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Abstract: This article analyzed the wheat yield variabilities and water footprints under projected
future climate based on wheat yield sensitivity to past (1980–2017) trends of maximum temperature
(Tmax), minimum temperature (Tmin), solar radiation (Rn) and rainfall (P) for the semi-arid condition
of Punjab, Pakistan. The past and projected future trends of the climate variables were identical
featuring prominent Tmin rise than Tmax accompanied by Rn and P declines. Based on the past
influences and the projected future trends of the climate variables, Tmin was the principal driver of
wheat yield decline followed by the Tmax, P and Rn. Wheat evapotranspiration and net irrigation
water requirement declined due to the influence of both decrease of growing season length and Rn

for the first half of 21st-century, and this trend reversed during the second half of 21st-century. These
phenomena were caused by different degree of climate warming between the two-time slices. Due to
future wheat yield decline and a gradual rise in green water scarcity the blue and grey water footprints
rise consistently particularly during 2nd-time slices. CO2 enrichment showed limited mitigation
potential of nullifying the warming-induced threats on future wheat yield and water footprints.
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1. Introduction

Multi-sectoral impact assessment and mitigation of climate change had been an inspiration for
numerous scientific explorations in the near past and will continue in the future. Among others, the
agriculture sector is often regarded as the prime target of adverse climate change impacts due to
its undeniably higher climate-reliance for its sustenance [1,2]. A rise is expected in frequencies and
intensities of climate-driven natural calamities like floods and droughts, governed by climate warming
and rainfall variations, all around the globe [3].

From the standpoint of an agriculture-dependent economy like Pakistan such climate change
trends are eminently alarming due to the country’s over-reliance on irrigated agriculture and low
adaptive capacity. In 2012, Pakistan ranked 8th among 180 other nations at Germanwatch Global
Climate Risk Index; and was placed at 16th position among 170 other nation of the world at Maplecroft
Food security Index [4,5]. Ineffective use of scanty water supplies and climate change are the driving
factors responsible for low agricultural production and food shortage in the country [6,7]. Wheat is the
staple crop; accounting for more than 50% of daily calorific intake and its availability and accessibility
dictates the country’s food security conditions [8]. According to the World Food Program, despite
having a good wheat harvest in 2014, up to 47% of the country’s population was food insecure led by
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widespread malnutrition, uneven food distribution and water shortage [9,10]. Thus, understanding
the future wheat yield variabilities and water consumption patterns is critical for food security of
Pakistan [10–12].

Climate change can affect both crop yields and water consumption patterns simultaneously. For
instance, climate warming could enhance the crop water requirements/consumptions, while inducing
yield declines at the same time [2]. During the last 30 years, Pakistan has witnessed a prominent surge
in the annual and wheat seasonal temperatures across most weather stations [13,14]. Regarding the
rainwater availability, different climate models showed contrasting tendencies of both reductions and
increases in the annual rainfalls across the country [9]. Laghari, et al. [15] suggested that accelerated
glacier melting might result in a short-term increase in surface water supplies in Indus river of Pakistan,
the water availability would significantly decline by the 2045–2065. Agricultural productivity across
various agro-ecological zones of Pakistan in terms of yields of staple crops such as wheat and rice is
also projected to decline in the future [9,11,12].

For Pakistan, the future wheat yield decline and water-stress risks are most likely to be accentuated
because of already existing wide mismatches between crop water requirements and rain and irrigation
water availabilities [9,16,17]. The country relies on irrigated agricultural lands lying under arid to
semi-arid conditions for wheat production and climate-related yield decline threats are very severe for
such lands [11,12]. Food security of the growing population of Pakistan is counting on sustainable
and/or improved wheat yield production from these arid and semi-arid lands facing extreme climate
variations [7,9].

Water footprint (WF) concept offers a calculation framework to quantify the volumetric water
consumption per unit of a crop yield production as well as the volume of water polluted during the
crop production process [18,19]. In the agriculture sector, the total volumetric water consumption per
unit of crop yield production (m3ton–1) is categorized as the green water footprint (WFgreen), blue
water footprint (WFblue) and grey water footprint (WFgrey). The WFgreen and WFblue represent the rain
and irrigation water consumption, respectively; whereas, the WFgrey accounts for the water usage for
dissipating the pollutant loads generated from various material inputs such as fertilizers, pesticides
and herbicides during the crop production process [20–22]. Approximately 98% of Pakistan’s wheat
production comes from the Indus basin which has one of the highest WFblue in the world [22,23].

Understanding the source-wise (rain and irrigation) water consumption in crop production plays
a vital role in agricultural water management [24,25]. Crop WF could be used as a multidimensional
index to capture the climate-driven variations in green-, blue- and grey-water consumptions for future
wheat yield production under climate change. Therefore, this study mainly aimed at predicting
the future wheat variability and WFs under semi-arid conditions of Punjab which is the largest
agricultural province in Pakistan. Specifically, the study objectives include: (1) to identify the most
influential climate variable based of wheat yield sensitivity to past climate conditions; (2) to detect the
detrimental climate change impacts on wheat yield; and (3) to understand the water consumption
patterns associated with future wheat yield production for better management of green and blue water
resources under semi-arid conditions of Punjab, Pakistan.

2. Materials and Methods

2.1. Study Area

In Pakistan, Punjab province is the largest wheat producer in terms of cultivation area and yield
(Figure 1a). This work focused on the district Faisalabad, Punjab, Pakistan. The Pakistan Meteorological
Department (PMD) has established a regional agro-meteorological (RAMC) experimental site in this
district to monitor the climate-induced influences on wheat yield variations (Figure 1b). The study
district was selected due to the data available from the wheat field trials conducted at the RAMC site
from 2004–2017 (annual crop reports available at http://namc.pmd.gov.pk/crop-reports.php). Winter
and summer are the cropping seasons in the study area lasting from November–April and May–October,
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respectively. Wheat is the major winter crop and its sowing starts from middle of November to the
end of December and harvesting lasts from mid-March to mid-April [14]. In this area, canal water
is the primary irrigation water source as the poor-quality groundwater is not suitable for irrigated
agriculture [26,27]. Arid to semi-arid climate dominates the agricultural lands and up to 70% of the
annual rainfall occurs as monsoon rainfalls during the summer season. Average wheat seasonal
maximum and minimum temperatures ranged from 23–27 ◦C and 3–8 ◦C, respectively; whereas wheat
seasonal cumulative rainfall varied from 85–210 mm. Well-drained, sandy clay loam is the dominant
soil texture in this area [28]. The methodology followed to achieve the study objectives is explained in
Figure 2.
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2.2. Sensitivity Analysis of Wheat Yield to Climate Variables

A sensitivity analysis was conducted to identify the most influential climate variable dictating
the past wheat yield trends in the study area. PMD provided a daily climate data set comprising of



Agronomy 2019, 9, 744 4 of 20

maximum temperature (Tmax), minimum temperature (Tmin), solar radiation (Rn), relative humidity
(RH), wind speed (u2) and rainfall (P) from 1980–2017. For the study district, the wheat production,
cultivation area and yield (Y) data from 1980–2017 were also extracted from the Crop Reporting
Service database, Government of Punjab, Pakistan (http://www.crs.agripunjab.gov.pk). Wheat seasonal
(Nov–Apr) averaged Tmax and Tmin and seasonal cumulative Rn and P were included in the wheat Y
sensitivity analysis. Change trends of wheat Y and the climate variable during the 1980–2017 were
examined via simple linear regression with the year as an independent variable using the Equation (1):

Vx = Tx ×Year + Ix (1)

where Vx represents the climate variable or wheat Y; Tx is the slope of the regression line representing
the trend of the climate variable and Ix represents the intercept of the regression model. Statistical
significance of the Tx was evaluated at 5% significance level.

Crop yields mostly exhibit increasing trends (TY) due to the improvements which occurred over
time in the crop production and management practices and seed quality etc. [29]. The TY (kgha−1/year)
comprised of a climate component (TY_Cli) which is only influenced by the climate factors and a
management component (TY_Man) which defines the collective influences of crop production and
management practices and other random factors (negligible). In order to establish climate-yield
relationships, the TY_Cli and TY_Man must be isolated. The TY_Man can be removed from the TY by
adopting de-trending techniques in which the inter-annual sensitivity of crop Y to climate variables
is considered as a proxy for long-term climate change influences [30]. The first-difference method is
a common de-trending approach which describes the absolute difference in Y or climate variables
between two consecutive years [31]. We used the first-difference approach to de-trend the wheat TY

during the 1980–2017 for the subsequent isolation of TY_Cli and TY_Man. The wheat TY was divided
into the two components as follows [32,33]:

TY = TY_Cli + TY_Man + e (2)

where TY is actual wheat Y trend (kgha−1/year); TY_Cli, TY_Man and e represent the TY component
influenced by the climate change, crop production and management practices and random factors
(negligible), respectively. Wheat Y sensitivity to the climate variables was defined using the simple
multiple linear regression. A relationship was established between the first-difference values of wheat
Y and climate variables as follows [30,31,34]:

∆Y = STmax × ∆Tmax + STmin × ∆Tmin + SRn × ∆Rn + SP × ∆P + ε (3)

where ∆Y, ∆Tmax, ∆Tmin, ∆TRn and ∆TP represent the first-difference values of the corresponding
variables; STmax, STmin, SRn and SP are the coefficients of regression model representing the wheat
Y sensitivity to the Tmax (kgha−1/◦C), Tmin (kgha−1/◦C), Rn (kgha−1/MJm−2) and P (kgha−1/mm),
respectively; whereas, the ε is the intercept of the regression model. Finally, the TY_Cli was estimated
using the following [31]:

TY_Cli = STmax × TTmax + STmin × TTmin + SRn × TRn + SP × TP (4)

where the TTmax, TTmin, TRn and TP represent the trends of respective climate variable from the
Equation (1) during the 1980–2017; while other parameters are same as defined in the Equation (3).
The TY_Man was estimated indirectly using the Equation (2). Different climate variables could have
varying relative contribution towards TY_Cli depending on their influences and change trends. For
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instance, the relative contribution of Tmax (RCTmax) towards wheat TY_Cli from 1980–2017 in the study
district was estimated as [31]:

RCTmax =
STmax × TTmax

|STmax × TTmax|+ |STmin × TTmin|+ |SRn × TRn|+ |SP × TP|
× 100% (5)

where all the parameters in Equation (5) are same as defined in the Equations (1)–(4). Finally, the
relative contribution of the four key climate variables was estimated using the Equation (5).

2.3. Future Climate Change Projection

In this study, future climate change projections were also included to predict their influences
on wheat Y variations and water footprint. Outputs from nine global circulation models (GCM),
listed in Table 1, forced under two representative concentration pathway scenarios (RCP 4.5 and 8.5)
were employed to produce the future climate during two time slices: 2030s (2021–2050) and 2060s
(2051–2080). The biases in the GCM-simulated and station-observed time series of Tmax, Tmin, Rn,
RH, u2 and P during the baseline period of 1980–2010 were corrected through the quantile mapping
(QM) approach.

Table 1. Summary of global circulation models (GCMs) used in the study.

GCM Institution Horizontal Resolution

BCC-CSM-1.1 Beijing Climate Center, China Meteorological
Administration ~1.25◦ × 1.875◦

BNU-ESM College of Global Change and Earth System Science,
Beijing National University ~2.8◦ × 2.8◦

GFDL-ESM2M NOAA/Geophysical Fluid Dynamic Laboratory (GFDL) ~2.0◦ × 2.5◦

CCSM4 US National Center for Atmospheric Research ~0.9◦ × 1.25◦

HadGEM2-ES UK—Meteorological Office—Hadley Center ~1.25◦ × 1.875◦

inmcm4 Russian Institute of Numerical Mathematics (INM) ~1.5◦ × 2.0◦

MIROC5
University of Tokyo, Japanese National Institute for

Environmental Studies (NIES), and Japan Agency for
Marine-Earth Science and Technology (JAMSTEC)

~1.4◦ × 1.4◦

MPI-ESM-LR Max Plank Institute of Technology (low resolution) ~1.9◦ × 1.875◦

MPI-ESM-MR Max Plank Institute of Technology (mixed resolution) ~1.9◦ × 1.875◦

QM approach tailors the cumulative distribution functions (CDF) of the GCM-simulated and
station-observed time series of a specific climate variable during the baseline so that both the time
series exhibit consistent means, variances and other statistical properties. Same empirical CDFs are
then applied to the GCM-simulated future time series. More precisely, the misrepresented values in
the GCM-simulated time series are replaced by the station-observed time series values given both the
values have identical percentiles. Extensive discussion about the working principals, applications,
and extensions of the QM and its performance comparison with other bias-correction approaches can
be referenced from the literature [29,35–37]. In this work, a daily QM based bias-correction of the six
major climate variables was conducted during the baseline and future time slices. CDFs of the daily
Tmax, Tmin, Rn and P for the wheat season (Nov–Apr) during the baseline (1980–2010) before and after
the application of QM are shown in Supplementary Figure S1. The bias-corrected outcomes of wheat
seasonal Tmax, Tmin, Rn and P are also presented in Supplementary Figure S2.
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2.4. Wheat Yield, Evapotranspiration and Net Irrigation Water Requirement

The water-driven Aquacrop model v5.0 developed by Food and Agriculture Organization (FAO)
was used to simulate the soil water balance, wheat growth and Y process while maintaining robustness,
simplicity and accuracy [38,39]. By incorporating the atmospheric evaporative demands via FAO
Penman–Monteith reference crop evapotranspiration (ETo) and keeping track of incoming and outgoing
water fluxes, the Aquacrop executes a daily water balance to determine actual crop evapotranspiration
(ET); which in turn is further subdivided into transpiration (Tr) and evaporation (E) depending on the
crop canopy cover and soil moisture status as follows [40–42]:

ET = E + Tr (6)

E = Kr ×Ke × ETo (7)

Tr = KS ×KcTr × ETo (8)

where: Kr is the evaporation reduction coefficient, varying between 0 and 1, with the smaller value
being indicative of insufficient water availability in the top 30 cm soil layer relative to the atmospheric
evaporative demands; Ke is the soil evaporation coefficient, varying between 0 and 1, with smaller and
larger values being proportional to and representatives of the fraction of soil surface covered by the
canopy cover and exposed to the open atmosphere (no canopy cover), respectively; Ks is the water
stress coefficient being equal to 1 and 0 at the field capacity and permanent wilting point, respectively;
and the KcTr is the crop transpiration coefficient (0–1). Aquacrop transforms the seasonal cumulative Tr
from the Equation (8) into the above-ground biomass (B) by multiplying it with the water productivity
(WP*). The harvestable proportion of the B, which is the final crop yield (Y), is estimated from the
product of B and crop-specific harvest index (HI) as follows:

B = WP∗ ×
∑

Tr (9)

Y = HI × B (10)

where: B and Y are tonha−1; WP* is kg per m2 per mm of water transpired and normalized for the
atmospheric CO2 concentration and ETo, and HI is % [38–42].

In this study calibrated and validated Aquacrop input files, prepared using the experimental data
collected from the RAMC Faisalabad site, were used to simulate the wheat ET, net irrigation water
requirement (NIWR) and Y under the baseline and projected future climate. Detailed information
about the experimental layout, wheat cultivars and soil type data used for Aquacrop calibration and
performance evolution can be referenced from Ahmad, et al. [43]. The calibrated Aquacrop model
was run in conjunction with bias-corrected climate change projections to simulate the future wheat
NIWR, ET and Y. The sowing date was fixed as 20 November and the future NIWR was estimated
by generating an automatic irrigation schedule in Aquacrop irrigation module with no water stress.
Irrigation was set to trigger automatically when 50% of the total available water in the soil has been
depleted to bring the root zone total soil moisture back to field capacity. Two simulation sets were
run for modelling the wheat Y responses to atmospheric CO2 concentration: the first accounting for
only the climate variations while keeping the CO2 concentrations at the baseline level of 390 ppm; and
the second accounting for the combined effect of climate variations and elevated CO2 concentrations
according to RCP 4.5 and 8.5 storylines [43].

2.5. Wheat Water Footprint

Frequently used [25,39,44] water footprint concept [18,19] was employed in this study to examine
the wheat Y and water-usage (both P and NIWR) responses to projected future climate change. The
term “water footprint” refers to the water consumption per unit production of a specific product. In
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the agriculture sector, total water footprint (WFtotal) designates the volumetric water consumption per
unit of crop yield production (m3ton−1); and is further categorized as the WFgreen, WFblue and WFgrey.
The WFgreen and WFblue represent the P and irrigation water consumption, respectively; whereas,
the WFgrey accounts for the water usage for dissipating the pollutant loads generated from various
material inputs such as fertilizer, pesticide and herbicide applications during the crop production
process [20–22]. The WFblue and WFgreen of future wheat Y production in the study area were estimated
as follows [20,21,45]:

WFblue = 10×
ETblue

Y
= 10×

NIWR
Y

(11)

WFgreen = 10×
ETgreen

Y
= 10×

(ET−NIWR)
Y

(12)

where ETblue and ETgreen represent the P and irrigation water loss via evapotranspiration, respectively;
factor 10 transforms the water depth (mm) into the water volume per area (m3ha−1); Y is the
Aquacrop-simulated wheat yield (tonha−1) from the Equation (10). The degradative water usage for
the wheat production-related pollutants dilution was estimated as follows [20,21,46]:

WFgrey =
α×AR

cmax × cnat
×

1
Y

(13)

where AR is the chemical (fertilizer, pesticide and herbicide etc.) application rate (kg ha−1); α is the
leaching-runoff fraction (%); and cmax and cnat are the maximum acceptable and natural concentration
(mg L−1) of the considered pollutant in water, respectively.

Most WFgrey-related studies primarily focus on the pollution caused by Nitrogenous fertilizer
application; which in turn governs the nitrate (NO3) leaching into the surface and sub-surface
water bodies [3,22,23]. In this study, considering the Nitrogen AR for irrigated wheat production in
Punjab [47]; the Equation (13) was employed to estimate only the Nitrogen related WFgrey by using the
α = 10%; cmax = 10 mgL−1; and cnat = 0 [22,23,46]. Finally, the WFtotal were estimated as follows

WFtotal = WFgreen + WFblue + WFgrey (14)

The projected future wheat Y, NIWR and ET from the Equations (6)–(10) transformed the WFtotal

into WFblue, WFgreen, and WFgrey components by using the Equations (11)–(14). For climate change
impact assessment on wheat Y and WFs, baseline period was from 2004–2017 for which the field trial
data were available from the RAMC Faisalabad site. For WFgrey estimations, the Nitrogen AR was
assumed to remain unchanged in the future. Finally, variations in the 2030s- and 2060s-WFs from the
respective baseline-averaged values, with and without the CO2 enrichment, were examined under the
moderate (RCP 4.5) and extreme (RCP 8.5) emission scenarios.

3. Results and Discussion

3.1. Wheat Yield Sensitivity to Historic Climate

Inter-seasonal TTmax, TTmin, TRn and TP estimated from Equation (1) for the wheat season
(Nov–Apr) from 1980–2017 are shown in Figure 3. TTmin was statistically significant and the TTmax, TRn

and TP were statistically non-significant during the study period. TTmin and TTmax were increasing;
whereas, the TRn and TP were declining over time (1980–2017). Both TTmin and TTmax were greater than
anticipated global average temperature change of 0.13 ◦C decade−1 reported in the Intergovernmental
Panel on Climate Change 5th Assessment Report (Figure 3a,c) [25,48]. In terms of magnitude and
consistency, the TTmin was distinctly higher and prominent than those of the other climate variables.
The respective change trends of Tmin, Tmax and P from their long-term average values were prominent
after 2000; whereas, the negative Rn change trends were prominent during the last 5 years of the study
period (Figure 3b,d,f,h).
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The wheat production, cultivation area and Y trends during the 1980–2017 are shown in Figure 4.
Wheat TY was increasing significantly at the rate of 0.04 tonha−1/year or 36 kgha−1/year which seems to
contradict the regional and global scale studies [11,12,49,50] constantly highlighting the warming-driven
wheat Y decline risks. Generally, the long-term crop TY is positive because of improvements in crop
production and management practices and seed quality; thus hiding the negative climate change
influences [33].

In our study area, the wheat TY_Clim was estimated to be −7 kgha−1/year representing the wheat Y
loss rate solely attributed to climate change in the study area. Despite the clearly evident harmful shifts
in the thermal and rainfall regimes over course of the study period, the wheat TY was positive because
of a gradual rise in cultivation area (Figure 4c) and improved production technologies. However, from
2010 and onwards the wheat Y change from its long-term average value was almost stagnant while the
cultivation area was constantly rising (Figure 4c–f). This implied that TY_Cli has started to surpass the
TY_Man and the current wheat cultivation and management practices would lag behind in sustaining
the current wheat positive TY under future climate change trends.

Wheat Y sensitivity to climate variables and their RC, depending on their respective influences
and trends were estimated using the Equations (3)–(5) and the results are shown in Figure 5. STmin was
highest followed by the STmax, SP and SRn; and wheat Y was negatively related to Tmin and Tmax and
positively related to Rn and P, respectively. Compared to STmax and STmin, the SP was noticeably lower
as wheat production in this area is primarily irrigated (Figure 5a). Contribution rate analysis showed
that all the four climate variables had negative RC in an order according to their respective influences.
Tmin was the major contributor because of its highest STmin and TTmin followed by the Tmax, P and Rn.
Considering the difference between the STmin and STmax, the RCTmin and RCTmax differ greatly as the
Tmax, despite being the second most influential climate variable, had a much lower TTmax than that of
Tmin (Figure 5b). RCP and RCRn were also negative regardless of their positive relations with wheat Y
as indicated by the SP and SRn in Figure 5a. Regardless of their mode of influence, the past trends of
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the four key climate variables were changing so as to contribute negatively towards wheat TY in the
study area (Figure 5b).
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Figure 5. (a) Wheat yield sensitivity to maximum temperature (Tmax), minimum temperature (Tmin),
solar radiation (Rn) and rainfall (P); and (b) relative contribution of Tmin, Tmax, Rn and P to wheat TY_cli

during the 1980–2017. The sensitivity values of Rn and P are multiplied by 100 for better visualization.

3.2. Projected Future Climate Change

The projected changes in monthly, seasonal and annual Tmax, Tmin, Rn and P, after bias correction
and averaged across nine GCMs, forced under RCP 4.5 and 8.5 during the baseline (1980–2010), the
2030s and 2060s are shown in Figure 6. Future climate of the study area in terms of Tmax, Tmin, Rn and P
changed according to the past (1980–2017) climate change trends. Hence, the study area would undergo
an intense and hotter thermal regime shift featuring prominent Tmin rise than Tmax accompanied by
substantial seasonal cumulative Rn and P declines.
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Figure 6. Monthly-, seasonal- and annual-scale variability of (a) maximum temperature (Tmax),
(c) minimum temperature (Tmin), (e) solar radiation (Rn) and (g) rainfall (P) during the baseline
(1980–2010), the 2030s (2021–2050) and the 2060s (2051–2080). The right-hand panel (Figure 6b,d,f,h)
shows the change of average baseline Tmax, Tmin, Rn and P during the future time slices. The boxes in
Figure 12a–h represent the inter-quartile range (IQR), the whiskers extend up to 1.5 times the IQR, the
dots and horizontal lines inside the boxes represent mean and median, respectively, and outliers are
shown as hollow dots outside the boxes. Monthly values are plotted on the left y-axes and seasonal
and annual values are plotted on the right y-axes.

Anticipated climate warming (both Tmax and Tmin) was clearly evident at monthly, seasonal and
annual scales irrespective of the GCM, RCP scenario (4.5 and 8.5) or future time slice (the 2030s and
2060s) (Figure 6a–d). The monthly Tmax and Tmin increased marginally during the first two months
of the wheat season and then increased dramatically during the rest of the growing season. Change
magnitude of the projected climate warming featured various noteworthy trends: Tmin > Tmax, wheat
season > annual, RCP 8.5 > RCP 4.5 and 2060s > 2030s. The temperature change projections were
supported by the last 30-year wheat seasonal average temperature inclines which were detected
across most weather stations in Pakistan [13,14,51]. Trends and magnitudes of future climate warming
projected in our study were also supported by the previous studies predicting the 21st-century climate
of Pakistan [12,28,52].

Future wheat was particularly exposed to climate warming during the middle of the growing
season from January to March. This could lead to a shortened grain filling duration but accelerating
the gran filling rates which would not compensate for the probable Y reduction induced by shortened
grain filling duration. Tmin is often associated with nighttime and prominent nighttime temperature
increase could affect the spikelet fertility, grains per spike, grain size, and quality. Generally, wheat is
particularly vulnerable to heat stress at anthesis and grain-filling stages [50]; for instance, the wheat Y
in Pakistan is very sensitive to the mid-March higher temperature during grain filling stage [12].
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Future monthly Rn also followed the temperature change trends but in a downward direction.
Compared to the baseline, the future monthly Rn declined slightly during the first half; and greatly
during the latter half of wheat season (Figure 6c) regardless of time slice or RCP. Contrary to the
temperature, future Rn decline was prominent at the annual scale for both RCPs and time slices. For
RCP 4.5, the seasonal- and annual-scale future Rn-decline was higher than its RCP 8.5 counterpart
during both the time slices. Overall, the projected Rn decline with respect to baseline was: Annual >

wheat season, RCP 4.5 > RCP 8.5 and 2030s > 2060s (Figure 6c,d).
The magnitude and direction of monthly, seasonal and annual P change in future varied greatly

across GCMs. The future P declined or remained unchanged for most of the GCMs while rising P
tendencies were envisaged by few GCMs. However, the GCM-ensemble wheat seasonal and annual
P decreased with respect to the baseline (Figure 6g,h). Future monthly P increased from Nov–Jan;
and then it declined drastically during the rest of the wheat season for both RCPs and time slices
(Figure 6g,h). Hence, the future wheat would face severe P shortages along with excessive warming
and Rn declines during the middle of the growing season which could decelerate the photosynthesis
rates, increase the tiller infertility rate at Tmax = 36 ◦C and reduce the HI at Tmin >14 ◦C [12,49].

Similar to the Rn decline, future drying was also pronounced at the annual scale. Future wheat
seasonal P decline was notably higher under RCP 4.5 than RCP 8.5; while the annual P decline remained
almost the same under the two RCPs during both time slices. On average, 45–53% and 13–30% seasonal
P decline; whereas 56%–60% and 53%–59% annual P decline was predicted by the end of the 21st
century under the RCP 4.5 and 8.5, respectively.

3.3. Future Climate Change Impacts on Wheat ET and NIWR

Wheat growing season length (GSL) recorded at the study site from 2004–2017 ranged between
116–145 days with an average of 130 days; while the seasonal cumulative growing degree days during
this period ranged between 1545–1841 ◦C with an average of 1698 ◦C. From here on the term “baseline”
refers to 2004–2017 period for which the wheat experimental data were available. Baseline average
wheat seasonal cumulative ETo, ET and NIWR (simulated by Aquacrop) and P received during the
GSL were 342, 285, 188, and 98 mm, respectively. Figure 7 presents the Aquacrop simulated GSL, ETo,
ET, P and NIWR averaged during the baseline, the 2030s and 2060s. Projected wheat seasonal ETo,
ET, and NIWR variations from the baseline during the 2030s and 2060s under the two RCPs with and
without the CO2 enrichment are shown in Figure 8. The seasonal cumulative ETo, ET and NIWR for the
wheat declined in the future which was odd as climate warming is often associated with accelerated ET
rates and consequently higher NIWR [1,25]. The three parameters showed higher declining tendency
during the 2030s particularly under RCP 4.5. Overall, the future wheat seasonal ETo, ET and NIWR
had the minimum, medium and maximum declining likelihood, respectively, across the time slices or
RCPs. Ambient temperature primarily controls the crop phenological progress and its increase often
reduces the GSL due to rapid heat unit assimilations during crop growth stages [50]. Sultana, et al. [11]
predicted a 12–14-day wheat-GSL shrinkage against future climate warming of up to 5 ◦C for the arid
and semi-arid conditions of Pakistan. Bhatti, et al. [53] identified higher declining probabilities of ET
and NIWR for the early maturing wheat in Punjab, Pakistan. In our study, future climate warming
reduced the wheat-GSL by 10–12 days for RCP 4.5 and 13–20 days for RCP 8.5 by the end of 2080. This
could explain the unexpected decline in the wheat seasonal cumulative ETo, ET and NIWR.
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Figure 8. Projected changes in wheat-seasonal cumulative (a) reference crop evapotranspiration (ETo),
(b) actual crop evapotranspiration (ET) and (c) net irrigation water requirements (NIWR) during the
future time slices. The boxes in Figure 8a–c represent the inter-quartile range (IQR), the whiskers extend
up to 1.5 times the IQR, the dots and horizontal lines inside the boxes represent mean and median,
respectively, and outliers are shown as hollow dots outside the boxes. Each box shows the difference of
baseline average values with the mean value of nine GCMs.

Because of moderate climate warming and the subsequent GSL shortening, the wheat seasonal
cumulative ETo and ET declined only under RCP 4.5 during the 2030s; however, for rest of the cases,
they increased because of intense climate warming despite a significant GSL shortening. During the
2030s, average ETo change was –32 mm and +95 mm; and during 2060s, it was +65 mm and +125 mm
for RCP 4.5 and 8.5, respectively (Figure 8a). Future wheat ET change patterns were comparable
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with that of ETo but with slightly smaller change magnitudes. Contrary to conspicuously higher ETo

change, mildly positive changes in future wheat ET were projected regardless of the RCP or time slice.
During the 2030s, average ET change was −20 mm and +1 mm; and during 2060s, it was +3 mm and
+12 mm for RCP 4.5 and 8.5, respectively (Figure 8b).

Difference between the crop ET and seasonal P determines the NIRW; which, in our study, showed
the maximum declining likelihood compared to the ETo or ET. An average NIWR change of −32 mm
and −45 mm during the 2030s; and −17 mm and +5 mm during the 2060s was shown for RCP 4.5
and 8.5, respectively (Figure 8c). The unexpectedly larger decline in 2030s-NIWR under RCP 8.5 was
because of a positive seasonal-P change of +28 mm during this duration. The 2030s-P increased by 4%
and 30%; and the 2060s-P decreased by 7% and 20% under RCP 4.5 and 8.5, respectively. It should be
noted here that the future P-change trends discussed in Section 3.3 and shown as Figure 6h correspond
to the general winter cropping season from Nov–Apr (180 days); whereas, the abovementioned future
P-change trends correspond specifically to the wheat GSL (baseline average value = 130 days) as
simulated by the Aquacrop.

Future wheat seasonal ETo, ET and NIWR were most likely to increase during the 2060s particularly
under RCP 8.5. Furthermore, the difference between the 2030s- and 2060s-IQRs of the ETo, ET and
NIWR change was larger for RCP 4.5 and smaller for RCP 8.5, respectively. Positive changes in wheat
seasonal ETo, ET and NIWR were projected to begin at the start of the 2060s for the RCP 4.5; and
during the middle of 2030s for RCP 8.5, respectively. Results suggested that frequent irrigations would
be necessary to compensate for the warming-driven ET rates during a shortened growth span in
the second half of the 21st century. CO2 enrichment did not induce any noticeable difference in the
aforementioned ETo, ET and NIWR change patterns during the 2030s; however, during the 2060s, the
CO2 enrichment partially contributed in limiting the warming-driven ETo, ET and NIWR increase
tendencies regardless of RCP scenario (Figure 8a–c).

In addition to the probable contraction in wheat-GSL, the Rn decline could also be a leading cause
of the drops in future ETo and ET identified in this study. Cloud cover, air pollutants and manmade
aerosols affect the sunshine hours and Rn. An increased concentration of manmade aerosols and
other air pollutants in the atmosphere can greatly reduce the incident Rn on a specific area [54]. This
could explain the Rn decline detected in our study during the baseline and future time slices. Energy
availability at the crop surface in the form of Rn plays a critical role in determining the water removal
rate as ETo or ET [55]. ETo is highly sensitive to Rn and is directly related to Rn change patterns across
various agro-ecological zones in Pakistan [14,56]. Based on a seasonal scale sensitivity analysis, we
found that both the wheat ETo and ET were highly sensitive and positively related to Rn followed
by Tmax, Tmin and P, respectively (results not shown here). This implied that future Rn decline could
also limit the warming-driven ETo and ET increments. Our results showed that a combination of GSL
and Rn decline would counteract the warming-driven ETo and ET increments during the 2030s; but
it would not withhold these ETo and ET increments during the 2060s, ultimately resulting in higher
NIWR during this duration. Similar conclusions were drawn by the recent studies from various parts
of the world, in which the observed declines in ET and NIWR of various crops, despite a clear climate
warming, were attributed either to GSL shortening and/or Rn declines [1,3,25,57].

3.4. Future Climate Change Impacts on Wheat Y and WFs

The average baseline wheat Y was 4.6 tonha−1. Comparison between average wheat Y simulated
by the Aquacrop during the baseline, the 2030s and 2060s under the two RCPs with and without
CO2 enrichment is shown in Figure 9. Moderate to severe wheat Y-declines at the baseline CO2

concentration of 390 ppm were detected during the 2030s and 2060s, respectively, regardless of RCPs.
A potential rise in CO2 concentrations from 415–530 ppm (RCP 4.5) and from 420–750 ppm (RCP 8.5)
partially and fully mitigated the wheat Y-declines prompted by future climate warming by end of the
2060s. Under RCP 8.5, despite the severe warming, 8–17% increments in future wheat Y were detected
during the two time slices. Hence, by doubling the CO2 concentration up to 750 ppm under RCP
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8.5, beneficial CO2 enrichment influences surpassed the negative climate warming impacts (Figure 9).
These deductions were supported by findings of global-scale studies aimed at examining a composite
climate change impact on future wheat Y resulting from the interplay between CO2 enrichment and
climate warming [58,59].Agronomy 2019, 9, x FOR PEER REVIEW 8 of 20 
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Figure 9. Projected wheat yield under future climate change during the two time slices.

Wheat WFs for each season of the baseline period estimated using the Equations (11)–(14) are
presented in Figure 10. The average WFgreen, WFblue, WFgrey and WFtotal during the baseline were
210, 407, 347, and 964 m3ton−1, respectively. Comparison between the average WFs during the
baseline, the 2030s and 2060s are shown in Figure 11. Figure 12 shows the wheat WFs change from the
baseline, averaged across nine GCMs, with and without the CO2 enrichment during the time slices
and RCP scenarios.
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Figure 12. Projected changes in (a) green water footprint (WFgreen), (b) blue water footprint (WFblue),
(c) grey water footprint (WFgrey) and (d) total water footprints (WFtotal) for wheat during the future
time slices. The boxes in Figure 12a–d represent the inter-quartile range (IQR), the whiskers extend
up to 1.5 times the IQR, the dots and horizontal lines inside the boxes represent mean and median,
respectively, and outliers are shown as hollow dots outside the boxes. Each box shows the difference of
baseline average values with the mean value of nine GCMs.

Without the CO2 enrichment, the future WFs increased because of the wheat Y drop prompted by
climate warming. Regarding the time slices, the 2060s-WFs increments were higher than those of the
2030s for both RCPs; whereas, for RCPs, the 8.5-WFs increments were higher than those of the 4.5 for
both time slices except WFgreen which showed an opposite changing tendency. Wheat WFblue increased
gradually to compensate for the green water scarcity originating from the projected drop in future P by
the end of 2080. Under the enhanced CO2 concentrations, the wheat-WFs reduced negligibly during
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the 2030s and notably during the 2060s particularly under RCP 8.5 because of wheat-Y increments
stimulated by CO2 enrichment (Figure 11).

Despite having similar change trends, change magnitudes of the three WFs were not the same.
Without CO2 enrichment, the 2030s-WFgreen increments were larger than the 2060s-WFgreen for both
RCPs; indicating more green water availability per unit wheat Y or more Y production per unit of
green water input. The 2030s duration featured moderate P increments which could explain the more
green-water availability in this case. Because of higher wheat Y decline and a gradual rise in green
water scarcity, the 2060s-WFgreen constantly declined irrespective of the RCPs or CO2 enrichment.

Contrary to the WFgreen, the rises in WFblue and WFgrey during the 2060s were higher than those
of the 2030s because of the higher blue and grey water consumption per unit of the wheat Y production
ultimately leading to higher WFtotal. WFblue and WFgrey increments during the 2030s were marginal
because of a combination of moderate risks of climate warming, drying and wheat Y decline. During
the 2060s, the warming-driven ET increments combined with a heightened risk of Y and P decline
resulted in substantially higher blue and grey water consumption per unit of wheat Y production
(Figure 12a–d). Among the three WFs, only the WFgrey exhibited a constantly increasing pattern
irrespective of the time slice, RCP or atmospheric CO2 concentration (Figure 12c). Although the
WFgrey declined because of wheat Y improvement caused by CO2 enrichment, its future changes
remained consistently positive compared to the baseline. Results suggested that 50–150 m3ton−1 of
extra greywater would be required to dissipate the pollutant load generated from Nitrogen application
during future wheat production (Figure 12c).

The WFgreen, WFblue and WFtotal estimates produced in this study were slightly lower than the
benchmark wheat WFs estimates at basin scale in Pakistan [22,23,60]. We calibrated the Aquacrop
model using the field-scale wheat-trials data which were conducted under the optimum conditions
such as without moisture, fertilizer or any other input restriction. Wheat Y from such trials could
be very high compared to the farmer’s field and regional and basin-scale Y estimates. In our study,
slightly higher wheat Y estimates were simulated by the Aquacrop, thus; producing slightly lower WFs
values. Moreover, we only consider the optimum NIWR for WFblue estimation without considering
the conveyance losses or excessive field-scale irrigation water applications by the farmers which are an
integral part of WF-estimation framework at a larger spatial scale. However, replacing the Aquacrop
simulated wheat Y with regional statistical Y would produce similar WFs outcomes according to the
benchmark values provided in the aforementioned studies. This work mainly examines the wheat-WFs
change-patterns in place of their absolute values to approximate the future climate change impacts on
wheat water management in the study area. Based on various climate change probabilities examined
in this study, the most unlikely and extreme scenario of RCP 8.5 exhibited the prospects of CO2

enrichment convincingly nullifying the future warming during the 2nd half of the 21st century. For the
rest of the cases, the mitigation potential of CO2 enrichment against future climate warming remained
limited. This implied that CO2 enrichment could partially compensate for the detrimental warming
impacts on the future wheat Y and WFs in semi-arid regions of Punjab, Pakistan.

4. Conclusions

Wheat yield sensitivity to past climate change trends and its variability under projected future
climate change was quantified for semi-arid conditions of Punjab, Pakistan. Identical past and projected
future climate change trends were shown with wheat yield being inversely related to growing seasonal
averaged Tmin and Tmax, and directly related to growing seasonal cumulative Rn and P. Tmin was the
principal climate driver contributing to the past and future wheat yield trends followed by the Tmax,
P and Rn. Warming-driven accelerated crop development process enhanced the yield failure risks
in the future early-maturing wheat crop; however, the CO2 enrichment partially compensated the
detrimental warming impacts on wheat yield. Wheat ET and NIWR declined due to the influence
of both decrease of growing season length and Rn for the first half of 21st-century, and this trend
reversed during the second half of 21st-century. Rampant green water scarcity exerted extra pressure
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of blue water resources, particularly during 2nd-time slices while extra greywater was required to
dissipate the pollutant load generated from Nitrogen application. Devising irrigation schedules to
maximize the green water consumption could alleviate the anticipated stresses on blue water resources.
Adaptation of field management practices to maintain and improve soil organic matter and water
holding capacities can also reduce the grey and blue water consumptions by facilitating the nutrient
and blue water availability to the crop. Development of suitable crop cultivars having better heat
tolerance and Rn interception capacity could be a long-term and reliable solution for maintaining
wheat yields under future climate warming.
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Figure S1: Comparison between cumulative distribution functions (CDF) of daily (a) Tmax, (b) Tmin, (c) solar
radiation (Rn) and (d) rainfall (P) for wheat season (Nov–Apr) during the baseline (1980–2010) period. Each red
and green line represents an ensemble-output of nine GCMs before and after bias correction, Figure S2: Bias
correction of wheat seasonal-average Tmax, Tmin, solar radiation (Rn) and seasonal cumulative rainfall (P) during
the baseline (1980–2010) period. The box represents the interquartile range (IQR), the whiskers extend up to 1.5
times the IQR, the dot and horizontal line inside the box represent mean and median, respectively, and outliers are
shown as hollow dots outside the box

Author Contributions: Conceptualization, M.J.A. and K.-S.C.; methodology, M.J.A. and K.-S.C.; software,
M.J.A., G.-H.C and S.-H.K; validation, G.-H.C and S.-H.K.; formal analysis, M.J.A.; investigation, G.-H.C and
S.-H.K.; resources, M.J.A., K.-S.C; data curation, G.-H.C and K.-S.C; writing—original draft preparation, M.J.A.;
writing—review and editing, M.J.A., K.-S.C. visualization, M.J.A., G.-H.C and S.-H.K.; supervision, K.-S.C.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sun, S.K.; Li, C.; Wu, P.T.; Zhao, X.N.; Wang, Y.B. Evaluation of agricultural water demand under future
climate change scenarios in the Loess Plateau of Northern Shaanxi, China. Ecol. Indic. 2018, 84, 811–819.
[CrossRef]

2. Sun, S.; Wu, P.; Wang, Y.; Zhao, X.; Liu, J.; Zhang, X. The impacts of interannual climate variability and
agricultural inputs on water footprint of crop production in an irrigation district of China. Sci. Total Environ.
2013, 444, 498–507. [CrossRef] [PubMed]

3. Shrestha, S.; Chapagain, R.; Babel, M.S. Quantifying the impact of climate change on crop yield and water
footprint of rice in the Nam Oon Irrigation Project, Thailand. Sci. Total Environ. 2017, 599–600, 689–699.
[CrossRef] [PubMed]

4. Khan, M.A.; Khan, J.A.; Ali, Z.; Ahmad, I.; Ahmad, M.N. The challenge of climate change and policy response
in Pakistan. Environ. Earth Sci. 2016, 75, 1–16. [CrossRef]

5. Abid, M.; Schilling, J.; Scheffran, J.; Zulfiqar, F. Climate change vulnerability, adaptation and risk perceptions
at farm level in Punjab, Pakistan. Sci. Total Environ. 2016, 547, 447–460. [CrossRef] [PubMed]

6. Archer, D.R.; Forsythe, N.; Fowler, H.J.; Shah, S.M. Sustainability of water resources management in the
Indus Basin under changing climatic and socio economic conditions. Hydrol. Earth Syst. Sci. 2010, 14,
1669–1680. [CrossRef]

7. Bhatti, A.M.; Suttinon, P.; Nasu, S. Agriculture water demand management in Pakistan: A review and
perspective. Internet J. Soc. Soc. Manag. Syst. 2009, 9, 1–7.

8. Arshad, M.; Amjath-Babu, T.; Krupnik, T.J.; Aravindakshan, S.; Abbas, A.; Kächele, H.; Müller, K. Climate
variability and yield risk in South Asia’s rice-wheat systems: Emerging evidence from Pakistan. Paddy Water
Environ. 2017, 15, 249–261. [CrossRef]

9. Kirby, M.; Ahmad, M.-u.-D.; Mainuddin, M.; Khaliq, T.; Cheema, M.J.M. Agricultural production, water use
and food availability in Pakistan: Historical trends, and projections to 2050. Agric. Water Manag. 2017, 179,
34–46. [CrossRef]

10. Khaliq, T.; Gaydon, D.S.; Ahmad, M.-u.-D.; Cheema, M.J.M.; Gull, U. Analyzing crop yield gaps and their
causes using cropping systems modelling—A case study of the Punjab rice-wheat system, Pakistan. Field
Crop. Res. 2019, 232, 119–130. [CrossRef]

http://www.mdpi.com/2073-4395/9/11/744/s1
http://dx.doi.org/10.1016/j.ecolind.2017.09.048
http://dx.doi.org/10.1016/j.scitotenv.2012.12.016
http://www.ncbi.nlm.nih.gov/pubmed/23295177
http://dx.doi.org/10.1016/j.scitotenv.2017.05.028
http://www.ncbi.nlm.nih.gov/pubmed/28494294
http://dx.doi.org/10.1007/s12665-015-5127-7
http://dx.doi.org/10.1016/j.scitotenv.2015.11.125
http://www.ncbi.nlm.nih.gov/pubmed/26836405
http://dx.doi.org/10.5194/hess-14-1669-2010
http://dx.doi.org/10.1007/s10333-016-0544-0
http://dx.doi.org/10.1016/j.agwat.2016.06.001
http://dx.doi.org/10.1016/j.fcr.2018.12.010


Agronomy 2019, 9, 744 18 of 20

11. Sultana, H.; Ali, N.; Iqbal, M.M.; Khan, A.M. Vulnerability and adaptability of wheat production in different
climatic zones of Pakistan under climate change scenarios. Clim. Chang. 2009, 94, 123–142. [CrossRef]

12. Hussain, J.; Khaliq, T.; Ahmad, A.; Akhter, J.; Asseng, S. Wheat Responses to Climate Change and Its
Adaptations: A Focus on Arid and Semi-arid Environment. Int. J. Environ. Res. 2018, 12, 117–126. [CrossRef]

13. Iqbal, M.A.; Penas, A.; Cano-Ortiz, A.; Kersebaum, K.; Herrero, L.; del Río, S. Analysis of recent changes in
maximum and minimum temperatures in Pakistan. Atmos. Res. 2016, 168, 234–249. [CrossRef]

14. Ahmad, M.J.; Choi, K.S. Influence of climate variables on FAO Penman–Monteith reference evapotranspiration
in the Upper Chenab Canal command area of Pakistan. Paddy Water Environ. 2018, 16, 425–438. [CrossRef]

15. Laghari, A.N.; Vanham, D.; Rauch, W. The Indus basin in the framework of current and future water resources
management. Hydrol. Earth Syst. Sci. 2012, 16, 1063–1083. [CrossRef]

16. Rasul, G.; Mahmood, A.; Sadiq, A.; Khan, S. Vulnerability of Indus delta to climate change in Pakistan. Pak. J.
Meteorol. 2012, 8, 89–107.

17. Rasul, G.; Chaudhry, Q.; Mahmood, A.; Hyder, K. Effect of temperature rise on crop growth and productivity.
Pak. J. Meteorol. 2011, 8, 53–62.

18. Hoekstra, A.Y. Green-blue water accounting in a soil water balance. Adv. Water Resour. 2019, 129, 112–117.
[CrossRef]

19. Hoekstra, A.Y. Water Footprint Assessment: Evolvement of a New Research Field. Water Resour. Manag.
2017, 31, 3061–3081. [CrossRef]

20. Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. The Water Footprint Assessment Manual:
Setting the Global Standard; Earthscan: Washington, DC, USA, 2011.

21. Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. Water Footprint Manual: State of the Art
2009; Water Footprint Network: Enschede, The Netherlands, 2009.

22. Mekonnen, M.M.; Hoekstra, A.Y. The green, blue and grey water footprint of crops and derived crop products.
Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [CrossRef]

23. Mekonnen, M.M.; Hoekstra, A.Y. A global and high-resolution assessment of the green, blue and grey water
footprint of wheat. Hydrol. Earth Syst. Sci. 2010, 14, 1259–1276. [CrossRef]

24. Velpuri, N.M.; Senay, G.B. Partitioning evapotranspiration into green and blue water sources in the
conterminous United States. Sci. Rep. 2017, 7, 6191. [CrossRef] [PubMed]

25. Zhao, Y.; Ding, D.; Si, B.; Zhang, Z.; Hu, W.; Schoenau, J. Temporal variability of water footprint for cereal
production and its controls in Saskatchewan, Canada. Sci. Total Environ. 2019, 660, 1306–1316. [CrossRef]
[PubMed]

26. Usman, M.; Liedl, R.; Shahid, M.A. Managing Irrigation Water by Yield and Water Productivity Assessment
of a Rice-Wheat System Using Remote Sensing. J. Irrig. Drain. Eng. 2014, 140, 401–422. [CrossRef]

27. Usman, M.; Liedl, R.; Kavousi, A. Estimation of distributed seasonal net recharge by modern satellite data in
irrigated agricultural regions of Pakistan. Environ. Earth Sci. 2015, 74, 1463–1486. [CrossRef]

28. Iqbal, M.A.; Eitzinger, J.; Formayer, H.; Hassan, A.; Heng, L.K. A simulation study for assessing yield
optimization and potential for water reduction for summer-sown maize under different climate change
scenarios. J. Agric. Sci. 2011, 149, 129–143. [CrossRef]

29. Miao, C.; Su, L.; Sun, Q.; Duan, Q. A nonstationary bias-correction technique to remove bias in GCM
simulations. J. Geophys. Res. Atmos. 2016, 121, 5718–5735. [CrossRef]

30. Kukal, M.S.; Irmak, S. Climate-Driven Crop Yield and Yield Variability and Climate Change Impacts on the
U.S. Great Plains Agricultural Production. Sci. Rep. 2018, 8, 3450. [CrossRef] [PubMed]

31. Liu, Y.; Chen, Q.; Ge, Q.; Dai, J.; Qin, Y.; Dai, L.; Zou, X.; Chen, J. Modelling the impacts of climate change
and crop management on phenological trends of spring and winter wheat in China. Agric. For. Meteorol.
2018, 248, 518–526. [CrossRef]

32. Dong, Z.; Pan, Z.; He, Q.; Wang, J.; Huang, L.; Pan, Y.; Han, G.; Xue, X.; Chen, Y. Vulnerability assessment
of spring wheat production to climate change in the Inner Mongolia region of China. Ecol. Indic. 2018, 85,
67–78. [CrossRef]

33. Troy, T.J.; Kipgen, C.; Pal, I. The impact of climate extremes and irrigation on US crop yields. Environ. Res.
Lett. 2015, 10, 054013. [CrossRef]

34. Adisa, O.M.; Botai, C.M.; Botai, J.O.; Hassen, A.; Darkey, D.; Tesfamariam, E.; Adisa, A.F.; Adeola, A.M.;
Ncongwane, K.P. Analysis of agro-climatic parameters and their influence on maize production in South
Africa. Theor. Appl. Climatol. 2018, 134, 991–1004. [CrossRef]

http://dx.doi.org/10.1007/s10584-009-9559-5
http://dx.doi.org/10.1007/s41742-018-0074-2
http://dx.doi.org/10.1016/j.atmosres.2015.09.016
http://dx.doi.org/10.1007/s10333-018-0636-0
http://dx.doi.org/10.5194/hess-16-1063-2012
http://dx.doi.org/10.1016/j.advwatres.2019.05.012
http://dx.doi.org/10.1007/s11269-017-1618-5
http://dx.doi.org/10.5194/hess-15-1577-2011
http://dx.doi.org/10.5194/hess-14-1259-2010
http://dx.doi.org/10.1038/s41598-017-06359-w
http://www.ncbi.nlm.nih.gov/pubmed/28733617
http://dx.doi.org/10.1016/j.scitotenv.2018.12.410
http://www.ncbi.nlm.nih.gov/pubmed/30743925
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000732
http://dx.doi.org/10.1007/s12665-015-4139-7
http://dx.doi.org/10.1017/S0021859610001243
http://dx.doi.org/10.1002/2015JD024159
http://dx.doi.org/10.1038/s41598-018-21848-2
http://www.ncbi.nlm.nih.gov/pubmed/29472598
http://dx.doi.org/10.1016/j.agrformet.2017.09.008
http://dx.doi.org/10.1016/j.ecolind.2017.10.008
http://dx.doi.org/10.1088/1748-9326/10/5/054013
http://dx.doi.org/10.1007/s00704-017-2327-y


Agronomy 2019, 9, 744 19 of 20

35. Sippel, S.; Otto, F.E.L.; Forkel, M.; Allen, M.R.; Guillod, B.P.; Heimann, M.; Reichstein, M.; Seneviratne, S.I.;
Thonicke, K.; Mahecha, M.D. A novel bias correction methodology for climate impact simulations. Earth
Syst. Dyn. 2016, 7, 71–88. [CrossRef]

36. Rockel, B. The Regional Downscaling Approach: A Brief History and Recent Advances. Curr. Clim. Chang.
Rep. 2015, 1, 22–29. [CrossRef]

37. Eum, H.-I.; Cannon, A.J. Intercomparison of projected changes in climate extremes for South Korea:
Application of trend preserving statistical downscaling methods to the CMIP5 ensemble. Int. J. Climatol.
2017, 37, 3381–3397. [CrossRef]

38. Steduto, P.; Hsiao, T.C.; Raes, D.; Fereres, E. AquaCrop—The FAO crop model to simulate yield response to
water: I. Concepts and underlying principles. Agron. J. 2009, 101, 426–437. [CrossRef]

39. Chukalla, A.; Krol, M.; Hoekstra, A. Green and blue water footprint reduction in irrigated agriculture: Effect
of irrigation techniques, irrigation strategies and mulching. Hydrol. Earth Syst. Sci. 2015, 19, 4877–4891.
[CrossRef]

40. Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E. Aquacrop the FAO crop model to simulate yield response to
water: II. Main algorithms and software description. Agron. J. 2009, 101, 438–447. [CrossRef]

41. Hsiao, T.C.; Heng, L.; Steduto, P.; Rojas-Lara, B.; Raes, D.; Fereres, E. AquaCrop—The FAO crop model to
simulate yield response to water: III. Parameterization and testing for maize. Agron. J. 2009, 101, 448–459.
[CrossRef]

42. Heng, L.K.; Hsiao, T.; Evett, S.; Howell, T.; Steduto, P. Validating the FAO AquaCrop model for irrigated and
water deficient field maize. Agron. J. 2009, 101, 488–498. [CrossRef]

43. Ahmad, M.J.; Iqbal, M.A.; Choi, K.S. Climate-driven constraints in sustaining future wheat yield and water
productivity. Agric. Water Manag. 2019. (First revision submitted on 21 October 2019)

44. Xinchun, C.; Mengyang, W.; Rui, S.; La, Z.; Dan, C.; Guangcheng, S.; Xiangping, G.; Weiguang, W.; Shuhai, T.
Water footprint assessment for crop production based on field measurements: A case study of irrigated
paddy rice in East China. Sci. Total Environ. 2018, 610–611, 84–93. [CrossRef] [PubMed]

45. Zhang, Y.; Huang, K.; Ridoutt, B.G.; Yu, Y. Comparing volumetric and impact-oriented water footprint
indicators: Case study of agricultural production in Lake Dianchi Basin, China. Ecol. Indic. 2018, 87, 14–21.
[CrossRef]

46. Franke, N.; Boyacioglu, H.; Hoekstra, A. Grey Water Footprint Accounting: Tier 1 Supporting Guidelines; Value
of Water Research Report Series No. 65; UNESCO-IHE: Delft, The Netherlands, 2013.

47. Fertilizer Use by Crop in Pakistan; Food and Agriculture Organization of the United Nations: Rome, Italy, 2004.
48. Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.;

Midgley, P.M. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY,
USA, 2013; p. 1535.

49. Asseng, S.; Foster, I.A.N.; Turner, N.C. The impact of temperature variability on wheat yields. Glob. Chang.
Biol. 2011, 17, 997–1012. [CrossRef]

50. Asseng, S.; Ewert, F.; Martre, P.; Rotter, R.P.; Lobell, D.B.; Cammarano, D.; Kimball, B.A.; Ottman, M.J.;
Wall, G.W.; White, J.W.; et al. Rising temperatures reduce global wheat production. Nat. Clim. Chang. 2015,
5, 143–147. [CrossRef]

51. Ahmad, W.; Fatima, A.; Awan, U.K.; Anwar, A. Analysis of long term meteorological trends in the middle
and lower Indus Basin of Pakistan: A non-parametric statistical approach. Glob. Planet. Chang. 2014, 122,
282–291. [CrossRef]

52. Islam, S.u.; Rehman, N.; Sheikh, M.M. Future change in the frequency of warm and cold spells over Pakistan
simulated by the PRECIS regional climate model. Clim. Chang. 2009, 94, 35–45. [CrossRef]

53. Bhatti, M.T.; Balkhair, K.S.; Masood, A.; Sarwar, S. Optimized shifts in sowing times of field crops to the
projected climate changes in an agro-climatic zone of Pakistan. Exp. Agric. 2016, 1–13. [CrossRef]

54. Liu, H.; Li, Y.; Josef, T.; Zhang, R.; Huang, G. Quantitative estimation of climate change effects on potential
evapotranspiration in Beijing during 1951–2010. J. Geogr. Sci. 2014, 24, 93–112. [CrossRef]

55. Allen, R.G.; Pereira, L.S.; Howell, T.A.; Jensen, M.E. Evapotranspiration information reporting: I. Factors
governing measurement accuracy. Agric. Water Manag. 2011, 98, 899–920. [CrossRef]

56. Adnan, S.; Ullah, K.; Khan, A.H.; Gao, S. Meteorological impacts on evapotranspiration in different climatic
zones of Pakistan. J. Arid Land 2017, 9, 938–952. [CrossRef]

http://dx.doi.org/10.5194/esd-7-71-2016
http://dx.doi.org/10.1007/s40641-014-0001-3
http://dx.doi.org/10.1002/joc.4924
http://dx.doi.org/10.2134/agronj2008.0139s
http://dx.doi.org/10.5194/hess-19-4877-2015
http://dx.doi.org/10.2134/agronj2008.0140s
http://dx.doi.org/10.2134/agronj2008.0218s
http://dx.doi.org/10.2134/agronj2008.0029xs
http://dx.doi.org/10.1016/j.scitotenv.2017.08.011
http://www.ncbi.nlm.nih.gov/pubmed/28803205
http://dx.doi.org/10.1016/j.ecolind.2017.12.045
http://dx.doi.org/10.1111/j.1365-2486.2010.02262.x
http://dx.doi.org/10.1038/nclimate2470
http://dx.doi.org/10.1016/j.gloplacha.2014.09.007
http://dx.doi.org/10.1007/s10584-009-9557-7
http://dx.doi.org/10.1017/S0014479716000156
http://dx.doi.org/10.1007/s11442-014-1075-5
http://dx.doi.org/10.1016/j.agwat.2010.12.015
http://dx.doi.org/10.1007/s40333-017-0107-2


Agronomy 2019, 9, 744 20 of 20

57. Acharjee, T.K.; Halsema, G.v.; Ludwig, F.; Hellegers, P. Declining trends of water requirements of dry season
Boro rice in the north-west Bangladesh. Agric. Water Manag. 2017, 180, 148–159. [CrossRef]

58. Carl-Friedrich, S.; Delphine, D.; Christoph, M.; Joshua, E.; Fahad, S.; Christian, F.; Wenfeng, L.; Xuhui, W.;
Thomas, A.M.P.; Wim, T.; et al. Crop productivity changes in 1.5 ◦C and 2 ◦C worlds under climate sensitivity
uncertainty. Environ. Res. Lett. 2018, 13, 064007.

59. Deryng, D.; Elliott, J.; Folberth, C.; Muller, C.; Pugh, T.A.M.; Boote, K.J.; Conway, D.; Ruane, A.C.; Gerten, D.;
Jones, J.W.; et al. Regional disparities in the beneficial effects of rising CO2 concentrations on crop water
productivity. Nat. Clim. Chang. 2016, 6, 786–790. [CrossRef]

60. Mekonnen, M.M.; Hoekstra, A.Y. Water footprint benchmarks for crop production: A first global assessment.
Ecol. Indic. 2014, 46, 214–223. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.agwat.2016.11.014
http://dx.doi.org/10.1038/nclimate2995
http://dx.doi.org/10.1016/j.ecolind.2014.06.013
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Sensitivity Analysis of Wheat Yield to Climate Variables 
	Future Climate Change Projection 
	Wheat Yield, Evapotranspiration and Net Irrigation Water Requirement 
	Wheat Water Footprint 

	Results and Discussion 
	Wheat Yield Sensitivity to Historic Climate 
	Projected Future Climate Change 
	Future Climate Change Impacts on Wheat ET and NIWR 
	Future Climate Change Impacts on Wheat Y and WFs 

	Conclusions 
	References

