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Abstract: Perception of the fruit tree canopy is a vital technology for the intelligent control of a
modern standardized orchard. Due to the complex three-dimensional (3D) structure of the fruit tree
canopy, morphological parameters extracted from two-dimensional (2D) or single-perspective 3D
images are not comprehensive enough. Three-dimensional information from different perspectives
must be combined in order to perceive the canopy information efficiently and accurately in complex
orchard field environment. The algorithms used for the registration and fusion of data from different
perspectives and the subsequent extraction of fruit tree canopy related parameters are the keys to
the problem. This study proposed a 3D morphological measurement method for a fruit tree canopy
based on Kinect sensor self-calibration, including 3D point cloud generation, point cloud registration
and canopy information extraction of apple tree canopy. Using 32 apple trees (Yanfu 3 variety)
morphological parameters of the height (H), maximum canopy width (W) and canopy thickness
(D) were calculated. The accuracy and applicability of this method for extraction of morphological
parameters were statistically analyzed. The results showed that, on both sides of the fruit trees, the
average relative error (ARE) values of the morphological parameters including the fruit tree height
(H), maximum tree width (W) and canopy thickness (D) between the calculated values and measured
values were 3.8%, 12.7% and 5.0%, respectively, under the V1 mode; the ARE values under the V2
mode were 3.3%, 9.5% and 4.9%, respectively; and the ARE values under the V1 and V2 merged mode
were 2.5%, 3.6% and 3.2%, respectively. The measurement accuracy of the tree width (W) under the
double visual angle mode had a significant advantage over that under the single visual angle mode.
The 3D point cloud reconstruction method based on Kinect self-calibration proposed in this study has
high precision and stable performance, and the auxiliary calibration objects are readily portable and
easy to install. It can be applied to different experimental scenes to extract 3D information of fruit tree
canopies and has important implications to achieve the intelligent control of standardized orchards.

Keywords: three-dimensional reconstruction; Kinect; three-dimensional point cloud; fruit tree canopy

1. Introduction

The canopy is the first part of fruit trees to contact with light and the outside environment; it is also
the main place to carry out respiration and photosynthesis. Studies of information perception show that
the canopy determines the growth of the fruit tree, and then affects the yield and economic benefits [1,2].
In order to make comprehensive research of canopies, we can reconstruct three-dimensional (3D)
objects of the real world digitally in a computer, and generate virtual 3D models [3,4]. To promote the
automation and information construction of the orchard, 3D reconstruction of plants can be applied to
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the fruit tree canopy. Canopy morphology and structure are visualized on computer, and relevant
parameter information such as canopy height and volume are extracted by the developed object-based
image analysis (OBIA) algorithm. These data can provide theoretical basis and technical support for
the intelligent control, monitoring, and management of orchards [5,6].

In the field of 3D reconstruction for fruit trees, Sansh and Rosll (2013) used a two-dimensional
(2D) terrestrial laser radar scanner (2DTLS) to establish a 3D dynamic measurement system [7,8].
In their work, a light detection and ranging (LIDAR) system was used to scan trees on both sides, and
the images from the two angles were merged to generate a 3D point cloud from which the fruit tree
canopy information was extracted. Nguyen et al. (2016) used an RGB-D(red, green, blue and depth)
camera to design image reconstruction that includes color information and 3D shape information [9],
and based on the apple colors and shapes, the fruits on the canopy were accurately detected and
located; this algorithm is suitable for robot picking and can estimate the output yield of an orchard.
Narváez (2016) used a drone to capture large-area orchards’ thermal infrared images, which were
merged with laser LIDAR data for 3D reconstruction [10], providing large-area 3D visual images in the
Global Navigation Satellite System (GNSS) environment for multiple orchards. Torres-Sánchez (2018)
proposed an OBIA algorithm for measuring the 3D geometric features of apricot trees, in which a
low-cost RGB camera carried in a drone was used to generate a measured point cloud followed by
technical analysis of the image [11]. In China, Yan (2000) and Hu (2014) used a multiple-image modeling
technique for achieving reconstruction and used a 90◦-difference image sequence to interactively adjust
the branch position information for obtaining a 3D model of fruit trees [12]. Sun et al. (2012) used
FastSCAN based on laser scanning to obtain the point cloud data of plant leaves and obtained 3D
models of various plant leaves by triangular meshing after preprocessing [13]. Sun et al. (2019) used an
autonomous Kinect v2 sensor position calibration to reconstruct 3D point clouds for high-throughput
plant phenotyping analysis and to extract the morphological parameters of plants [14]. Chen et al.
(2016) used a Microsoft Kinect sensor to capture 3D point cloud data. A viewpoint feature histogram
(VFH) descriptor for the 3D point cloud data then encodes the geometry and viewpoint, so an object
can be simultaneously recognized and registered in a stable pose, and the information is stored in a
database [15].

In the above reconstruction methods, one generated by an unmanned aerial vehicle (UAV, drone,
Trimble UX5, Trimble Navigation, Sunnyvale, CA, USA) equipped with cameras can perceive a large
area of multiple fruit trees [16], but the detection of the fruit tree details is not accurate enough.

In the current research, 2D laser radar and a monocular camera cannot provide comprehensive
information for the perception, the accuracy of using drones and laser radars cannot guide the practical
production, and the 3D point cloud established by RGB-D mainly focuses on the local branches under
a single visual angle, rendering the extracted information not comprehensive enough.

Moreover, due to the complex environment of the actual orchard, there are many factors affecting
the measurement, and the information using a single visual angle cannot meet the required accuracy of
the information extraction; information merging under multiple visual angles is thus needed. Therefore,
the self-calibration of sensor poses under multiple visual angles is the key issue to solve in canopy 3D
reconstruction for fruit trees [17,18].

In order to solve the fruit tree 3D reconstruction problem, this study proposed a fast 3D reconstruction
method based on RGB-D image self-calibration under the multiple-visual-angle mode. A Kinect
sensor was used for the self-calibration of poses and to quickly match RGB-D at multiple visual angles
for achieving 3D point cloud reconstruction. In this study, using apple trees (Yanfu 3 variety) as
the measurement object, manual measurements were compared with the morphological parameters
extracted from the 3D reconstruction calculation, and the relative error and correlation were analyzed
to provide a theoretical basis and support for fruit tree canopy 3D morphological information extraction
and measurement.
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2. Materials and Methods

2.1. Structure and Principle of the Measurement System

The measurement system of this method was composed mainly of a Kinect sensor, a graphic
workstation, a tripod, red, yellow and blue calibration balls (10 cm in diameter), and a 220 V mobile
power supply. The Kinect sensor (Kinect-v2, Microsoft, Redmond, WA, USA), used the version of
Kinect for Windows 2.0, consisting of a color camera and a depth sensor. The RGB and depth images
had resolutions of 1920 × 1080 px and 640 × 480 px, respectively. The frame rate was 30 fps, and the
measurement distance range of the target objects in this study was 170–320 cm. The tripod was used
in combination with the Kinect sensor for adjusting and fixing the angles and distance measurement
during the fruit tree measurements. The RYB calibration balls (one of each) were placed around the
target object for the self-calibration of the poses. The graphics workstation had an Intel core i5-2520M
processor, Windows 10 64-bit operating system, 4GB ECC RAM, and an NVIDIA GeForce GT 635M
graphics card. The software environment was a mixed programming environment (Visual Studio
2015 and MATLAB 2016a), and the software developed for the fruit tree canopy measurement was
based on Kinect2 SDK and C++ wrapper functions for Microsoft Kinect 2. Figure 1 shows a schematic
illustration of the measurement system structure. Specifically, Figure 1a shows a color image of the
fruit trees captured by Kinect and Figure 1b shows the image after depth and color matching for the
fruit trees.
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Figure 1. Schematic illustration of the measurement system structure: (a) color image captured;
(b) image after depth and color matching.

The measurement procedure of the fruit tree canopy 3D morphological measurement system based
on Kinect sensor self-calibration is shown in Figure 2. The first step was to initialize the measurement
parameters. An appropriate camera shooting position was selected considering the actual scene and
terrain conditions. The key factors included the measurement angle, measurement distance and
camera height (the measurement angle choice captured the whole fruit tree within the camera’s field of
view, the measurement distance was 150–350 cm and the camera was placed at half the height of a
given fruit tree). The RYB balls were placed around the trunk and it was verified that the three balls
were not obscured at any angle when the fruit tree was shot by the cameras. The second step was to
acquire fruit tree RGB-D images under multiple visual angles. According to the requirements and
the actual conditions, the required number of visual angles was determined. A nonfixed angle was
adopted in the visual angle acquisition (as long as it was verified that the visual angle acquisition can
meet the panoramic recovery requirements) and RGB-D images were then acquired by turns under
each visual angle. In this paper, we adopted two single visual angle measurement modes (V1 and
V2) and a double visual angle measurement mode (with V1 and V2 merged). The third step was to
generate the 3D point cloud for a single visual angle. Using the Kinect camera’s internal parameters,
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the single-visual-angle RGB-D images were converted into a 3D point cloud image. The fruit tree
bounding box segmentation and denoising were performed for the 3D point cloud. The fourth step
was to reconstruct the fruit tree 3D point cloud. The point cloud coordinates of the three balls under a
single visual angle were identified. According to the spherical coordinates of these calibration balls at
different angles, the corresponding spatial transition matrix was obtained. The matrix was applied
to the fruit tree point cloud under multiple visual angles to achieve the unification of the coordinate
system, thereby completing the coarse matching of the fruit tree 3D point cloud. Finally, the iterative
closest point (ICP) algorithm was used for self-registration to obtain the complete model of the fruit
tree 3D point cloud.
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2.2. Procedure of 3D Reconstruction

The first step is to collect the RGB-D image for each visual angle. Considering the fruit tree
planting distance in the actual orchard, two visual angles were chosen for the reconstruction. According
to the Kinect sensor’s internal parameters, the 3D point cloud image of a single visual angle was
converted. The bounding box was used to remove the interfering pixels of the surrounding environment,
and outlier denoising was used to cancel out the unrelated noise, thereby generating a preprocessed
single-visual-angle 3D point cloud image. Figure 3 illustrates the 3D reconstruction of two visual
angles of the fruit tree; point cloud coordinates are set as PointCloud1 and PointCloud2.

According to the bounding box of each ball and the threshold of color, the point cloud coordinates
of the RYB balls were segmented and identified. Figure 4 shows the specific identification results,
the numbers of red ball points were 127 and 161, yellow were 143 and 132, and blue were 193 and
82. The numbers of points can thus satisfy the subsequent processing requirements. The spherical
coordinates R1 (x, y, z), Y1 (x, y, z), B1 (x, y, z), R2 (x, y, z), Y2 (x, y, z), and B2 (x, y, z) for the red, yellow,
and blue balls under each visual angle were calculated. Next, according to the obtained coordinate
values for R1, Y1, B1, and R2, Y2, B2, the formula M (x, y, z) = mean (R, Y, B) was used to calculate the
centers of gravity M1 (x, y, z) and M2 (x, y, z) of the triangle determined by the three ball centers in
each angle. According to the three points R1, Y1, and B1, plane s1 was determined, and according
to R2, Y2, and B2, plane s2 was determined. Thus, point M1 was determined on plane s1, and point
M2 was determined on plane s2. Taking points M1 and M2 as the respective vertices for plane s1 and
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plane s2, their corresponding normal vectors p1 (a, b, c) and p2 (a, b, c) were calculated. Moving points
M1 and M2 to the origin O (0, 0, 0) in the coordinate system and translating the vectors p1 and p2
along with M1 and M2 at the same time, the apexes of p1 and p2 would both be at O (0, 0, 0) after
the translation; these were then normalized and denoted as p3 and p4. According to the point cloud
translation equation PointCloud’ = PointCloud −M, the PointCloud1 and PointCloud2 point cloud
coordinates were translated to obtain PointCloud3 and PointCloud4, respectively. Figure 5 shows the
cloud images PointCloud3 and PointCloud4, with point M translated to the origin O (0, 0, 0) for each
visual angle point and the normal vectors p3 and p4 that were normal to the plane of the ball centers of
the three colored balls.Agronomy 2019, 9, x FOR PEER REVIEW 5 of 13 
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(a) schematic diagram of normal vectors p3; (b) schematic diagram of normal vectors p4.

Rotating the normal vectors p3 and p4 to the Z axis (0, 0, 1) of the Kinect coordinate system and
determining the spatial transformation rotation matrices of p3 and p4, Rx1, Ry1 and Rx2, and Ry2,
respectively, were calculated. The calculation process was as below: first, the vectors p3 and p4 were
rotated α degrees around the X axis to the XOY plane, with the corresponding rotation matrix being Rx

(α) (as shown in Equation (1)), and then they were rotated β degrees around the Y axis to the Z axis,
with the corresponding rotation matrix being Ry (β) (as shown in Equation (2)), i.e., z (0, 0, 1) = pi
× Rx (α)× Ry (β). According to the obtained Rx (α) and Ry (β), the coordinates Y1

′ and Y2
′ after the

translation operation with M for points Y1 and Y2 were connected with the origin O. Likewise, for
vectors OY1

′ and OY2
′, the rotation matrix operations were performed for Rx (α) and Ry (β), and two

vectors NOY1 and NOY2 were obtained (with the O as the vertex and with the vectors OY”
1 and OY”

2
as the directions). Finding the size of angle γ between the two vectors NOY1 and NOY2 at this point
and substituting γ into Equation (3), the rotation matrix Rz (γ) around the Z axis can be calculated.
According to Equation (4), the point clouds upon the spatial transformation for the other visual angles
relative to the first visual angle can be obtained.

The point cloud of the first visual angle, along with the point clouds of the other visual angles that
were subjected to the above spatial transformation, was displayed in the same point cloud coordinate
system, and the 3D point cloud image after coarse registration was obtained (Figure 6).

Rx(α) =


1 0 0
0 cosα −sinα
0 sinα cosα

 (1)

Ry(β) =


cosβ sinβ 0
−sinβ cosβ 0

0 0 1

 (2)

Rz(γ) =


cosγ 0 sinγ

0 1 0
−sinγ 0 cosγ

 (3)

PointCloud′m(x, y, z) = PointCloudm(x, y, z) ×Rx(α) ×Ry(β) ×Rz(γ) (4)
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where: PointCloudm is point cloud of the view m; (x, y, z) is point cloud coordinates; PointCloud’m is
point cloud scattered after transformation of the second view space; Rx (α) is rotation matrix of the
normal vector to XOY plane, Ry (β) is rotation matrix of the normal vector to Z axis; and Rz (γ) is the
rotation matrix around Z axis for angle γ between the two vectors NOY1 and NOY2.Agronomy 2019, 9, x FOR PEER REVIEW 7 of 13 
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Figure 6. 3D point cloud image after coarse registration: (a) point cloud with double-visual-angle
coarse registration (visual angle 1); (b) point cloud with double-visual-angle coarse registration (visual
angle 2).

The point cloud image after the coarse registration already had the basic parameters and shape of
a fruit tree. However, due to the inherent error in the Kinect acquisition and the calculation error in the
calibration process, the coarse registration cannot guarantee accurate information on the point cloud
details, and further high-precision fine-tuning registration is needed. According to the ICP algorithm,
an iterative registration algorithm proposed by Besl and McKay (1992) [19], free surfaces and curves
can be registered, as well as point clouds. Moreover, the ICP algorithm does not need the accurate
information of the initial calibration reference point or the calibration point; it uses iteration to find the
nearest point for all the points in the desired registration point cloud, and then continues to calculate
the spatial transition matrix by using these known points as standard points until the preset number of
times is reached or the set convergence threshold condition is met. Figure 7 is a model of the fruit tree
3D point cloud after precise registration via ICP, containing accurate 3D information (HWD) about the
fruit tree. At this point, the fruit tree 3D reconstruction is completed.Agronomy 2019, 9, x FOR PEER REVIEW 8 of 13 
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2.3. Calculation Method for the 3D Morphology of the Fruit Tree Canopy

According to the 3D point cloud model of the fruit tree, the fruit tree canopy height (H), the canopy
maximum tree width (W) and the canopy thickness (D) were calculated, where D is the length of
canopy in the vertical direction. The actual data obtained by measured measurements were compared
with the calculated values and an error analysis was conducted. Since the rotation matrix in the 3D
reconstruction was processed by normalization, the distance values in the reconstructed point cloud
graph coordinate system would correspond to the actual value. The Z-axis coordinate of the highest
point of the canopy was extracted and was compared with the Z-axis coordinate of the ground to
obtain the difference, and the fruit tree height H can thereby be obtained. The specific calculation
formula is shown in Equation (5), and the schematic diagram is shown in Figure 8a.
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Figure 8. Schematic diagram of height and maximum width of fruit tree: (a) schematic diagram for the
height (H); (b) schematic diagram for the maximum tree width (W).

While the coverage volume of the fruit tree canopy is large, branches overlapped and both located
in the main part of the point cloud, W would be different under different visual angles. The study chose
the point cloud to make a projection under the XOY visual angle, and by traversing the maximum
distance between the two points under the projection, the maximum value would be the maximum W
of the fruit tree canopy. The specific calculation formula is shown in Equation (6), and the schematic
diagram is shown in Figure 8b.

To identify the fruit tree canopy, in this study, kernel smoothing was performed for the Z-axis
point cloud quantity distribution of the 3D point cloud after the fruit tree reconstruction, with the
calculation formula shown in Equation (7). The distribution chart of the probability density f is shown
in Figure 9. According to the statistics, setting the threshold as 3 × 10−4 and setting the probability
density greater than the threshold for the first time as the minimum value of the canopy height, the
difference between the Zi coordinate corresponding to the threshold and the fruit tree top Zmax was
calculated. The thickness of the fruit tree canopy can be obtained, with the calculation formula shown
as Equation (8).

H = Zmax −Zground (5)

W = max

num∑
i=1

num∑
j=1

√((
Xi −Xj

)2
+

(
Yi −Yj

)2
) (6)

f(z) =
1

nh

n∑
i=1

K(
Z−Zi

h
) (7)

D = Zmax −Zf=0.0003 (8)
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where: Z is the vertical axis value of the point cloud of a fruit tree; x and y are the corresponding
coordinates of the point cloud under the XOY projection; n is the total number of samples; h is the
band width; and K is the kernel smoothing function.
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3. Results

3.1. Data Analysis of 3D Morphological Measurements for Fruit Tree Canopy

Due to the photographing distance limits in the actual experimental scene, information of two
visual angles was selected for the reconstruction. Figure 10 shows part of the reconstruction for the
fruit tree point cloud. According to the above algorithm, relevant information was extracted and was
compared with the manual measurement values to assess the errors in the application in the orchard
base. For the 3D point cloud after reconstruction, the coefficient of determination (R2), root mean
square error (RMSE), and average relative error (ARE) values between the extracted information and
the manual measurements for H, W, and D under three visual angles (V1, V2, and V1 and V2 merged)
were statistically analyzed.Agronomy 2019, 9, x FOR PEER REVIEW 10 of 13 
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Figure 11 shows the data comparison between the manually measured values and the calculated
values for the fruit tree canopy W, H and D for the samples. In the calculation of the height H and the
canopy thickness D, errors occurred in the calculation process primarily due to the uneven ground
surface in the actual scene, and for the lack of data at the highest point during the photographing for
some samples. When calculating the tree width W, the calculated values were generally large, mainly
due to the complexity of the actual scene of the orchard (light, flying insects, dust, etc.) that resulted in
some noise.
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Figure 11. Measured and calculated values for H, W and D: (a) data comparison between the manually
measured values and the calculated values for the fruit tree canopy H; (b) data comparison between the
manually measured values and the calculated values for the fruit tree canopy W; (c) data comparison
between the manually measured values and the calculated values for the fruit tree canopy D.

3.2. Error Analysis of 3D Morphological Measurements for Fruit Tree Canopy

Since 32 fruit tree samples were reconstructed under three modes (single visual angle V1, single
visual angle V2, and double visual angles V1 and V2 merged). The mean values of the coefficient of
determination (R2), RMSE (root mean square error) values and ARE (average relative error) values for
H, W, and D between calculation and the manual measurement were shown in Table 1.

Table 1. Relationship between calculated and measured values of morphology for sample fruit trees.
RMSE, root mean square error; ARE, average relative error; R2, coefficient of determination.

Parameter Visual Angle R2 RMSE ARE

Height (H)
V1 0.91 12.28 3.8%
V2 0.84 13.79 3.3%

V1 and V2 0.96 8.72 2.5%

Width (W)
V1 0.86 26.09 12.7%
V2 0.91 20.27 9.5%

V1 and V2 0.97 9.71 3.6%

Thickness (D)
V1 0.73 13.38 5.0%
V2 0.67 14.34 4.9%

V1 and V2 0.82 9.12 3.2%

The analysis shows that the calculated values of the fruit tree height, the maximum tree width,
and the canopy thickness were significantly correlated with their corresponding measured values.
The calculation accuracy was improved under the double visual angle mode compared to the single
visual angle mode, and the measurement superiority for the maximum tree width was particularly
significant. This was mainly because the single visual angle mode could only provide information
about a single visual angle of the camera, but was not able to provide comprehensive 3D information,
making its tree width measurement error relatively large. In contrast, the 3D information under which
the double visual angles were merged was relatively comprehensive, and thus its calculation error for
the tree width was relatively small.
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4. Discussion

This study solved the fast registration problem for a multiple-visual-angle RGB-D point cloud,
the registration method is very simple to install and disassemble, it can also be used in complex
orchards to calculate the relevant parameters and extract more specific information.

The 3D point cloud reconstruction method based on Kinect self-calibration proposed in this study
has a comprehensive display of fruit tree morphological information and high precision of parameter
extraction, and the auxiliary calibration objects are readily portable and easily installed. The method
can be applied to different experimental scenes to extract 3D information of a fruit tree canopy and has
important implications to achieve the intelligent control of a standardized orchard.

While this method could reconstruct the fruit tree canopy shape and extract the related parameters,
there are still insufficiencies that deserve improvement. The acquisition conditions of the infrared
camera are harsh in the outdoor environment, so accurate information could only be collected in
the morning or evening, and the Kinect can be further explored so that it can be used more widely.
This method can also be used in the automatic picking robot when it can accurately identify the position
and number of fruit. In the future, more calibration balls or more accurate calibration objects could be
used to improve the experiment, and the space transformation matrix could be more accurate, so as to
improve the reconstruction effect and extract parameters more accurately.

5. Conclusions

This study proposed a 3D morphological measurement method for a fruit tree canopy based
on Kinect sensor self-calibration, including 3D point cloud generation, point cloud registration and
canopy information extraction of apple tree canopy. The results showed that on both sides of the fruit
trees, the average relative error (ARE) values of the morphological parameters including the fruit tree
height (H), maximum tree width (W) and canopy thickness (D) between the calculated values and
measured values were 3.8%, 12.7% and 5.0%, respectively; under the V1 mode, the ARE values under
the V2 mode were 3.3%, 9.5% and 4.9%, respectively; and the ARE values under the V1 and V2 merged
mode were 2.5%, 3.6% and 3.2%, respectively. The measurement accuracy of the tree width (W) under
the double visual angle mode had a significant advantage over that under the single visual angle mode.

The 3D point cloud reconstruction method based on Kinect self-calibration proposed in this study
has high precision and stable performance, and the auxiliary calibration objects are readily portable and
easy to install. It can be applied to different experimental scenes to extract 3D information of fruit tree
canopies and has important implications to achieve the intelligent control of standardized orchards.
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