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Abstract: Soil salinization is a serious environmental issue that significantly influences crop yield
and soil fertility, especially in coastal areas. Numerous studies have been conducted on the salinity
status in Pakistan. Information about the geospatial and temporal distribution of salinity in the
Sujawal district is still lacking. The present study examines the soil salinity status and the impact
of seawater intrusion in the entire district from 1990 to 2017 using field and remote sensing (RS)
data. In addition, 210 soil samples at different depths (0–20, 20–40, and 40–60 cm) were collected
from randomly selected locations for lab measurements of physiochemical properties. The results
showed that the soil texture classes were mainly fine to medium particles. The samples collected at
the 0–20 cm depth were mostly dominated by three textural classes of soil: clay at 19.5%, clay loam
at 25.6%, and loam at 32.9%. The electrical conductivity (EC) of 65.7% soil samples collected from
the top layer exceeded the normal range. The quantitative results indicated that the exchangeable
sodium percentage (ESP) ranged between 1.38 and 64.58, and 72.2% of the top layer soil samples had
ESP >15, while 81.5% of soil samples were in the normal range of soil pH. Furthermore, the results
indicated that the vegetation decreased by 8.6% from 1990 to 2017, while barren land and water
bodies increased significantly, by approximately 4.4% and 4.2%, respectively. The extreme and high
salinity classes were characterized by high contents of soluble salt on the surface in the Jati and Shah
Bandar subdistricts. In addition, the soil EC values at the 0–20 cm depth were significantly correlated
with the salinity index (S1). Therefore, it was concluded that more than 50% of the top layer of soil
was affected by salinity due to seawater intrusion, low rainfall, climate change, and erratic river flow.
It is suggested that remote sensing (RS) data are more suitable for the detection of the soil salinity
status of a region and impose a lower cost compared to other conventional approaches. However,
this study could provide significant knowledge to land managers, policymakers, and government
officials to allow them to take action to implement salinity control measures in the study area.
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1. Introduction

Soil salinity is a serious environmental problem throughout the world, especially in arid and
semi-arid agricultural land [1,2]. It has been reported that most of the irrigated agricultural land of
China, India, Pakistan, and the United States of America suffers from salinity problems [3]. Currently,
nearly 20% of irrigated farmland around the world is experiencing severe salinity problems, which not
only threatens crop growth but also degrades fertile agricultural land. Therefore, understanding the
distribution of soil salinity is important for us to enhance future agriculture management.

Sindh province is the second-largest agricultural contributor of Pakistan, where more than
2.5 million hectares of arable land are under salinity cover [4]. Generally, salt flows from upstream
regions to lower regions, which might be the principal factor contributing to the increased salinity
problem in Sindh province. SIDA [5] reported that, due to increasing salinization, Sindh requires
more attention compared to other provinces in Pakistan. Generally, soil salinity has been measured
by traditional soil analysis methods, which are considered costly and time-consuming [6]. Previous
studies reported that remote sensing (RS) data provide quick results and represent a low-cost method
as compared to traditional methods [7,8]. Remote sensing (RS) data have great potential and can be
widely used to detect soil salinity spatially and temporally [9]. Furthermore, RS data could be used
in different ways, such as in comparison with field data [10]. The basic spatial information-based
methods are spatial interpolation approaches, including inverse distance weighting (IDW), kriging,
cokriging, spline function, and geostatistical interpolation methods [11,12]. These methods are effective
for the spatial distribution of soil salinity with limited spatial information [13,14]. The inverse distance
weighting (IDW) method depends on determining the center of two known points; according to this
method, the near points have more weight than distant points and vice versa [15].

There are a number of satellites and sensors that are widely used for monitoring soil salinity [16].
However, these sensors are mainly used to measure the salinity from the soil surface; moreover, they
measure salinization problems, with the entire soil profile used to explore salinization problems in
the area.

Quantification and mapping of soil salinity dynamics are essential for better planning and soil
reclamation processes, along with the prevention of ecological degradation [17]. Sujawal district is
more vulnerable to climate change impacts, i.e., droughts and floods caused by the erratic flow of the
Indus River. It is continuously threatened by seawater intrusion. Fertile agricultural land changed
into saline and became less productive, which led to a threat to agricultural sustainability and the
socioeconomic conditions in the district [18,19]. However, the spatial and temporal distribution of soil
salinity remains poorly understood, although some individual studies have been conducted before.
In order to solve this problem, the present research used ground data at different soil depths and
compared them to RS data to investigate the status of soil salinity in Sujawal district.

In view of this scenario, the main objectives of the present study were to: (i) explore the soil salinity
status and impact of seawater intrusion in the entire district from 1990 to 2017, and (ii) investigate the
relationships between field data and soil salinity indices.

2. Materials and Methods

2.1. Study Area

Sujawal is a southern district of Sindh province, located between 36 ◦59′23” N and 68◦4′19” E
(Figure 1). The total area covered by the district is about 8614.2 km2 (861,420.78 hectares), which is
divided into four subdistricts, Jati, Bathoro, Shah Bandar, and Sujawal, and further divided into 30 union
councils. The maximum temperature is 45 ◦C during the summer season, especially the month of June,
and it falls to 10 ◦C in the month of January. The maximum rainfall was recorded in the monsoon season
months of July–September and the minimum rainfall was recorded in November–March; the average
annual rainfall was about 220 mm [20]. The climatic zones are dry and tropical [18]. The main crops in
Sujawal district are wheat, rice, sugarcane, bananas, and tomatoes. The agricultural cropping system
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mainly depends on the canal irrigation system, supplemented with groundwater. Groundwater is
mostly used for drinking [21].
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Figure 1. Location map of the study area and sampling points.

2.2. Geo-Reference Soil Sampling

Soil samples were randomly collected from different locations of the study area in September to
December 2016. The coordinates were recorded using hand-held Garmin GPS-62s [21]. Before the field
survey we added sampling points in the hand-held GPS-62s with coordinates for tracking the route and
finding easy sampling points. Samples were collected at several depths (0–20, 20–40, and 40–60 cm),
with the help of a soil auger, packed into plastic bags, labeled with the sampling depth as well as
the geographical location, and carried to the laboratory for analysis. Samples were air-dried at room
temperature and passed through 2-mm and <2-mm sieves; for the electrical conductivity (EC) analysis
we used <2-mm. Subsample portions were stored for pH, exchangeable sodium percentage (ESP),
and dry density analysis. In total, 210 samples were collected from Sujawal district. One sample was
collected from each depth at the locations shown in Figure 1.

2.3. Soil Properties Analysis Based on Spatial Mapping

Textural classes were determined by the Bouyoucos method according to the USDA textural
triangle [22]. The Electrical conductivity (EC) soil saturation extract was determined at 25 ◦C using an
EC meter (Hanna Model-8733, Germany). Soil pH was determined in a soil and water mixture (1:2
ratio) using a pH meter (Jenway, Model-3510, Gransmore Green, Felsted, Dunmow, Essex, CM6 3LB,
UK) and the calcium (Ca2+), and magnesium (Mg2+) contents of the soil determination EDTA titration
method [19]. The sodium concentration was extracted with 1 M ammonium acetate (NH4OAc) solution
and measured by a flame photometer as in the method previously described in [23]. Results were
calculated based on the sodium absorption ratio (SAR) and ESP (equations) empirical formulas [24].
The quantitative results of physicochemical properties were found using ArcGIS 10.3 software, ESRI,
New York street Redlands, Califorina, USA. The IDW tool used for spatial mapping of physicochemical
properties and areas of interest was extracted using the ‘extraction by mask’ tool [25].

2.4. Acquisition of Satellite Data and Classification of Imagery

The current study used images acquired by the clear sky Landsat 5 and 8 satellites of WRS-2
path 151 & 152, row 43, processing Level 1T, from the United States Geological Survey (USGS, 2017)
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portal (http://glovis.usgs.gov) for the months of February 1990 and February 2017. Later, the area of
interest (AOI) was extracted from the original imagery using the shape file of Sujawal district as a
mask in ArcGIS 10.3 software. After that, we created signature files for salinity-affected areas and
acquired classified maps of the district; the maximum likelihood classification algorithm was used
with supervised classification. The supervised classification is considered to give more accurate results
than unsupervised classification [26]. The research area was calculated from the maps and classified
into barren land, water bodies, and vegetation by converting the raster image into vector polygons.
Thereafter, accuracy assessment was an important step to verify the image classification. In total,
90 points were taken as test samples to compare the accuracy with the reference data. Furthermore,
a total of four scenes were acquired for the study area from GloVis for imagery classification and the
detection of soil salinity (Table 1).

Table 1. Satellite imagery used for the present study.

S#No Landsat Scene ID Date of Acquisition Path Row DOY d θs

1 LT515204319900321SPOO 01/02/1990 151 43 32 0.98536 38.963608
2 LT515104319900411SPOO 10/02/1990 152 43 41 0.98680 37.253531
3 LC81510432017051LGN00 28/02/2017 151 43 59 0.98817 46.110403
4 LC81520432017042LGN00 18/02/2017 152 43 49 0.98835 43.506486

Note: * DOY (day of the year), d (earth–sun distance in astronomical units), θs (solar zenith angle degrees).

Soil salinity indices are considered a powerful tool for identifying soil surface salinity and
analyzing soil properties; the relative maximum difference value bands were selected for developing
the salinity indices, which are related to spectral patterns. Researchers have developed various
indices [13,26,27]. In the present study, we used three standard salinity indices for the detection of soil
salinity, summarized in Table 2. The methodology adopted in the present study is depicted in Figure 2.

Table 2. Salinity indices, equations, and references.

Salinity Indices Equations References

Normal differential salinity index NDSI = (R − NIR)/(R + NIR) Khan et al. (2005)
Salinity Index 1 SI = (B − R)/(B + R) Abbas and Khan (2007)
Salinity index 2 S2 = (G × R) / B Abbas and Khan (2007)

Note: Normal differential salinity index (NDSI), salinity index 1 (S1), and salinity index 2 (S2).
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3. Results and Discussion

3.1. Soil Textural Classes

The spatial variation of soil texture at the 0–20 cm layer in Sujawal district is dominated by six
different classes (Figure 3). Soil texture is an important factor influencing soil salinity [24]. Moreover,
the fine textural class leads to more salt accumulation in the topsoil [28]. Based on the soil analysis,
the top layer of most of the three classes was dominated by different percentages such as clay (19.5%),
clay loam (25.6%), and loam (32.9%). At to the subdistrict level, these soil textural classes mostly
dominated in the Jati and Shah Bandar areas. The subsurface soil layers (20–40 and 40–60 cm) contain
similar soil textural classes. According to a previous study, the Indus River carries 49.6% clay, 45.4%
silt, and 5% sand, so a dominance of alluvial soil was found in Sujawal district [29]. Hence, Sujawal
district is located at the lower end of the Indus River and has a flat topography, which might explain
why it is dominated by fine-textured soil.
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3.2. EC and pH Analysis

The quantitative results of four major soil salinity parameters, namely EC, pH, ESP, and dry
density at different soil depths (0–20, 20–40, and 40–60 cm), are presented in Table 3 with descriptive
statistics such as the minimum, maximum, mean, standard deviation (STD), and confidence interval
(CI). In this regard, 65.7% of soil samples had an EC higher than 4 dS/m, indicating that large areas
of the soil range between moderately saline and extremely saline. In contrast, 57.5% of subsurface
(20–40 cm) soil samples were found to be affected by salt, while in the case of soil samples at the
40–60 cm depth, 54.5% were declared to be saline. As reported by [28], the soil is considered saline if the
EC value exceeds 4 dS/m. The spatial distribution of EC, as determined by the advanced geostatistical
method IDW at a 0–20 cm depth, is shown in Figure 4a. Solangi et al. [30] reported that a soil EC
value of 0.7 dS/m or less is not stressful to most plants. Similarity was seen to previous research:
salinity could be attributed to the use of saline water for irrigation, and, subsequently, it has effects on
productive lands [31] (Faouzi and Larabi, 2001). A higher magnitude of soil salinity was found near
the coastal region of the district; this might be due to seawater intrusion. The present results are in
agreement with the previous finding that 89.4% of groundwater had a higher EC in Sujawal district
due to sea intrusion and the decreased flow of the Indus River [18].
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Table 3. Physicochemical analysis of soil samples at the various depths (0–20, 20–40, and 40–60 cm).

Parameters Min Max Average STD CI

Depth 0–20 cm

EC 0.50 46.6 14.2 14.8 1.20
pH 9.20 6.80 7.93 0.54 0.90
ESP 1.38 64.58 26.9 16.3 1.29

Dry density 1.19 1.35 1.27 0.04 0.02

Depth 20–40 cm

EC 0.60 48.0 11.5 12.8 1.30
pH 7.10 9.10 8.02 0.48 0.80
ESP 5.24 65.9 27.5 16.22 1.29

Dry density 1.19 1.35 1.27 0.04 0.02

Depths 40–60 cm

EC 0.70 41.8 9.80 10.87 1.42
pH 7.20 9.10 8.00 0.47 0.80
ESP 3.66 65.1 27.5 15.64 1.32

Dry density 1.17 1.34 1.26 0.04 0.01

Note: Electrical conductivity (EC), soil pH (pH), exchangeable sodium percentage (ESP), and dry density.Agronomy 2019, 9, x FOR PEER REVIEW 7 of 12 
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The magnitude of soil salinity at the top layer (0–20 cm) is higher (14.2 dS/m) compared to the
other subsurface soil salinity analysis; these results are consistent with previous results from [32].
Due to an improper recharge and discharge rate, the groundwater level increased, which causes subsoil
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salts to move up and accumulate in topsoil. As has been reported, topsoil (0–10 cm) had a higher
salinity compared to the subsoil [33].

In terms of pH, the top layer (0–20 cm depth) varied from 6.8 to 9.2, with an average value of
7.93 ± 0.9. Generally, soil at pH > 8.5 is considered to be salt-affected; in this study, 81.5% of top layer
soil samples had a pH < 8.5. The spatial distribution of soil pH at 0–20 cm soil depth is portrayed
in Figure 4b. The results of ESP shown in Table 3 for the 0–20 cm depth varied between 1.38 to 64.58,
with an average of 26.89 ± 1.29. About 72.2% of soil samples’ ESP was > 15, which is considered
salt-affected. Values of ESP < 15 and soil pH < 8.5 indicate saline soils [34]. The spatial distribution of
ESP at 0–20 cm depth is shown in Figure 4d, and it is clear from the figure that higher ESP was found
near the coastal region of the district. Soil salinity is also affected by physical characteristics of the soil
such as pore size distribution and structure.

3.3. Classification of Imagery Acquired from February 1990 and February 2017

To assess the temporal distribution of soil salinity, clear-sky satellite data (Landsat 5 TM and
Landsat 8 OLI) were acquired from a data access portal (USGS 2017) over the entire district of Sujawal
for February 1990 and February 2017. The scenes that were acquired for the study area are presented
in Figure 5; large areas are occupied by tidal flood plains, along with the coastal regions of the
district. The unclassified satellite imagery was classified using a likelihood classification algorithm
by creating three regions of interest based on the ground truth data and the true color of the satellite
data. The results of the classified imagery are given in Table 4. During February 1990, about 36.6%
of the total geographical area was occupied by vegetation, 10.7%was associated with water bodies,
and approximately 52.7% was barren land. A dominance of barren land was found mostly between
irrigated agriculture land in the northern part of the district and tidal floodplains in the southern
subdistrict areas of Jati and Shah Bandar (Figure 5). The results of the imagery classification of 2017
are given in Table 4. The vegetation area was 28%, barren land was 57.1%, and water bodies were
14.9%. The quantitative results indicated that the vegetative area decreased significantly, by 8.6%.
Meanwhile, barren land and water bodies increased were by 4.4% and 4.2%, respectively. The results
of the accuracy assessment demonstrate that there was a high rate of accuracy for the classified image
in 2017. The user accuracy for vegetation, barren land, and water bodies was 90.3%, 87.0%, and 93.1%,
while producer accuracy was 91.1%, 92.0%, and 88.4% for vegetation, barren land and water bodies,
respectively. Lea and Curtis [35] reported that an accuracy assessment requires an overall classification
accuracy of over 90%, which was achieved in this study.
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Table 4. Temporal variations in Landsat Satellite imagery between February 1990 and February 2017.

Land
Utilization

Area (ha)
(1990)

Area (ha)
(2017)

Total Geographical
Area (%) (1990)

Total Geographical
Area (%) (2017)

Total Difference in
Geographical Area (%)
between 1990 and 2017

Vegetation 315,373 241,379 36.6 28 −8.6%
Barren land 453,884 492,222.3 52.7 57.1 +4.4

Water bodies 92,163.2 127,819.5 10.7 14.9 +4.2
Total 861,420.8 861,420.8 100 100

The results of the study are consistent with those of a previous study [30] that reported that
about 42,607 hectares of land in the Indus delta are degraded due to surface seawater intrusion. Thus,
tidal flood plains increased by 7.1% in 45 years. Rasul et al. [36] predicted a 5 ◦C rise in temperature
over the Indus delta by the end of the 21st century. Other researchers reported that the main cause of
the sediment deposition, subsurface seawater intrusion, and land degradation may be river flow to the
delta [20]. The major causes of the expansion of tidal floods areas and barren land in the study area are
synergic factors: decreased river flow, climate change, and seawater intrusion.

3.4. Soil Salinity Indices

Salt-affected and water-logged areas can be delineated with the help of various salinity indices [10].
Based on a histogram analysis of the derived salt-affected map, the spatial and temporal variability
of soil salinity was characterized into five classes (Figure 6): nonsaline (green), low (light green),
moderate (yellow), high (orange), and extreme (red). Following a previous study by Bannari [37],
they divided SSSI-2 into six major classes. Furthermore, the visual analysis and validation of these
classes by reference to field visits (ground truth) reveals good conformity in terms of the 2017 soil
salinity NDSI and S1 results. The previous study reported that salinity indices such as NDSI and S1
had great potential for the detection of soil salinity compared to individual bands [38,39]. The extreme
salinity class is characterized by the presence of high contents of soluble salt on the surface of the
Jati and Shah Bandar areas. According to ground truth data, same talukas show higher values of EC
and ESP (Figure 4a,d). A previous study reported that the vertical variability in the soil profile is
the limiting factor in the assessment and mapping of soil salinity using remote sensing data because
the spectral reflectance is unable to provide information on the whole soil profile; it only observes
the soil surface [40,41]. The area under salinity stress increased significantly over 27 years (1990 to
2017). The main cause of seawater intrusion is the 80% decreased freshwater flow of the Indus River
below Kotri barrage (the last barrage on the Indus River), and the reduction in sediment load after
the late 1950S is considered the main cause of the increase in the size of the delta [42]. This study also
corroborated the results of a previous study, which reported that the soil salinity increased by 10% in
the last 45 years in the Indus delta [30].
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3.5. Correlation between Measured EC Data and Salinity Indices

Soil salinity indices were applied to the satellite images and compared with the ground truth
data. Several studies found a positive correlation between NDS1 and S1 and ground truth data [43,44].
Our results confirm that salinity index “S1” showed the highest correlation between results of EC
0–20 cm depth, which is consistent with the results of [45]. The study found a strong correlation
between S1 and the measured EC, as shown in Table 5. Finally, spatial and temporal mapping of the soil
salinity results indicated that two subdistricts of Sujawal, Jati and Shah Bandar, were highly affected.
The results of field data (ground truth) show that almost 65.7% of samples’ EC values exceeded the
normal range. in the remote sensing data of NDSI and S1 in 2017 reveal that subdistricts Jati and
Shah Bandar were more affected, as shown in Figure 6. This study agrees with Bouaziz et al. [44] and
Fan et al. [46], who showed that vegetation indices such as SAVI, NDVI, and EVI had a low correlation
with EC due to an insufficient density of vegetation cover, while soil EC indicates a higher correlation
with salinity indices.
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Table 5. Correlation between EC and soil salinity indices.

Parameters NDSI S1 S2

EC 0.879 ** 0.934 ** 0.874 **
NDSI - 0.912 ** 0.552

S1 - - 0.685 *

Note: Electrical conductivity (EC), normal differential salinity index (NDSI), salinity index 1 (S1), and salinity index
2 (S2). *, **: significant at p < 0.05, p < 0.01, respectively.

4. Conclusions

This study investigated the soil salinity status from 1990 to 2017 in Sujawal district. Based on
the field data (EC, pH, and ESP analysis), it was concluded that more than 50% of the soil’s top layer
was degraded by salinity in Sujawal district. Furthermore, satellite images were utilized to provide
information about the changes in soil salinity. For the confirmation of field data, it was useful to note
that the S1 index was highly correlated with the EC of field data. The classified satellite imagery from
1990 and 2017 showed that vegetation decreased by 8.6%; in contrast, barren land and water bodies
increased by 4.4% and 4.2%, respectively. It was concluded that the use of remote sensing data is
suitable for the discovery of soil salinity, with a lower cost compared to other conventional approaches.
The current study is addressed to land managers, policy makers, and government officials who can use
its findings to implement salinity control measures in the study area, i.e., the construction of protective
bunds, increasing the mangrove population, and maximizing freshwater flow to the delta through
the river as well as canals. Additionally, there should be efforts to minimize surface and subsurface
seawater intrusion and combat the soil salinity problem in the district. Thus, this study can be extended
in the future to test other multispectral/hyperspectral sensors’ data in the same area and also other
districts of Sindh that suffer from soil salinity.
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