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Abstract: Orthosiphon stamineus has been widely used as traditional remedy for various illnesses and
diseases, such as cardiovascular diseases and epileptic seizures. In this study, direct regeneration
through nodal segment of this species was attempted using Kinetin (6-Furfurylaminopurine) and
IAA (indole-3-acetic acid). Optimum regeneration media was identified as MS media supplemented
with 2.0 mg L−1 Kin plus 0.5 mg L−1 IAA. This yielded the highest number of shoots (5.57 ± 0.42) and
leaves (20.53 ± 1.91) per explant. Acclimatization of the resulting in vitro regenerants was successful
in all potting mixtures tested. However, potting mixture PF (1:1:1 ratio of black soil/red soil/compost)
was identified as the best medium for acclimatization of this species, as it yielded 100% survival
percentage after 90 days of acclimatization. Ten in vitro regenerants of O. stamineus were randomly
collected after the third subculture and subjected to genetic variation analysis using inter-simple
sequence repeat (ISSR) markers. Out of 20 ISSR markers tested, 10 working primers were observed
to produce satisfactory amplification of bands, with an average of 7.11 bands per primer. A total of
610 bands were produced by the 10 primers. The percentage of polymorphism was observed to be
very low, yielding only 7.32% polymorphism among all samples. Jaccard dissimilarity analysis was
also conducted and very low genetic distance (about 0.1) was found among the in vitro regenerants
and between the regenerants with the mother plant, thus ascertaining the clonal nature of the plantlets
produced in this study.
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1. Introduction

Orthosiphon stamineus, commonly known as Misai Kucing, has been widely used as a traditional
remedy for various illnesses. This species can be found throughout Southeast Asia and tropical
Australia. The leaves have also been introduced to Europe and Japan as a health tea, known as Java
tea. The flowers resemble cat whiskers, with long wispy-shaped stamen [1]. This species has been
reported to improve general health effectively, as well as to be a known remedy for kidney diseases,
bladder inflammation, gout, and diabetes [2]. Other than that, O. stamineus is also used to treat
rheumatism, tonsillitis, and menstrual disorder [3–5]. The leaves were found to possess diuretic [6,7]
and anti-hypertensive activities [3,8]. Several bioactive compounds that are present in this plant,
such as sterols, terpenoids, and polyphenols, have contributed to its therapeutic effects. Bioactive
polyphenols in O. stamineus have the ability to protect the human body from oxidative stress associated
with many diseases such as cancer [8,9], cardiovascular diseases, and aging [10]. A recent study has
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shown that the methanolic extract of O. stamineus leaves also possess hepatoprotective properties [11].
Java tea extracts are also used as food or feed additives to protect the intestine from oxidative stress [12],
as a novel symptomatic treatment for epileptic seizures [13], and has anti-obesity effects [14]. This
species has been studied extensively for its medicinal benefits. The vast medicinal properties of this
species have rendered it to be extremely important and always in high demand, thus requiring for its
mass propagation.

Traditionally, breeding of this species is accomplished via vegetative propagation through mature
stem, but the supply was inadequate for market demand [15,16]. To fit the demand, plant growth
regulators (PGRs) are used to produce a large number of crops and seed germination [17]. For example,
NAA and BAP have been widely used to induce production of shoots from various explant types of
O. stamineus [18–21]. Moreover, both PGRs have also been reported to yield production of callus for
establishment of cell suspension culture of this species [22,23]. In comparison, the use of other PGRs
in tissue culture of O. stamineus has not been widely highlighted. Therefore, the present study aims
to evaluate the efficiency of indole-3-acetic acid (IAA) and kinetin for efficient micropropagation of
this species.

In vitro micropropagation is an efficient technique to generate a large supply of crops in shorter
time. During in vitro culture, variability can also occur spontaneously and can be a result of temporary
changes or permanent genetic changes in cells or tissues. Temporary changes result from epigenetic or
physiological effects and are non-heritable and reversible. In contrast, permanent changes are heritable
and often represent expression of pre-existing variation in the source plant [24]. There are a lot of
factors that contribute to the occurrence of somaclonal variation phenomenon. These include the
system by which the regeneration is induced, type of tissue, explant source, media components, and
the duration of the culture cycle [25]. Somaclonal variation has been reported to cause regenerants
to exhibit variations in terms of morphological, cytological, cytochemical, biochemical, and also at
the molecular level [26]. Genetic variability is usually influenced by several factors, such as natural
selection, mutation, migration, and population size, in different ways. Variation in chromosome
numbers and structures, and chromosome irregularities such as breaks, acentric and centric fragments,
ring chromosomes, deletions, and inversions, may result in the loss of genes or their function, the
activation of genes which were previously silent, and the expression of recessive genes, once they
become haploid [27,28]. There is a high risk that the regenerated plant will lose its fidelity to the parent
plant due to the multicellular origin of adventitious buds used as the explant source.

In this paper, the efficiency of indole-3-acetic acid (IAA) and kinetin in aiding micropropagation
of O. stamineus was highlighted, to complement and further add to the knowledge in tissue culture
protocols of this species. The genetic fidelity of the regenerants were also assessed and compared to
the mother plant using inter-simple sequence repeat (ISSR) markers, to elucidate any occurrence of
somaclonal variation. Acclimatization of the plantlets to ex vitro environments was also carried out to
ensure the success of the tissue culture experiments conducted.

2. Materials and Methods

2.1. Preparation of Growth Media and Plant Material

In this study, MS [29] media was prepared using 4.4 g L−1 Murashige and Skoog (MS) powder
added with 30 g L−1 sucrose as carbon source and 2 g L−1 Gelrite Gellan Gum (Duchefa Biochemie B.V,
2003 Netherlands) as the gelling agent. Then, 0.5–2.0 mg L−1 indole-3-acetic acid (IAA) and Kinetin
(Kin) were supplemented to the media, either singly or at different combinations. The pH of the media
was adjusted to 5.7–5.8 using 0.1M NaOH or 0.1M HCl before being autoclaved at 121 ◦C for 20 min.

Explants were excised from the nodal segment of a field-grown O. stamineus mother plant. Surface
sterilization was conducted by washing all samples taken from the field-grown plant under tap water
for 1 h, and subsequently treated with commercial bleach, i.e., Clorox (50% and 30%), (v/v) for 1 min,
then rinsed with sterile distilled water after each treatment to remove excess Clorox. Two drops of



Agronomy 2019, 9, 778 3 of 12

Tween 20 were added with 50% of Clorox. Then samples were treated with 70% ethanol (v/v) for 1 min,
followed by rinsing three times with sterile distilled water. Samples were blot dried on sterile tissue
paper before being cultured.

2.2. Induction of Direct Regeneration

The nodal region was excised (approximately 1.0 cm in height) from the mother plant and cultured
in sterile tubes containing MS media supplemented with various concentrations of IAA and Kin.
All cultures were maintained in a culture room at 25 ± 1 ◦C for 16 h light and 8 h dark under 1000 lux
(14–15 µmol m−2 s−1) of light intensity. The morphology of the resulting regenerants (number of shoots,
leaves, and roots), as well as production of callus, were observed for 4 weeks. The multiplication index
was also analyzed by calculating the number of newly formed shoots per initial shoot tip recorded [30].
Experiments were conducted in triplicates of n = 10 and followed a randomized complete block design
(RCBD). Data analysis was conducted using analysis of variance (ANOVA) and Duncan’s multiple
range test (DMRT) at 5% significance level.

2.3. Acclimatization

Fifteen rooted plantlets with fully expanded leaves were acclimatized on 6 different types of
sterilized commercial potting mixture, which are black soil, red soil, black soil/red soil (1:1), black
soil/compost (1:1), red soil/compost (1:1) and black soil/red soil/compost (1:1:1). The potting mixtures
were purchased from a nearby nursery. Acclimatization was conducted at 25 ± 1 ◦C under 16-h
photoperiod with 1000 lux (14–15 µmol m−2 s−1) of light intensity. The plantlets were transferred to a
jam jar containing the different potting mixtures, sealed with plastic wrap, and left to acclimatize for
1 month. The plastic wrap was pricked in stages (at timely interval) until the jam jar was fully exposed.
Plantlets were subsequently transferred into plastic pots after 3 months. Survival data were collected
after 30, 60, and 90 days, and data were analyzed using analysis of variance (ANOVA) and Duncan’s
multiple range test (DMRT) at 5% significance level.

2.4. DNA Isolation and ISSR Analysis

Ten random in vitro plantlets were harvested and used for molecular analysis. Genomic DNA was
isolated using 50 mg fresh leaves of O. stamineus (after the third subculture) according to i-genomic Plant
DNA Extraction Mini Kit (iNtRON Biotechnology Inc., Gyeonggi-do, South Korea). The concentration
of DNA extracted was determined using a nanophotometer (IMPLEN, Munich, Germany).

Twenty ISSR primers [31] were tested in this study (Table S1 in Supplementary Material). PCR
amplification was performed in a total of 20 µl reaction volume containing 1 µl of template DNA at
concentration of 50 ng µl−1, 0.5 µl of primer at concentration of 0.50 µM, 0.2 µl at concentration of
20 mg µl−1 of BSA (Fermentas, Vilnius, Lithuania), 2.0 µl of buffer (EURx, Gdańsk, Poland) at 10X
concentration, 1.0 µl of dNTP’s at concentration of 4.0 mM (Invitrogen, Carlsbad, California, USA),
1.0 µl of MgCl2 (EURx, Gdańsk, Poland) at a concentration of 50 mM, 2.5 unit of 0.5 µl Taq polymerase
(EURx, Gdańsk, Poland). Then, 10x Pol Buffer C was used (enriched with two gel tracking dyes and
a gel loading reagent). Amplification was performed using Thermocycler (Eppendorf, Hamburg,
Germany) with the following conditions: Initial denaturation at 94 ◦C for 5 min, followed by 35 cycles
of denaturation step at 94 ◦C for 1 min, 1 min at specific annealing temperature, extension step at 72 ◦C
for 2 min, and 1 cycle of final extension step at 72 ◦C for 10 min. Next, 1.5% agarose gel (1X TAE)
was used to resolve the amplified product, then visualized under UV light. TrackItTM 1Kb Plus DNA
ladder (Invitrogen, Carlsbad, California, USA) was used for sizing of the DNA bands.

All data were compiled as a binary character matrix. The bands were scored as presence (1) and
absence (0) for each sample through manual scoring, and triple-checked to minimize errors. Faint
and ambiguous bands were excluded from the statistical analysis. Jaccard’s coefficients were used to
calculate the genetic dissimilarity between the samples using Darwin 5.0 software [32].
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3. Results

3.1. Direct Regeneration In Vitro

Emergence of new shoots could be observed after 1 week of culture. Most samples showed direct
regeneration of shoots and roots. Morphological data such as number of shoots, leaves, and roots, as
well as number of explants producing callus, were collected for 4 weeks (Tables 1 and 2). No roots
and callus formation were observed in control media; MS basal (Tables 1 and 2). Generally, media
supplemented with combinations of Kin and IAA hormones showed better production of shoots and
leaves than media supplemented with either Kin or IAA only.

Table 1. Effects of single hormone on number of shoots, multiplication index, leaves and roots per
explant, and percentage (%) of explant producing callus.

MS +
Hormone
(mg L−1)

Number of
Shoots per

Explant

Multiplication
Index

Number of
Leaves per

Explant

Number of
Roots per
Explant

Percentage (%) of
Explant Producing

Callus

Control 2.67 ± 0.09 a 1.67 ± 0.09 a 4.21 ± 0.32 a NR NR
0.5 Kin 2.90 ± 0.11 a 1.89 ± 0.11 b 8.93 ± 0.47 b 0.31 ± 0.10 a 93.33 ± 0.05 b
1.0 Kin 3.77 ± 0.16 b 2.77 ± 0.16 b 11.70 ± 0.70 c 1.03 ± 0.30 a 40.00 ± 0.09 a
1.5 Kin 4.00 ± 0.32 b 3.00 ± 0.32 b 15.10 ± 0.15 d 0.34 ± 0.12 a 90.00 ± 0.06 b
2.0 Kin 3.90 ± 0.23 b 2.90 ± 0.23 b 13.00 ± 1.09 c 0.23 ± 0.10 a 96.67 ± 0.03 b
0.5 IAA 3.63 ± 0.09 b 2.63 ± 0.09 b 9.23 ± 0.49 b 2.93 ± 0.64 b 50.00 ± 0.09 a
1.0 IAA 2.62 ± 0.13 a 1.62 ± 0.13 a 8.69 ± 0.55 b 4.00 ± 0.74 bc 80.00 ± 0.07 b
1.5 IAA 2.55 ± 0.11 a 1.55 ± 0.11 a 9.28 ± 0.65 b 3.31 ± 0.61 bc 96.67 ± 0.03 b
2.0 IAA 2.63 ± 0.12 a 1.63 ± 0.12 a 7.77 ± 0.67 b 4.60 ± 0.65 c 96.67 ± 0.03 b

Data represent mean value ± standard error (SE) with 30 explants in each treatment. Means with different letters
within the same column are significantly different at p < 0.05, according to Duncan’s multiple range test (DMRT).
Kin, Kinetin; IAA, indole-acetic acid; NR, no response.

Table 2. Effects of combination hormones on number of shoots, multiplication index, leaves and roots
per explant, and percentage (%) of explant producing callus.

MS + Hormone
(mg L−1)

Number of Shoots
Per Explant

Multiplication
Index

Number of Leaves
per Explant

Number of
Roots per
Explant

Percentage (%) of
Explant Producing

Callus

Control 2.67 ± 0.09 a 1.67 ± 0.09 a 4.21 ± 0.32 a NR NR
0.5 Kin + 0.5 IAA 2.93 ± 0.14 ab 1.93 ± 0.14 ab 10.20 ± 0.65 b 0.73 ± 0.21 abcd 100.00 ± 0.00 b
0.5 Kin + 1.0 IAA 3.23 ± 0.11 abcd 2.23 ± 0.11 abcd 12.70 ± 0.51 bcde 1.60 ± 0.28 de 93.33 ± 0.05 b
0.5 Kin + 1.5 IAA 3.13 ± 0.20 abc 2.13 ± 0.19 abc 11.20 ± 0.58 b 1.07 ± 0.42 bcde 80.00 ± 0.07 a
0.5 Kin + 2.0 IAA 2.87 ± 0.14 ab 1.87 ± 0.14 ab 12.11 ± 0.84 bcd 1.93 ± 0.59 e 96.67 ± 0.03 b
1.0 Kin + 0.5 IAA 3.77 ± 0.16 ab 2.77 ± 0.16 cdefg 11.30 ± 1.01 bc 1.80 ± 0.60 cde 93.33 ± 0.05 b
1.0 Kin + 1.0 IAA 4.53 ± 0.25 cdefg 3.53 ± 0.25 g 12.03 ± 0.86 bcd 1.47 ± 0.48 de 96.67± 0.03 b
1.0 Kin + 1.5 IAA 4.10 ± 0.16 efg 3.10 ± 0.16 efg 10.52 ± 0.60 b 0.10 ± 0.07 a 100.00 ± 0.00 b
1.0 Kin + 2.0 IAA 4.43 ± 0.17 g 3.43 ± 0.18 g 11.60 ± 0.91 b 0.43 ± 0.18 abc 96.67 ± 0.03 b
1.5 Kin + 0.5 IAA 4.23 ± 0.28 fg 3.23 ± 0.28 fg 15.80 ± 0.89 ef 0.07 ± 0.05 a 70.00 ± 0.09 a
1.5 Kin + 1.0 IAA 3.93 ± 0.29 defg 2.93 ± 0.29 defg 15.53 ± 1.29 ef 0.27 ± 0.14 abc 100.00 ± 0.00 b
1.5 Kin + 1.5 IAA 3.40 ± 0.17 abcde 2.40 ± 0.17 abcde 12.11 ± 0.87 bcd 0.15 ± 0.08 ab 100.00 ± 0.00 b
1.5 Kin + 2.0 IAA 4.20 ± 0.26 fg 3.20 ± 0.26 fg 15.23 ± 1.12 def 0.70 ± 0.23 abcd 93.33 ± 0.05 b
2.0 Kin + 0.5 IAA 5.57 ± 0.42 h 4.57 ± 0.42 h 20.53 ± 1.91 g 0.73 ± 0.27 abcd 93.33 ± 0.05 b
2.0 Kin + 1.0 IAA 3.60 ± 0.24 bcdef 2.60 ± 0.24 bcdef 16.83 ± 1.21 f 1.69 ± 0.29 de 100.00 ± 0.00 b
2.0 Kin + 1.5 IAA 4.20 ± 0.36 fg 3.20 ± 0.36 fg 14.50 ± 1.42 cdef 0.27 ± 0.15 abc 96.67 ± 0.03 b
2.0 Kin + 2.0 IAA 4.40 ± 0.27 g 3.40 ± 0.27 g 15.07 ± 1.08 def 0.83 ± 0.30 abcd 96.67 ± 0.03 b

Data represent mean value ± standard error (SE) with 30 explants in each treatment. Means with different letters
within the same column are significantly different at p < 0.05, according to Duncan’s multiple range test (DMRT).
Kin, Kinetin; IAA, indole-acetic acid; NR, no response.

The presence of Kin (singly applied) in the media was found to improve production of new shoots
and leaves, but did not affect root formation (Table 1). Contrasting results were observed when only
IAA was added to media, where it only aided root formation but yielded no effect on shoot or leaf
production (Table 1). Supplementation of high Kin concentration (1.0–2.0 mg L−1) yielded the most
number of shoots and leaves among all single PGR treatments (Table 1).
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When both PGRs were used in combination, production of new shoots and leaves were observed
to be significantly improved. As shown in Table 2, addition of 2.0 mg L−1 Kin plus 0.5 mg L−1 IAA in
the media (identified as the optimum regeneration media) resulted in the highest number of shoots
(5.57 ± 0.42) and leaves (20.53 ± 1.91) per explant. The optimum regeneration media also yielded the
highest multiplication index (4.57 ± 0.42) among other treatments. However, combined PGRs were
observed to reduce production of roots, where more number of roots were produced when only IAA
was added in the media (Tables 1 and 2).

3.2. Production of Callus

In contrast to the control (cultures on MS basal), all cultures produced on MS media supplemented
with PGRs (either singly applied or combined) showed production of callus, indicating that callus
induction in this species relied on supplementation of PGRs (Tables 1 and 2). However, the degree of
callus production was observed to be non-uniform and not concentration-dependent, except when the
media was added with IAA (singly applied). The lowest percentage of explants producing callus was
observed in MS media supplemented with 1.0 mg L−1 Kin (40%) and 0.5 mg L−1 IAA (50%). On the
other hand, more than 70% of the explants produced callus when cultured on MS media added to with
both IAA and Kin (Table 2).

3.3. Acclimatization

In this study, most of the regenerated plantlets were successfully acclimatized (Table 3). Only
plantlets with fully expanded roots and leaves were used as samples in this assessment (Figure 1).
After 30 days of acclimatization, only plantlets transplanted into potting mixture PD and PF showed
100% survival rate. However, the survival rate of the acclimatized plantlets on potting mixture PD
declined after 60 days. Data analysis also indicated that potting mixture containing only black soil
(PA) was the most unfavorable medium for acclimatization of this species, as it resulted in the highest
decrease of survival rate with time (Table 3). On the other hand, the best medium for acclimatization of
O. stamineus plantlets was observed to be potting mixture PF (1:1:1 ratio of black soil/red soil/compost),
as 100% of the plantlets survived after 90 days of acclimatization (Table 3).
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Table 3. Acclimatization of regenerated plantlets of Orthosiphon stamineus.

Sample ID Potting Mixture Survival % after
30 Days

Survival % after
60 Days

Survival % after
90 Days

PA Black soil 66.67 ± 12.60 ab 40.00 ± 13.09 a 26.67 ± 11.82 a

PB Red soil 57.14 ± 12.78 a 57.14 ± 12.78 ab 57.14 ± 12.78 b

PC Black soil + red soil 78.57 ± 10.60 abc 64.33 ± 12.37 abc 64.33 ± 12.37 bc

PD Black soil + compost 100.00 ± 0.00 c 92.31 ± 6.63 cd 92.31 ± 6.63 cd

PE Red soil + compost 86.67 ± 9.09 bc 86.67 ± 9.09 bcd 80.00 ± 10.69 bcd

PF Black soil + red soil + compost 100.00 ± 0.00 c 100.00 ± 0.00 d 100.00 ± 0.00 d

Data represent mean value ± standard error (SE) with 15 explants in each treatment. Means with different letters
within the same column are significantly different at p < 0.05, according to Duncan’s multiple range test (DMRT).

3.4. ISSR Analysis
Ten out of 20 tested ISSR primers produced satisfactory amplification of bands in this study (data

not shown). Bands observed were fairly clear (Figure 2). A total of 610 scorable bands were generated
from 10 random O. stamineus in vitro plantlets (Table 4). The total number of bands amplified per
primer varied from 36 to 100 per primer. The range of amplification was between 300 to 2500 bp. Only
4 primers (UBC845, UBC836, UBC841, and UBC856) showed polymorphism with 7.32% polymorphism
in total number of bands.
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Figure 2. Polymerase chain reaction (PCR) amplification products obtained with inter-simple sequence
repeat (ISSR) markers; (a) Primer UBC841, (b) Primer UBC835, and (c) Primer UBC855. Lane M:
Molecular marker (100 bp–15 kbp); Lane Mp: Mother plant; Lanes OS1–OS10: In vitro-raised Ortosiphon
stamineus plantlets.



Agronomy 2019, 9, 778 7 of 12

Table 4. Primer used in ISSR polymorphism analysis, number and size of amplified fragments of
Orthosiphon stamineus.

Primer
Code(UBC)

Sequence
5′–3′

Annealing
Temperature

(◦C)

Total
Number of

Bands
Amplified

Number of
Scorable

Bands per
Primer

No. and
Frequency of
Polymorphic

Bands per Primer

Range of
Amplification

(bp)

UBC807 (AG)8T 46.5 68 8 0 500–2000
UBC829 (TG)8C 52.5 80 8 0 600–1300
UBC835 (AG)8YC 50.0 59 7 2 (28.57%) 550–2500
UBC836 (AG)8YA 48.0 68 11 1 (9.90%) 400–2300
UBC840 (GA)8YT 46.5 49 6 0 300–1300
UBC841 (GA)8YC 52.0 36 5 2 (40.00%) 400–2500
UBC845 (CT)8RG 47.5 71 13 1 (7.69%) 400–1800
UBC854 (TC)8RG 50.0 40 10 0 500–1800
UBC855 (AC)8YT 53.0 100 10 0 400–2000
UBC856 (AC)8YA 54.0 39 4 0 700–1500

Total 610 82 6 (7.32%)

Very low genetic distance values (about 0.1) were recorded between all samples (Table 5).
This confirmed the clonal identity of the samples and that no somaclonal variation had resulted from
the PGR treatments. Other than that, the morphology of the leaves of the in vitro grown plantlet
and the mother plant was also compared. Figure 3 shows the morphology of a leaf from an in vitro
grown Orthosiphon stamineus plantlet having a similar pattern with that of the mother plant. Both
leaves showed serrated margin and visible pinnate veins. The uniform morphological characteristics
between the mother plant and in vitro grown plantlet further strengthen the ISSR analysis results, thus
confirming the clonal nature of the plantlets.

Table 5. Genetic distance based on Jaccard distance coefficient for of 10 random in vitro grown O.
stamineus (OS) plantlets.

OS1 OS2 OS3 OS4 OS5 OS6 OS7 OS8 OS9 OS10

OS2 0.110625
OS3 0.077377 0.110625
OS4 0.021594 0.110625 0.077377
OS5 0.021594 0.110625 0.077377 0.021594
OS6 0.077377 0.110625 0.077377 0.077377 0.077377
OS7 0.077377 0.110625 0.077377 0.077377 0.077377 0.077377
OS8 0.077377 0.110625 0.077377 0.077377 0.077377 0.077377 0.000000
OS9 0.077377 0.110625 0.077377 0.077377 0.077377 0.077377 0.077377 0.077377
OS10 0.077377 0.110625 0.077377 0.077377 0.077377 0.077377 0.000000 0.000000 0.077377
Mp 0.124336 0.124336 0.124336 0.124336 0.124336 0.124336 0.124336 0.124336 0.124336 0.124336

Mp, mother plant; OS1 – OS10, in vitro-raised Ortosiphon stamineus plantlets.
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4. Discussion

Various PGRs have been used in tissue culture studies. Most tissue culture studies conducted
on Orthosiphon employed the use of BAP (6-benzylaminopurinehormone) [18,33–35]. On the other
hand, the current study evaluated the effectiveness of Kinetin as the exogenous cytokinin in improving
shoot induction of this species. Both Kinetin and BAP were reported to generate high response (up
to 90%) in tissue culture of this species [36]. BAP was reported to be better for induction of multiple
shoots, while Kinetin was found to induce longer shoot length compared to BAP [20,35,37]. In this
study, 1.5–2.0 mg L−1 Kinetin supplemented singly was recorded to yield the highest number of
shoots, similar to a previous report [20]. On the other hand, IAA was identified as the best auxin in
adventitious root formation from leaf explants of O. stamineus, better than IBA and NAA [38]. Similar
observation was recorded in this study, where media supplemented with 2.0 mg L−1 IAA was observed
to produce the highest number of roots per explant (4.60 ± 0.65). Nevertheless, other studies have
reported that IBA is a more effective rooting inducer than IAA [33,39–41]. However, it was observed
that application of Kinetin together with IAA was not able to induce regeneration of roots.

Acclimatization of in vitro grown plantlets is a very crucial step, as it determines the success of
any plant tissue culture experiment. During field transfer, in vitro grown plantlets are often unable to
cope with the environmental conditions, such as exposure to high light intensity [42] and to compete
with soil microbes [43]. One of the major limiting factors affecting the survival of acclimatized plantlets
is humidity [42,43]. Gradually reducing humidity during hardening of the plantlets is key in ensuring
survival of in vitro grown plantlets when taken ex vitro. In this study, the in vitro O. stamineus
regenerants were gradually exposed to reduced levels of humidity, thus generating high survival
percentages in all potting mixtures tested. A 100% survival rate was maintained, even after 90 days
of acclimatization, when the regenerants were grown on potting mixture PF, suggesting that 1:1:1
ratio of black soil/red soil/compost is the most suitable acclimatization medium for this species. The
composition of potting mixture PF ensures good aeration with excellent water holding capacity, thus
supporting the growth and survival of the plantlets after acclimatization.

Other than that, one of the main aims of mass propagation of plants through tissue culture is
to generate clonal plantlets with superior quality. Thus, ensuring the genetic uniformity of tissue
culture-raised plants is important for mass production of elite crops or cultivars such as rice [44],
cotton [45], and sugarcane [46], as well as for conservation of endangered plant species [47–49].
Furthermore, plant tissue culture also allows for uniform production of clonal plants to be used as plant
factories for production of novel and important bioactive compounds with medicinal properties [50,51].
Many marker systems have been used in assessments of genetic variation among clonal plants, such as
random amplified polymorphic DNA (RAPD), inter-simple sequence repeat (ISSR), simple sequence
repeat (SSR), and amplified fragment length polymorphism (AFLP). ISSR has been reported as a more
effective molecular marker than RAPD and SSR [52–55]. Various reports have indicated that ISSR
can reveal higher polymorphism than RAPD, such as in studies on Tilletia indica [56]. Usage of ISSR
markers reveals a larger number of polymorphic fragments per primer than RAPD because of the
occurrence of abundant SSR regions [57]. Due to this, ISSR has been suggested as an alternative to
replace RAPD in genetic diversity assessment of coconut germplasm [52]. Moreover, ISSR is also
able to detect higher similarity index than RAPD [55,58], possibly due to the abundant and highly
polymorphic nature of the ISSR microsatellites caused by slippage in DNA replication [58]. ISSR has
been widely used to help ascertain the clonal fidelity and to reveal any occurrence of somaclonal
variation among tissue culture plants, such as Magnolia sirindhorniae Noot. & Chalermglin [48], Abutilon
indicum [59], Fritillaria dagana [60], Eleusine coracana (L.) Gaertn. [61], Smallanthus sonchifolius (Poepp.
and Endl.) H. Robinson [31], Morus sp. [62], and bamboos [31,63].

Considered as one of the most important medicinal plants in Malaysia, Ortosiphon stamineus
is widely planted in the country to support the nation’s growing herbal industry [64]. However,
environmental factors such as availability of soil nutrients, as well as other biotic and abiotic stresses,
have been reported to influence and in some cases, hamper the production of important secondary
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metabolites in field-grown plants [65–67]. In this study, usage of ISSR markers revealed 7.32%
polymorphism and low genetic variation among the randomly collected samples. The low genetic
distance among the tested samples confirms the clonal nature of the in vitro O. stamineus regenerants
produced in this study. Thus, the in vitro regeneration protocol reported in this study is beneficial
for both researchers and industry players alike, and is suitable for commercial mass propagation of
this species.

5. Conclusions

Optimum regeneration media for micropropagation of O. stamineus has been successfully identified
(MS media supplemented with 2.0 mg L−1 Kin plus 0.5 mg L−1 IAA) and yielded the highest number
of shoots (5.57 ± 0.42) and leaves (20.53 ± 1.91) per explant. A 1:1:1 ratio of black soil/red soil/compost
(potting mixture PF) was found to be the best acclimatization medium for this species, resulting in
100% survival percentage after 90 days of ex vitro transfer. Inter-simple sequence repeat (ISSR) was
found to be a very useful tool to determine genetic differences among 10 randomly collected in vitro
samples of O. stamineus. Very low polymorphism (7.32%) was detected between all samples, thus
ascertaining the clonal nature of the plantlets produced in this study.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/9/12/778/s1,
Table S1: List of primers used in the analysis [31].
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