Lam.). To cover
the full range of legume contribution occurring in a practical grassland, pure stands of legumes
and grasses contained in each mixture were also investigated. The results showed, that yield
prediction by SfM-based UAV RGB imaging provided similar accuracies across all treatments
(R2 = 0.59–0.81) as the ruler height measurements (R2 = 0.58–0.78). Furthermore, results of yield
prediction by UAV RGB imaging demonstrated an improved robustness when an increased CH
variability occurred due to extreme weather conditions. It became apparent that morphological
characteristics of clover-based canopies (R2 = 0.75) allow a better remotely sensed prediction of total
annual yield than for lucerne-grass mixtures (R2 = 0.64), and that these crop-specific models cannot
be easily transferred to other grassland types.

Keywords: grassland; yield prediction; canopy height; remote sensing; unmanned aerial vehicle;
RGB imaging; structure from motion

1. Introduction

Legume-grass mixtures with red clover (Trifolium pratense L.) and lucerne (Medicago sativa L.) in
combination with Italian ryegrass (Lolium multiflorum Lam.), grown for 1–3 years, play an important
role in crop rotations, particularly in organic farming in temperate European climates. Such crops
serve as green manure by fixing nitrogen or as feedstock for animals and biogas plants. These intensive
grasslands are harvested three to five times per year and, therefore, an early and precise yield estimation
is mandatory for management decisions and economic optimizations at the field and farm level [1].
An emerging and promising technology in grassland faming is remote sensing, and especially the use
of different sensors on unmanned aerial vehicles (UAV) show great potential for improving agricultural
use of grasslands [2,3].
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Destructive biomass sampling is considered to be the most accurate yield estimation method
but can also be considered as the most labor-intensive method [4]. Another approach for estimating
biomass in grasslands is the assessment of canopy height (CH), which was frequently found to be
positively correlated with crop biomass [5,6]. Traditional height measurements in grassland are often
conducted with a rising plate meter, determining the compressed sward height, or with a ruler
stick [7,8]. Furthermore, several portable technical devices for non-destructive biomass estimation
were developed in the recent years, which so far were not widely distributed in agricultural practice,
e.g., leaf area meter to asses leaf area index (LAI) [9], electronic capacitance meter, which measures
the difference of capacitance between air and biomass [1] and a reflectometer, which measures
intensity of spectral reflectance by light emitting diodes (LED) [10]. Biomass sampling, manual height
measurement and the above mentioned technical devices need a substantial number of repetitions in
combination with a spatially uniform distributions of the measurements to generate a reliable yield
estimation [11]. Therefore, much time and effort is required to receive reliable data especially on
large areas.

Sensors attached on UAVs are useful non-destructive tools for obtaining spatial information
from large and remote areas. There exist different sensor systems, such as LiDAR, ultrasound and
RGB (red, green, blue) imaging to collect spatial data for a rapid quantification of aboveground
biomass [3,12–14]. A UAV in combination with a consumer-grade digital camera for RGB imaging
represents a low-cost approach for estimating yield, which may be affordable und workable for farmers.
By photogrammetric structure from motion (SfM) processing of the UAV-based images into point
clouds, 3D spatial data can be easily generated. Forsmoo et al. [14] calculated in a grassland sward,
that for a plot of 8 m2 a CH assessment with a ruler needed 550 single height measurements to receive
the same accuracy as a SfM-based CH assessment based on UAV RGB imaging. Therefore, the high
spatial resolution makes UAV RGB imagery in combination with an SfM approach an interesting tool
for yield estimation in practical grassland farming.

SfM derived height measurement based on UAV RGB imaging was successfully used in
forestry [15], and, to a lower degree also in agricultural crops, such as wheat [6,16], barley [17],
maize [18,19] and vegetable crops [20]. All these studies found strong relationships between biomass
and RGB imaging in homogeneous crops. Contrary, grassland represents a mixed crop containing
legumes and grasses of several species. Additionally, species contribution and yield changes in the field
throughout the growing season and is affected by many factors, such as cutting intensity, soil features,
fertilization and climate conditions [21,22]. So far, only a few studies exist using SfM based on RGB
imaging in grassland. Cooper et al. [23] and Wallace et al. [13] compared height measurements in
permanent grasslands based on terrestrial SfM and terrestrial LiDAR and observed similar relationships
between these two methods and the grassland biomass. Van Iersel et al. [24] showed the potential of
modeling temporal dynamics of CH in a floodplain grassland and of classifying different vegetation
types (pixel size = 5 cm) with a consumer-grade camera attached on a UAV. Viljanen et al. [25] worked
in an intensive grassland with four harvest cuts and different nitrogen applications rates. The latter
used a high-resolution camera (pixel size = 1 cm) mounted on a UAV and combined CH with spectral
vegetation indices (VI), resulting in highly significant correlations with biomass. VIs from multi-
or hyperspectral sensors also show promising potential for qualitative and quantitative biomass
estimation; however extensive spectral calibration work is necessary for these technique [3].

To understand the spatial variability and dynamics in grasslands over the entire growing season
multi-temporal studies are needed. So far, no study using yield prediction models by SfM considered
different proportions of legumes (including pure legume and grass stands as well as legume-grass
mixtures), which frequently occur in practical grassland farming. The aim of this study is the
development of estimation models for dry matter yield (DMY) in mixed grassland by CH generated
by UAV RGB imaging over a whole growing season. The study compares this novel remote sensing
technique with ruler height measurements, an established conventional method and uses destructive
biomass sampling as a reference data. All measurements were conducted in two different legume-grass
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mixtures. To cover the wide range of legume contribution in practical grassland, pure stands of legumes
(100% legumes) and grasses (0% legumes) were investigated as well as their mixtures. The specific
objectives of this study were: (1) the assessment of CH by RGB imaging in two legumes-grass mixtures
over the whole growing season; (2) the comparison of prediction models based on an SfM approach
with a conventional measurement method; (3) the development of a yield prediction model containing
also pure stands of legumes and grasses; (4) assessment of the prediction accuracy for the total annual
DMY based on SfM including all harvest cuts during one complete growing season.

2. Materials and Methods

2.1. Experimental Site and Design

The study was carried out at the experimental farm in Neu-Eichenberg of the Universität Kassel
(51◦23’ N, 9◦54’ E, 227 m above sea level) in northern Hesse, Germany. The soil is a silty clay loam
with 3.6% sand, 73% silt, 23.4% clay and 2% humus. Summer barley was cultivated as a preceding
crop. The mean annual precipitation and daily temperature of the site is 728 mm and 8 ◦C, respectively
(Figure 1A,B).
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Figure 1. (A) Germany’s political map showing the location of Hesse; (B) North-Hesse’s political map
showing the location of the experimental site in Neu-Eichenberg; (C) Orthomosaic of the experimental
field showing the different plots on 7 August 2017, at the time of the third cut.

Field plots (1.5 m × 10 m) of clover-grass (CG) and lucerne-grass (LG) in mixtures as well as of
pure stands of legumes (L; 100% legumes) and grasses (G; 0% legumes) (Table 1) were sown in autumn
of 2016 in four randomized replicate blocks, giving a total of 24 plots (Figure 1C). All treatments
were sown with a total seed rate of 35 kg ha−1. CG contained 60% Lolium multiflorum, 30% Trifolium
pratense, 5% Trifolium hybridum L. and 5% Trifolium repens L., whereas LG included 40% Medicago sativa,
20% Festuca pratensis Huds., 15% Lolium perenne L., 10% Lolium multiflorum, 10% Trifolium pratense
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and 5% Phleum pretense L. Consequently, the treatments formed a set of heterogenous vegetation
which differed largely in their morphological and optical characteristics. As the experimental farm is
managed organically, no fertilizer or pesticides were applied.

Table 1. List of the treatments with functional groups, species and their ratio in the seed mixture of
each treatment.

Treatment Functional Group Species Ratio
(%)

Clover-grass mixture CG
Legumes (L)

Trifolium pratense
Trifolium hybridum

Trifolium repens

30
5
5

Grass (G) Lolium multiflorum 60

Lucerne-grass mixture LG

L Medicago sativa
Trifolium pratense

40
10

G

Festuca pratensis
Lolium perenne

Lolium multiflorum
Phleum pratense

20
15
10
5

Pure clover legumes LCG L from CG mixture
Trifolium pratense

Trifolium hybridum
Trifolium repens

75
12.5
12.5

Pure lucerne and clover legumes LLG L from LG mixture Medicago sativa
Trifolium pratense

80
20

Pure grass sward GCG G from CG mixture Lolium multiflorum 100

Pure grass sward GLG G from LG mixture

Festuca pratensis
Lolium perenne

Lolium multiflorum
Phleum pratense

40
30
20
10

CG = clover-grass; LG = lucerne-grass.

The total amount of rainfall (762 mm in 2017) was higher than the mean annual precipitation
(728 mm), though early summer was characterized by a severe drought. Precipitation for the first
cut (17 May 2017) revealed 66 mm compared to long-term average of 91 mm and for the second cut
(26 June 2017) 47 mm compared to long-term average of 95 mm. This drought caused an accelerated
maturation of the grasses with pronounced stem formation and little leaf growth especially in the
second cut.

2.2. RGB Remote Sensing and Data Acquisition

RGB images were taken with a low-cost quadrocopter (DJI Phantom 3 Advanced; Shenzhen,
China). The flight plan was done with autopilot by means of Pix4Dcapture software (App version
4.4.0, Pix4D SA, Lausanne, Switzerland). All missions were carried out in the morning to ensure equal
sun position (8:00–12:00 a.m.). RGB images were taken one day before every harvest (4 flights) and
during growth every second week (6 flights). A standard digital camera (DJI FC300S, DJI, Shenzhen,
China) was mounted on a gimble and had a f/2.8 lens with a 94◦ field of view and 12 megapixels.
For each mission, images with a forward and side overlap of 80% were taken in a grid pattern at
a constant flying height of 20 m, resulting in 300 to 400 individual images with a spatial ground
resolution between 7 and 8 mm per pixel. Seven wooden targets, painted black and white (10 × 10 cm,
cross-centered) and mounted on small tripods, were used as portable ground control points (GCPs) for
georeferencing the generated point clouds at each flight. The GCPs were evenly distributed and set up
into balance on the pathways between the experimental plots. The GPS (global positioning system)
coordinates were measured using a Leica RTK DGPS with a horizontal and vertical precision of 2 cm.
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Additionally, the whole experimental field was georeferenced once by recording the coordinates of the
corners of each plot.

Subsequent to each flight mission, manual height measurements (CHR) and destructive biomass
samples were taken. The mean grassland height per plot resulted from 50 randomly distributed
measurements, which were conducted with a ruler at a precision of 0.01 m. The height was defined as
the vertical distance from the soil surface to the highest point of the plant which touched the ruler [26].
Plots were harvested four times (17 May 2017, 26 June 2017, 8 August 2017, 9 October 2017) with a
Haldrup forage plot harvester at a stubble height of 5 cm and a cutting width of 1.50 m. Prior to harvest
two biomass samples for fresh and dry matter yield were taken manually in every plot on an area
of 50 × 50 cm each. To enrich the calibration database with data from less mature sward conditions
sub-samples were taken every second week during sward growth between 17 May 2017 and 9 October
2017 on an area of 25 × 25 cm in every plot (Table A1). To avoid sampling effects, sub-samples were
taken in the first 1.50 m of the plots, whereas the remaining plot area remained untouched during
growth. All biomass samples were dried at 105 ◦C to constant weight (~ 48 h), to determine dry matter
content and to calculate dry matter yield (DMY).

2.3. Data Processing and Analysis

Three-dimensional (3D) point clouds were generated from the RGB images for each dataset using
the SfM approach. The software Agisoft PhotoScan Professional (Agisoft LLC, St. Petersburg, Russia)
was used to calculate the digital surface model (DSM) from the RGB images. The SfM algorithm obtains
3D information from 2D images and converts the images automatically into a DSM. All processing
steps were executed separately for a better control, using uniform settings on a high-performance
computer (Figure 2).

Agronomy 2018, 8, x FOR PEER REVIEW  5 of 16 

 

Subsequent to each flight mission, manual height measurements (CHR) and destructive biomass 
samples were taken. The mean grassland height per plot resulted from 50 randomly distributed 
measurements, which were conducted with a ruler at a precision of 0.01 m. The height was defined 
as the vertical distance from the soil surface to the highest point of the plant which touched the ruler 
[26]. Plots were harvested four times (17 May 2017, 26 June 2017, 8 August 2017, 9 October 2017) with 
a Haldrup forage plot harvester at a stubble height of 5 cm and a cutting width of 1.50 m. Prior to 
harvest two biomass samples for fresh and dry matter yield were taken manually in every plot on an 
area of 50 × 50 cm each. To enrich the calibration database with data from less mature sward 
conditions sub-samples were taken every second week during sward growth between 17 May 2017 
and 9 October 2017 on an area of 25 × 25 cm in every plot (Table A1). To avoid sampling effects, sub-
samples were taken in the first 1.50 m of the plots, whereas the remaining plot area remained 
untouched during growth. All biomass samples were dried at 105 °C to constant weight (~ 48 h), to 
determine dry matter content and to calculate dry matter yield (DMY). 

2.3. Data Processing and Analysis 

Three-dimensional (3D) point clouds were generated from the RGB images for each dataset 
using the SfM approach. The software Agisoft PhotoScan Professional (Agisoft LLC, St. Petersburg, 
Russia) was used to calculate the digital surface model (DSM) from the RGB images. The SfM 
algorithm obtains 3D information from 2D images and converts the images automatically into a DSM. 
All processing steps were executed separately for a better control, using uniform settings on a high-
performance computer (Figure 2). 

 
Figure 2. Workflow of biomass sampling, manual and UAV-based structure from motion (SfM) height 
measurement. 

After importing a dataset, the overlapping images were aligned by internal image matching 
techniques and algorithms. Location and orientation of the individual images of the moving camera 
were automatically determined. The alignment was done with the accuracy setting “medium” and a 
key point limit of 40,000 and tie point limit of 4000. The output was a sparse point cloud containing 
a certain amount of paired multidimensional points of all images, which were linked together by 
identical features. 

Figure 2. Workflow of biomass sampling, manual and UAV-based structure from motion (SfM)
height measurement.

After importing a dataset, the overlapping images were aligned by internal image matching
techniques and algorithms. Location and orientation of the individual images of the moving camera
were automatically determined. The alignment was done with the accuracy setting “medium” and a
key point limit of 40,000 and tie point limit of 4000. The output was a sparse point cloud containing
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a certain amount of paired multidimensional points of all images, which were linked together by
identical features.

For the optimization step, the GPS coordinates of the GCPs were imported using the coordinate
system WSG 84. The sparse point cloud was georeferenced manually by determining three pictures
for each of the seven GCPs and placing the renumbered GCP marker on the cross center of the
targets. After that, the software estimated the positions of the GCP marker for the other images
automatically and, when needed, the markers were adjusted and placed manually. The spatial error of
the GCPs varied between 1 and 2 cm. Additional optimizing of the sparse cloud was done by enhancing
the camera lens parameters. With these optimized settings, the image alignment, the location and
orientation of images and, eventually, the sparse point cloud was updated and corrected.

In the next step the georeferenced sparse point cloud was converted into a dense point cloud.
The software computed the depth information by the image alignment for all points of the images.
For that, medium quality settings were used to keep the processing time at an acceptable level and
depth filtering was set to “aggressive” to sort out outlier points due to noise or inaccurate focusing.
These steps resulted in one single point cloud, which was much denser and more detailed.

In the last step the dense point cloud was exported in the form of a DSM as a TIFF file with a
resolution between 1 and 3 cm per pixel. The DSM represented the recorded surface as a raster data.

Further processing was done with Quantum Geographical Information System (QGIS 2.18.14,
QGIS Development Team, Raleigh, NC, USA) software to provide a digital elevation model (DEM).
After importing the raster image, ground points in the pathways next to the plots were selected
from the DEM, which were interpolated by an inverse interpolation with a power of 3 to provide a
continuous ground surface model over the whole field. CH was calculated by subtracting DEM from
DSM. The coordinates of the plot corners were used to delimit each plot area. The mean height value for
each plot from the drone-based RGB imaging (CHD) was extracted by zonal statistics. These processes
were done for every flight mission separately. From the whole dataset seven CHD values had to be
removed due to unrealistic negative height values.

2.4. Statistical Analysis

Statistical analysis was performed using R programming language version 3.5.1 (R Foundation
for Statistical Computing, Vienna, Austria). DMY was tested for normal distribution and its residuals
for homoscedasticity. As these assumptions were not fulfilled, DMY was square root transformed.
ANOVA was used to detect differences among yields of the four cuts in each treatment.

For creating estimation models for the whole dataset (including the subsamples), CH and DMY
were used for linear regression models. One main assumption for an ordinary least square (OLS)
regression (Type-I regression model) is the allocation of y as dependent variable and x as independent
variable. Another assumption for OLS is the measurement of the independent variable x without error.
In our Study it was not feasible to distinguish between x and y for CH and DMY and as x (i.e., is CH)
was measured both manually and by RGB imaging, the height measurements cannot be considered as
error-free. In this case, a reduced major axis (RMA) regression, which is a Type-II regression model,
was suggested by Cohen et al. [27] for analysis in the field of remote sensing. Though slope, intercept
and root mean square error (RMSE) are calculated differently, RMA shows the same coefficient of
determination (R2) as OLS. In the current study, RMA was used to predict DMY by CHR and CHD

for the whole dataset and for the treatments separately. For a better understanding of the graphical
presentation of the yield estimation model, the equations were re-transformed to the original scale.

For an assessment of the model accuracy, cross-validation was carried out. The dataset was split
into a calibration (training) and validation dataset. To generate an even distribution of the randomly
chosen validation dataset, one value was withdrawn from each treatment and sampling date, resulting
in a 75% calibration and 25% validation dataset. The calibration dataset was used to generate the
corresponding models and the coefficient of determination (R2

cal), the root mean square error (RMSEcal)
were calculated. The validation dataset was used as an independent dataset to verify the calibrated
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models by linear regression between measured and predicted DMY, represented by coefficient of
determination (R2

val) and root mean square error (RMSEval) as well as relative RMSEval (rRMSEval).
Additionally, to determine the accuracy of the validation between measured and predicted DMY
Willmott’s refined index of agreement (d) was generated. Willmott’s refined index of agreement is a
dimensionless value between 0 and 1 indicating no agreement and total agreement, respectively [28].

3. Results

Ten datasets of DMY, CHR and CHD were collected throughout the vegetation period from May to
October 2017. From the datasets of RGB images, which were processed by Agisoft PhotoScan into 3D
models and further into CHD values, seven mean CHD values from the third and fourth sub-sampling,
were negative and were, therefore, excluded from further analysis.

3.1. Dry Matter Yield

As the mixtures and pure stands were investigated at various growth stages throughout the
growing season, DMY varied widely and declined in most cases with progressing growing season
from first to fourth cut (Figure 3). DMY of pure grass swards exhibited a particularly strong decrease
after the first cut. The mean DMY for the whole dataset including sub-samples ranged from 0.09 to
6.32 t ha−1 (Table A1).
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3.2. Canopy Height

The average height values per treatment and date of CHR and CHD varied from 9.42 to 89.54 cm
and 1.01 to 71.06 cm respectively (Figure 4a). On average, CHD was more than 4 cm lower than
CHR. CH of sub-samplings and of the fourth cut were lower compared to the first, second and third
cut. The linear relationship between CHR and CHD showed an R2 of 0.56 with an RMSE of 13.39 cm.
CHR values of grass from the second cut were remarkably higher than the corresponding CHD values.
If the data of the grass of the second cut were excluded from analysis, R2 and RMSE improved to 0.70
and 10.32 cm respectively (Figure 4b).
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grass stands of the second cut (b). The different symbols indicate sub-samples (#), which were taken
between the first (�), second (�), third (N) and fourth (H) harvest.

Considering the individual treatments, R2 for the mixtures and pure legume stands varied
between 0.70 and 0.84 and rRMSE between 11 and 16% (Table 2). The pure grass treatments GCG and
GLG showed a lower R2 of 0.47 (RMSE = 16.51 cm) and 0.29 (RMSE = 16.91 cm) respectively. Similarly
to the complete dataset, when the second cut was also excluded from the analysis of the pure grass
data, relationship between manual and UAV-based measurements were much better.

Table 2. Coefficients of determination (R2), root mean square errors (RMSE) and relative RMSE (rRMSE)
of linear regression analysis between manual height measurements (CHR) and UAV-based RGB imaging
(CHD) for the whole dataset (All) and the different treatments: clover-grass (CG), lucerne-grass (LG)
as well as the pure stands of legumes (LCG, LLG) and grass (GCG, GLG) of the mixtures, respectively.
Values in brackets represent results for the dataset without pure grass swards of the second cut.

Treatment R2 RMSE (cm) rRMSE (%)

All 0.56 (0.70) 13.39 (10.32) 17 (13)
CG 0.79 10.19 13
LG 0.70 11.14 16
LCG 0.84 6.08 11
LLG 0.72 8.70 16
GCG 0.47 (0.70) 16.51 (9.17) 22 (14)
GLG 0.29 (0.57) 16.91 (9.35) 24 (17)
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3.3. Prediction Models

CH as measured by ruler and UAV-based imaging was used as a predictor for DMY. Models were
developed based on a calibration and validation dataset for the whole dataset as well as separately for
the different treatments (Table 3). Regression analysis with the entire dataset and CHR as regressor
resulted in an R2

cal of 0.62 for calibration and an R2
val of 0.64 for validation and a corresponding

RMSEval of 0.28 t ha−1 (rRMSEval = 18%). Model performance for CHD was slightly better with
R2

cal = 0.69 and an R2
val of 0.72 (rRMSE = 17%). Considering the individual treatments, R2

cal varied
between 0.58 and 0.80 and R2

val between 0.42 and 0.68 (rRMSEval = 0.23–0.34 t ha−1) for CHR, while for
CHD R2

cal (R2
cal = 0.62–0.80) and R2

val (R2
val = 0.46–0.87, rRMSEval = 0.23–0.36 t ha−1) was somewhat

higher. Willmott’s refined index of agreement (d) of CHR and CHD varied on a similar high level
between 0.82 and 0.92. Exclusion of the pure grass data of the second cut resulted in higher R2

cal and
R2

val values, but only the rRMSEval values GGL of CHR (rRMSEval = 15%) and both grass treatments of
CHD (rRMSEval = 16–19%) were lower. However, d yielded in a higher value for both, CHR and CHD

by excluding pure grass data from the second cut (0.88–0.94).

Table 3. Linear regression analysis of calibration (cal) and validation (val) dataset between dry matter
yield and manual height measurements (CHR) as well as UAV-based RGB imaging (CHD) for the
whole dataset (All) and the different treatments: clover-grass (CG), lucerne-grass (LG) as well as the
pure stands of legumes (LCG, LLG) and grass (GCG, GLG) of the mixtures, respectively. n = number of
samples; R2 = coefficient of determination; RMSE = root mean square error; rRMSE = relative RMSE;
d = Willmott’s refined index of agreement. Values in brackets represent results for the dataset without
pure grass swards of the second cut.

Treatment
Calibration Validation

ncal R2
cal nval R2

val
RMSEval
(t ha−1)

rRMSEval
(%) d

CHR

All 180 (174) 0.62 (0.71) 53 (51) 0.64 (0.65) 0.28 (0.29) 18 (19) 0.90 (0.90)
CG 30 0.80 10 0.66 0.34 19 0.90
LG 30 0.71 9 0.50 0.33 19 0.85
LCG 30 0.68 10 0.56 0.26 21 0.87
LLG 30 0.77 8 0.68 0.23 19 0.91
GCG 30 (27) 0.64 (0.82) 8 (7) 0.42 (0.51) 0.33 (0.34) 21 (22) 0.83 (0.88)
GLG 30 (27) 0.58 (0.82) 8 (7) 0.43 (0.73) 0.29 (0.20) 22 (15) 0.82 (0.94)

CHD

All 180 (174) 0.69 (0.73) 53 (51) 0.72 (0.62) 0.27 (0.30) 17 (20) 0.92 (0.89)
CG 30 0.80 10 0.87 0.23 13 0.96
LG 30 0.63 9 0.68 0.35 20 0.89
LCG 30 0.81 10 0.46 0.29 24 0.83
LLG 30 0.62 8 0.51 0.36 30 0.82
GCG 30 (27) 0.68 (0.69) 8 (7) 0.54 (0.64) 0.35 (0.30) 23 (19) 0.85 (0.90)
GLG 30 (27) 0.67 (0.71) 8 (7) 0.48 (0.77) 0.30 (0.20) 23 (16) 0.86 (0.94)

A major aim of the study was to generate prediction models for DMY based on CHD, which are
valid across the entire range of legume contribution possibly occurring in practical grassland farming
(i.e., 0 to 100% of DMY). It turned out that models perform better when developed separately for the
two legume species. Figure 5 shows the legume-specific linear models, each including the respective
mixture as well as the corresponding pure legume and grass sward. For better understanding DMY
data was re-transformed to the original scale. DMY of clover-grass was better predicted by CHD with
an R2

cal of 0.75 compared to CHR with R2
cal of 0.60 (Table 4). Also the validation for clover-grass

by CHD showed a higher R2
val of 0.75 (rRMSEval = 17%) compared to CHR with an R2

val of 0.58
(rRMSEval = 22%). In contrast, DMY of lucerne-grass was predicted and validation was performed
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somewhat better by CHR (R2
cal = 0.67, R2

val = 0.69) than by CHD (R2
cal = 0.64, R2

val = 0.62). The d
value varied on a high level for all models between 0.87 and 0.93.
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Figure 5. Legume-specific regression models of the calibration dataset with validation dataset ( ) for
dry matter yield (DMY) based on canopy height from UAV-based RGB imaging (CHD). For better
understanding DMY data was re-transformed to the original scale. Models for clover-grass (a) and
lucerne-grass (b) both include the respective mixtures as well as the corresponding pure legume and
grass swards. R2 = coefficient of determination; rRMSE = relative root mean square error (calculated
with square root-transformed data).

Table 4. Linear regression analysis of calibration (cal) and validation (val) dataset between dry
matter yield and manual height measurements (CHR) as well as UAV-based RGB imaging (CHD) for
clover-grass (CG) and lucerne-grass (LG) mixtures including corresponding pure stands of legumes (L)
and grass swards (G). n = number of samples; R2 = coefficient of determination; RMSE = root mean
square error; rRMSE = relative RMSE; d = Willmott’s refined index of agreement.

Treatment
Calibration Validation

ncal R2
cal nval R2

val
RMSEval
(t ha−1)

rRMSEval
(%) d

CHR

Clover-grass (CG, LCG, GCG)
Lucerne-grass (LG, LLG, GLG)

90 0.60 28 0.58 0.34 22 0.87
90 0.65 25 0.69 0.29 16 0.90

CHD

Clover-grass (CG, LCG, GCG)
Lucerne-grass (LG, LLG, GLG)

90 0.75 28 0.75 0.26 17 0.93
90 0.64 25 0.62 0.32 17 0.88

For practical implementation it is relevant to know the accuracy of the novel methodology for
the prediction of the total annual DMY (ADMY), which is the total DMY of a crop over the entire
growing season. In the present study ADMY was calculated by accumulating the harvest yield of all
four cuts. ADMY varied between 11.85 and 15.18 t ha−1 for the whole dataset and the mixtures with a
standard deviation (SD) between 2.01 and 2.37 (Table 5). By applying the prediction models (Table 4)
and accumulating the estimated yields of the four cuts, estimates were produced for ADMY based
on manual height measurement (ADMYR) as well as based on UAV-based RGB imaging (ADMYD)
(Table 5). Similar results were predicted by CH measurement, which varied for ADMYR between 12.38
and 16.85 t ha−1 (SD = 1.92–2.17) and for ADMYD between 11.77 and 15.71 t ha−1 (SD = 1.76–2.62).
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Table 5. Measured total annual dry matter yield including four cuts (ADMY) and the predicted ADMY
based on manual height measurement (ADMYR) and UAV-based RGB imaging (ADMYD) for the
whole dataset (All) and the two different mixtures clover-grass (CG) and lucerne-grass (LG). For better
understanding DMY data was re-transformed to the original scale. SD = standard deviation.

Treatment
ADMY (t ha−1) ADMYR (t ha−1) ADMYD (t ha−1)

Mean SD Mean SD Mean SD

All 11.85 2.01 12.38 1.92 11.77 2.09
CG 15.18 2.25 16.85 2.14 15.71 2.62
LG 12.88 2.37 13.73 2.17 12.30 1.76

4. Discussion

The primary aim of this study was to develop and evaluate a prediction model for DMY of
heterogeneous temperate grasslands by means of SfM using UAV-based RGB imaging. CH was
successfully predicted both by manual and SfM height measurement. SfM-based CH was on average
4 cm lower than the manually measured values. The same tendency was found in previous studies
with barley with a difference of 10 cm [17] and 19 cm [29], respectively, though both investigations
used a higher resolution of 1 cm per pixel. In our study, manual measurements represented 50 single
points from the ground soil to the highest point touching the ruler. In contrast, SfM datasets covered
the whole area of interest, scanning the complete visible canopy surface and not only the top of single
plants [17,19]. Furthermore, the nadir position of the camera with a resolution of 2 cm per pixel
may not have captured every single grass tiller, especially at windy conditions, and the strong depth
filtering during the generation of dense point clouds may have already caused an exclusion of single
outlying points. All this led to a generally lower average CH compared to the manual measurements
and is also supported by the finding that the correlation between SfM-based and manual height
measurement improved, when the data of the extreme mature grasses of the second cut were excluded.
Cunliffe et al. [30] showed that in dryland vegetation ultra-fine resolution of less than 1 cm of the
height model was able to depict single grass stems.

The prediction models for DMY based on the calibration dataset of CHR and CHD showed
similar accuracies across all treatments with R2 = 0.58–0.80 and R2 = 0.62–0.81, respectively.
Most other multi-temporal studies reporting on SfM-based prediction models by means of UAV RGB
imaging were conducted with arable crops. Correlation results were comparable for barley with an
R2 = 0.82 [17], for winter wheat (R2 = 0.68–0.95) [16] and for maize and sorghum (R2 = 0.68–0.78) [31].
Moeckel et al. [20] achieved substantially higher R2 values with stands of tomato, eggplant and
cabbage (R2 = 0.89–0.97), which represent more heterogeneous crops. Roth and Streit [32] examined
different cover crops, including also two clover species, and achieved an R2 of 0.58. When plants,
which were growing close to the ground or even lodging, were excluded from the regression model,
R2 increased to 0.74. In a permanent timothy-dominated grassland Viljanen et al. [25] obtained a
pearson correlation coefficient between 0.77 and 0.97. They showed that the quality of the estimation
model depended on plant density and growth stage of the sward. Bendig et al. [33] achieved the
best results in summer barley prior to heading of the crop. Malambo et al. [31] and Grenzdörffer [34]
showed that the SfM approach worked better for uniform crops than for crops with a heterogeneous
canopy surface. Compared to other arable crops, which are usually grown in monocultures (e.g.,
cereals, maize), clover- and lucerne-grass mixtures form a rather heterogeneous canopy with a wide
range of coverage of the two components, which above all, have a very different stature.

Several studies indicated that plant density influences the estimation of plant height [6,35,36].
In our study, the second cut was markedly affected by drought, which resulted particularly for grasses
in a low tiller density and less leaf biomass. The exclusion of the data of the pure grass stands of
the second cut improved the correlations for both methods. A camera with a higher resolution to
capture more details of the canopy surface [30] and the integration of plant density as additional
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information may further improve the prediction accuracy in heterogeneous crops. In a study of
Schut et al. [37] the combination of spectral indices with remotely sensed CH information showed
promising results at small-scaled farm level. In other studies fusion of 3D LiDAR and spectral data
substantially improved biomass prediction in extensively manage permanent grasslands compared to
the use of single sensors [5,12].

Accuracy of biomass estimation by RGB imaging may be reduced due to errors and uncertainties
during the image and point cloud generation. The seven negative CHD values, which were excluded
from the present analysis, were located in an area of the experimental site, where a slight slope
occurred. In our study, the DEM was generated by the interpolation of z-values from points located in
the pathways between the plots. As the biomass at the erased points were extremely low, negative
height values may, thus, have been caused by an inadequate representation of the true ground surface
in the interior of the plots. With a small and rather flat area like our experimental field the error due to
insufficient interpolation is relatively low, whereas for practical and possibly uneven fields of several
hectares explicitly generated DEM point clouds may be necessary for a sound calculation of canopy
heights. This can e.g., be done during periods of bare soil, e.g., before sowing or after harvest of the
crop. However, the production of additional pre-sowing or post-harvest point clouds requires extra
flight missions and a considerable effort of data analysis. Tests which were conducted prior to the
experiment indicated that extremely diligent georeferencing of the point clouds with an adequate
number of georeferenced control points is necessary to avoid errors and uncertainties in the CH data.

In practical forage production strategic decisions (e.g., for adjusting the number of farm animals
to the amount of available roughage) are usually taken based on data from one year or growing season.
Thus, generating reliable data on the expected total annual biomass produced from single fields
would substantially support farmers’ decisions. As a first approach models were developed to predict
total annual yield separately for the clover- and lucerne-grass stands. As the legume contribution
of legume-grass mixtures varies greatly in farming practice [38], the corresponding pure stands of
legumes and grasses were also included in both models. The fact, that model accuracy was different for
clover- (R2 = 0.75) and lucerne-grass (R2 = 0.64) data indicates that, morphological characteristics (e.g.,
leaf position, vertical or horizontal distribution) of clover canopies allow a better prediction of biomass
than for lucerne-grass mixtures, and that these crop-specific models cannot be easily transferred to
other grassland types. The reasons behind this finding cannot be determined with the present study
and, thus, further investigations (also considering model evaluation on the field scale) are needed.
However, it is encouraging that averaged across all treatments, the accuracy between measured yield
and UAV-based yield assessment was similar to manual height measurement.

Data acquisition by UAV can be done in a relative short time, whereas data processing by SfM is a
computationally intensive process, depending on computer performance and number of images. In our
study, data acquisition for each sampling date by manual height measurement, which was a rather high
number of measurements (50 measurements per plot ~ 3 h) and UAV-based RGB imaging including
data processing yielded in a similar amount of time (~ 3–4 h). So far, a practical implementation
does not seem feasible, but as flight time of UAVs, computer performance and automation of data
processing steadily increases, this method is seen to have great potential. To summarize, the results
indicate that UAV-based RGB imaging may serve as a suitable estimator for total annual yield of
heterogeneous legume-grass mixtures, which future studies should evaluate.

5. Conclusions

Accurate yield estimation in temporal grassland farming is an essential prerequisite for
management decisions. The present study showed, that SfM-based RGB imaging in combination with
a UAV provides a promising alternative to the time- and effort-consuming yield prediction based
on conventional manual methods. Furthermore, yield estimation by RGB imaging proved similar
prediction of DMY at extreme weather conditions compared to manual height measurements by ruler.
Our new approach to yield assessment by SfM showed great potential and was also able to successfully
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estimate total annual yield. The use of UAVs serves as a fast, non-destructive tool for multi-temporal
data acquisition.

However, the large variability of canopy surface in legume-grass mixtures causes lower prediction
accuracies than in more homogeneous arable crops. Therefore, instead of using single sensors,
research should focus on fusion of complementary sensor data, e.g., by including spatial and spectral
information. The fast-emerging technologies in remote sensing have a great potential to develop such
sensor systems integrated on one UAV platform.
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Appendix A

Table A1. Dry matter yield (DMY) of the different treatments: the clover-grass (CG) and lucerne-grass (LG) mixtures and pure stands of legumes (L) and grasses (G)
for 10 sampling dates comprising four harvest cuts and six sub-samplings every second week during sward growth between 17 May 2017 and 9 October 2017.

Cut Date
DMY (t ha−1)

1st harvest 1st sub-sample 2nd sub-sample 2nd harvest 3rd sub-sample 3rd harvest 4th sub-sample 5th sub-sample 6th sub-sample 4th harvest
17 May 2017 2 June 2017 13 June 2017 26 June 2017 11 July 2017 8 August 2017 23 August 2017 5 September 2017 20 September 2017 9 October 2017

Treatment
CG 4.60 0.78 2.29 3.40 0.73 4.82 0.44 1.15 1.79 2.37
LG 4.90 0.60 2.21 3.47 0.67 2.57 0.78 1.70 1.87 1.95
LCG 4.95 0.35 1.49 1.97 0.29 0.74 0.33 0.87 1.35 1.17
LLG 3.59 1.12 2.59 3.79 1.03 3.53 0.78 2.06 2.93 2.46
GCG 4.58 0.57 1.59 1.62 0.21 0.66 0.41 0.86 1.08 1.05
GLG 3.41 0.76 1.97 3.53 0.95 3.33 0.52 1.81 1.81 2.70
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