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Abstract: Melatonin (N-acetyl-5-methoxytryptamine) is a ubiquitous molecule present in animals
and plants, and also in bacteria and fungi. In plants, it has an important regulatory and
protective role in the face of different stress situations in which it can be involved, mainly due
to its immobility. Both in the presence of biotic and abiotic stressors, melatonin exerts protective
action in which, through significant changes in gene expression, it activates a stress tolerance response.
Its anti-stress role, along with other outstanding functions, suggests its possible use in active
agricultural management. This review establishes considerations that are necessary for its possible
authorization. The particular characteristics of this substance and its categorization as plant
biostimulant are discussed, and also the different legal aspects within the framework of the European
Community. The advantages and disadvantages are also described of two of its possible applications,
as a plant protector or biostimulant, in accordance with legal provisions.
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1. Introduction

Melatonin (N-acetyl-5-methoxytryptamine) is a biogenic amine derived from the amino acid
tryptophan, which was discovered in 1958 in the cow pineal gland by Lerner and cols. [1]. Two years later,
it was detected in humans and its chemical structure was elucidated. This molecule, which was initially
only related to changes in the structure of melanocytes in amphibians, fish and reptiles, was soon
found to act as a neurohormone in mammals [2,3]. Since its discovery it has become one of the most
researched molecules. In animals, it presents a multitude of physiological actions such as a role in the
circadian rhythms of several molecules, and its influence on sleep–wake cycles, mood, motor activity
and body temperature changes [4–7]. Its influence on food intake and its relationship with metabolic
syndrome has also been demonstrated [8–10]. In other more specific situations such as the physiology
of the retina, the immune system, sexual behavior and as an anti-cancer effector, melatonin also has a
relevant role [11–15]. In addition, interesting and extensive reviews on the role of melatonin in animals
and humans can be consulted [16–23].

In 1995, the presence of melatonin in plants was discovered [24–27]. During the following years
there was much reluctance on the part of researchers to accept this, since some refused to believe that
a neurohormone could be present in plants, and much less that it had any role in their physiology.
A key piece was the elucidation of the melatonin biosynthesis route in plants, localized between the
mitochondria, chloroplasts and cytoplasm of cells, and which has been studied with great accuracy
by K. Back and J. Kong in rice and Arabidopsis plants [28–30]. However, it is now fully accepted that
melatonin is present in all plant species and that it presents a panoply of interesting actions. Indeed,
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several studies have demonstrated its role in processes such as seed germination, growth and the
development of seedlings, leaves and roots. It takes part in organogenesis processes such as rooting
and fruiting, and in processes of leaf and fruit senescence. It acts as a protector of the photosynthetic
and stomatic system, and as a regulator of various enzymes of the metabolism of carbohydrates,
lipids, amino acids, nitrogen, sulfur and phosphorus. It also has a role in the secondary metabolism,
enhancing the synthesis of flavonoids, anthocyanins, and carotenoids, among others. It regulates
its own biosynthesis and that of several plant hormones such as auxin, abscisic acid, gibberellins,
cytokinins, ethylene, polyamines, jasmonic acid and salicylic acid [31–39].

Of all the aspects investigated, its protective action against stress situations has been the most
researched and about which most is known. Melatonin exerts a protective action, mediated by
major changes in gene expression, both against abiotic (cold, heat, drought, waterlogging, salinity,
alkalinity, acid rain, chemical contamination by heavy metals, UV radiation) and biotic (bacteria,
fungi, virus) stressors. As a result, plants are more tolerant and/or resistant to the negative action
of such stressors [31,36,40–43] (see below). The term “biostimulant” was first proposed to denote
“materials that, in minute quantities, promote plant growth” by Zhang and Schmidt (1997) [44]. Later,
the definition was modified by Kaufman et al. (2007) as: “Biostimulants are materials, other than
fertilisers, that promote plant growth when applied in low quantities” [45]. According Du Jardin
(2015), the following definition is proposed: “A plant biostimulant is any substance or microorganism
applied to plants with the aim to enhance nutrition efficiency, abiotic stress tolerance and/or crop
quality traits, regardless of its nutrients content”, and extended as “plant biostimulants also designate
commercial products containing mixtures of such substances and/or microorganisms” [46]. Under
the EC (European Community) regulation: “Plant biostimulants will be EC marked as fertilizing
products stimulating plant nutrition processes independently of the products’ nutrient content with
the sole aim of improving one or more of the following characteristics of the plant and the plant
rhizosphere or phyllosphere: Nutrient use efficiency, tolerance to abiotic stress, crop quality, availability
of confined nutrients in the soil and rhizosphere, humification and degradation of organic compounds
in the soil”. Extensive revision works on this topic can be consulted [47,48]. The objective of this
work is to provide sufficient data to establish the clear protective role of melatonin against adverse
environmental situations, and to discuss the possible global use of melatonin as a biostimulant and/or
bioprotective agent. Current legislation of the EC, is taken into account and the advantages and
disadvantages of its use in plant crops destined for animal and human consumption are analyzed.

2. Melatonin as a Regulator of Plant Stress Physiology

Although there was much evidence in the 1990s that melatonin could exert some role as an
antioxidant agent in animal cells and tissues, it was not until 2004 and 2006, in carrot cells and
Chinese licorice (Glycyrrhiza uralensis Fisch.), that the possible protective role of melatonin in plants
was suggested [49–51], although some curious and previous data existed [52]. The initial idea that
melatonin in plants, as in animals, could play an important role as an antioxidant was taking shape
and results in this regard became ever more plentiful [53–57]. In addition, studies on melatonin as a
possible plant regulator were also progressing, especially since the initial studies of Arnao and cols.
on the role of melatonin in plant growth and development, and the so-called auxin-like activity [58–64].

It was not until the publication of results on the action of melatonin on changes in gene
expression that the extent and potential of melatonin as a regulatory agent of multiple physiological
processes in plants became widely known [64–70]. Exceeding previous expectations, melatonin
is capable of activating all known molecular stress mechanisms in plants. Thus, gene regulatory
factors involved in the response to cold, high temperatures, salinity, drought, chemical toxicity, etc.,
and also biotic stress, are up-regulated by melatonin [31,38,40,41,43]. Melatonin also regulates the
expression of multiple enzymes related to hormonal homeostasis, up-regulating or down-regulating the
expression of genes that encode enzymes of the biosynthetic or catabolic pathways of plant hormones
including indole-3-acetic acid (auxin), gibberellins such as gibberellin-4 (GA4), cytokinins, abscisic
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acid (ABA) and ethylene. It also others regulators such as salicylic acid (SA), jasmonic acid (JA) and
polyamines [31–33,35,38,69,71–75]. In general, subjecting plants to a stressful situation—which leads
to an increase in endogenous levels of melatonin—or treatment with exogenous melatonin, results in a
stress tolerance response mediated by specific stress response factors and changes in the endogenous
levels of plant hormones involved in the response [31–36,38,40–43,75–85]. In addition, the recent
identification of a melatonin receptor in Arabidopsis thaliana has opened new expectations related to its
role as a new plant hormone [86]. Figure 1 shows these aspects in a condensed form.
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3. Beneficial Responses to Melatonin Treatments in Different Crops in Stress Situations

Studies conducted with melatonin in plants under both abiotic and biotic stress are numerous.
Table 1 compiles many of the studies with an agronomic interest since they deal primarily with
crop species for human consumption. Table 1 presents studies classified by plant species, where
there are many physiological aspects that are investigated in which melatonin exerts some generally
beneficial action. These include seed germination, the growth and vegetative development of plants;
photosynthesis, its pigments, photorespiration, stomatic conductance and water economy; the yields of
seeds and fruits in adverse conditions; osmoregulation, ion exchange and adjustments in osmotic and
hydric potentials, and the regulation of the different metabolisms of carbohydrates, lipids, nitrogen
compounds, sulfur and phosphorus cycles. In regards to the secondary metabolism, melatonin induces
the biosynthesis of flavonoids, anthocyanins and carotenoids, among others; in hormonal homeostasis,
it intervenes in the regulation of all plant hormones and its own biosynthesis. It promotes the rooting
process of primary, secondary and adventitious roots while during foliar senescence, melatonin
regulates the expression of chlorophyll degradation-related and senescence-induced genes. In the
postharvest control of fruits, melatonin increases the ethylene and lycopene content, and regulates
many enzymes of the cell wall, ethylene biosynthesis, and primary and secondary metabolisms. It also
helps preserve cut flowers; in fruiting it induces parthenocarpy. Finally, its role in bacterial, fungal and
viral pathogenic infection should be emphasized, slowing damage and stimulating systemic acquired
resistance (SAR) to favor crop health.

Obviously, all the above plant physiology aspects are of interest for application in plant production.
Indeed, while many of the above studies were at a laboratory level, others have already been put into
practice in crops with excellent results.

In general, exogenous melatonin applications are made through the root system, in irrigation
water, or by spraying leaves. In the last case, no adjuvant is needed since melatonin is an amphipathic
molecule that crosses biological membranes and the waxy cuticles. Melatonin is transported via the
xylem from the roots to the rest of the organs of the plant quite effectively [87,88].
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Table 1. Studies of different responses to melatonin treatments in different crop species in diverse stress situations.

Plant Species Stress Type Melatonin Treatment (µM) Effects Observed Reference

Alfalfa Waterlogging 100
↑ tolerance, growth, photosynthesis, Chls,

polyamines, ↓ electrolyte leakage, ROS, ethylene,
leaf senescence

[89]

Metal-Cd 10–200 ↑ tolerance, growth, Cd transporters, ↓ Cd in roots,
ROS [90]

Oxidative 1–100 ↑ lateral root formation, cell division [91]

Apple Salinity 0.1 ↑ shoot height, leaf number, Chls, K+, ↓ electrolyte
leakage, ROS [92,93]

Drought 100
↑ tolerance, re-open stomata, water in leaf,

photosynthesis, N uptake, N metabolism, growth,
↓ ABA activity, ROS, leaf senescence

[71,94–96]

Waterlogging 200 ↓ chlorosis, wilting of the seedlings, ROS, ↑
tolerance, photosynthesis [97]

Alkaline 5 ↑ tolerance, root system, redox balance,
polyamines [98]

Leaf-senescence 10 mM ↓ senescence, ROS burst, ↑ Chls, photosynthesis,
sucrose, starch, N [67,99,100]

Diplocarpon mali 50–500 ↑ resistance to fungal infection, ↓ leaf lesions, cell
death, pathogen expansion [101]

Apple Replant Disease—ARD 200 ↑ growth, photosynthesis, K levels, soil microbial,
↓ ARD effects, ROS [102]

Apple Stem Grooving Virus 15 ↑ shoot regrowth, 95% shoots virus-free, virus-free
area [103]

Apricot - 10 ppm ↑ leaf growth, photosynthesis, fruit yield, size and
retention, TA, TSS [104]

Banana Post-harvest 200–500 ↑ shelf life of fruits, ↓ ethylene, ripening, quality
sharp changes [105]

Anthracnose 10 mM ↑ fruit resistance, banana shelf life, ↓ anthracnose
disease [106]

Barley Cold, drought 1 mM ↑ photosynthesis efficiency, ABA, water content,
ROS [72]

Leaf-senescence 0.01–1 ↑ Chls, growth, ↓ senescence [59,107]

Bermudagrass Cold, salt, drought 20–100 ↑ growth, osmoregulation, ↓ ROS burst, cell
damage [108,109]
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Table 1. Cont.

Plant Species Stress Type Melatonin Treatment (µM) Effects Observed Reference

Broccoli - 60 ppm ↑ growth, photosynthetic attributes: LAI, NAR,
AGR, CGR, Chls, carotenoids [110]

Cabbage Metal-Cu 1–100 ↑ germination, growth, ↓membrane peroxidation [111]

- 100–1000
↑ growth, anthocyanins, osmoregulation, redox

balance, ↓ ABA, senescence factors, Chls
degradation

[112,113]

Cassava - 100 ↓ ROS, postharvest deterioration, starch
degradation [114]

Xam bacterial bligh ↑ disease resistance, ↓ bacterial propagation in
leaves [115]

Cherry sweet Rootstocks 0.5–5 ↑ number of roots, length, % rooting in 3 cherry
rootstocks [116,117]

↑ photosynthetic pigments, biomass, total
carbohydrates and proline

Orchard trees 10 ↓ sweet cherries ripening, anthocyanins [118]

Citrus Salinity 1 ↑ osmoregulation, Chls, ↓ ROS burst, membrane
peroxidation [119]

Coffee Drought 300
↑ tolerance, root system, photosynthesis, gas

exchange, CO2 fixation, Chls, ASA-GSH cycle, ↓
ROS, MDA

[120]

Cotton - 20 ↑ germination, growth, antioxidant enzymes, GA3,
↓ ROS, MDA, ABA [121]

Cucumber Cold 25–500 mM ↑ germination, ↓ ROS, membrane peroxidation [122]

Cold 50–500 ↑ GSH pool, ↓ ROS [123]

Cold 200 ↑ tolerance, photosynthesis, polyamines, ABA,
GSH-ASA cycle, ↓ electrolyte leakage, ROS, [124,125]

Heat 100 ↑ tolerance, N metabol., nitrate, ↓ damage,
ammonium [126]

N-excess 100 ↑ tolerance, growth, NPK balance, Ca, ↓ damage,
nitrate, ammonium [127]

Salinity 1 ↑ germination, GA4, ↓ ROS, membrane
peroxidation, ABA [69]

50–150 ↑ tolerance, Chls, photosynthesis, GSH-ASA cycle,
↓ ROS [128]
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Table 1. Cont.

Plant Species Stress Type Melatonin Treatment (µM) Effects Observed Reference

1 ↑ germination, protein biosynthesis, lipid and
carbohydrate metabol., TCA, ATP [129]

Drought 100 ↑ germination, root growth [130]

Oxidative 50 ↑ systemic antioxidant defence, GSH,
photosynthesis, ↓ ROS [131]

Metal-Cu 0.01 ↑ tolerance, growth, Cu-sequestration, TCA, ATP,
GSH, ↓ ROS [132]

Cinnamic acid 100 ↑ tolerance, growth, water and nutrient balance,
hormonal balance [133]

Faba bean Salinity 100–500 ↑ plant height, RWC, photosynthetic pigments,
osmolites, phenolic [134]

Grape Drought 0.05–0.2 ↑ seedling growth, osmoregulation,
photosynthesis, ↓ ROS burst [135]

Salinity-Rhizobacteria - ↑ root growth, RWC, melatonin in roots,
colonization, ↓ damage, ROS [136]

Berry ripening 100 ↑ anthocyanins, phenols, flavonoids,
proanthocyanidins, resveratrol, ↓ ROS [137,138]

Berry/Wine 430 ↑ size- and ripening-berries, fruity-, spicy- and
sweet-wine [139]

Kiwifruit Drought 50–200
↑ tolerance, photosynthesis, CO2 fixation, growth,
biomass, roots, osmoregulation, flavonoids ↓ lipid

peroxidation, carotenoid degradation
[140,141]

Heat 200 ↑ tolerance, ASA, proline, antioxidant enzymes, ↓
heat damage, ROS [142]

Leek Cold, heat 5 ↑ tolerance, germination, growth [143]

Lychee Post-harvest 400
↑ redox balance, antioxidant enzymes, ↓ pericarp
browning, discoloration, ROS, membrane leakage,

loss of phenolics, flavonoids and anthocyanins
[144]

Lupin Several stress - ↑ germination, growth, rooting, redox balance, ↓
ROS, foliar senescence [58,60,62,145]

Maize Salinity, heat 100 ↑ photosynthesis, antioxidant enzymes, ↓ ROS,
electrolyte leakage [146,147]

- 10–1000 ↑ root and stem growth, plant height, leaf surface
area, protein, carbohydrates, Chls [148]
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Table 1. Cont.

Plant Species Stress Type Melatonin Treatment (µM) Effects Observed Reference

Drought 100
↑ tolerance, growth, photosynthesis, stoma

conductance, transpiration, RWC, antiox enzymes,
↓ ROS, MDA

[149–151]

Heat 10–90 ↑ tolerance, antioxidant enzymes, osmoregulation,
↓ ROS, MDA, electrolyte leakage [152]

Metal-Pb 50–100 ↑ tolerance, growth, photosynthesis, Chls, RWC, K,
Ca levels, ↓ ROS, MDA [153]

- 10 ↑ sugar metabolism, photosynthesis, sucrose
phloem loading [154]

- 50–500 protein synthesis, folding, destination and storage,
defence, anti-stresses and detoxifying proteins [155]

Aging seeds
↑ viability, growth, antioxidant enzymes,

carbohydrate-, secondary-, and amino acid
metabol., ↓ ROS, MDA

[156]

Melissa (lemon balm) Metal-Zn-Cd 1000 ↑ tolerance, growth, antioxidant enzymes [157]

Mung bean Cold 20 ↑ tolerance, growth, plastids, ↓ ROS, lipid
peroxidation [158]

Oat Salinity, drought 50–100 ↑ tolerance, growth, Chls, proline, antioxidant
enzymes, ↓ ROS, MDA [59,159,160]

Onion Cold, heat 5 ↑ tolerance, germination, growth [143]

Peach (fruit) Cold 50–200 ↑ juice, TSS, polyamines, GABA, proline, ↓ chilling
injury, ROS [161]

Post-harvest 100 ↑ firmness, TSS. ASA, ↓weight loss, decay
incidence, respiration rate, [162]

Pear (tree) - 100 ↑ photosynthesis, fruit size, TSS, sucrose, sorbitol,
starch [163]

Parthenocarpy 100 ↑ parthenocarpy with expansion, division
mesocarp cells, unviable seeds, GAs [73]

Pear (fruit) Post-harvest 100 ↑ firmness, commercial value, ↓weight loss,
ethylene, softening, core browning [164,165]

Pepper Salinity, Fe-low 100 ↑ growth, Chls, photosynthesis, fruit yield, Fe, K
uptake, antioxidant enzymes [166]

Cold 1–5 ↑ germination, growth, antioxidant enzymes, ↓
ROS, MDA [167]



Agronomy 2019, 9, 570 8 of 27

Table 1. Cont.

Plant Species Stress Type Melatonin Treatment (µM) Effects Observed Reference

Boron-high 1 ↑ tolerance, growth, photosynthesis, ↓ B in leaf and
fruit, toxicity [168]

Pea Oxidative 50–200 ↑ photosynthesis efficiency, pigments, water
content, ↓ ROS [169,170]

Metal-Cu 5 ↑ plant survival [171]

Plum (fruit) Cold 1–1000 ↑ firmness, postharvest life, ASA, phenols,
antioxidant activity, ↓weight loss [172]

Pomegranate Cold 100 ↑ tolerance, antioxidant enzymes, membrane
integrity, phenols, ↓ ROS [173]

Poplar Oxidative ↑ redox balance, proline, ↓ ROS, MDA, membrane
damage, electrolyte leakage [174]

Potato Salinity 0.1–200
↑ tolerance, K+/Na+ homeostasis, ATPase,

triacylglycerol breakdown, fatty acid β-oxidation,
energy turnover

[175]

Phytophthora infestans
(potato late blight) 1–10 mM

↑ plant innate immunity, fungicide resistance and
virulence, synergistic anti-fungal effects of

melatonin with fungicides
[176]

Radish Heat 50–300 ↑ biomass, quality, antioxidant enzymes, Chls,
hormone contents [177]

Rapeseed Salinity 0.01–100 ↑ tolerance, redox balance, ion homeostasis, ↓ ROS,
MDA [178]

Drought 500
↑ tolerance, germination, Chls, stoma size,

osmoregulation, antioxidant enzymes, ↓ ROS,
MDA

[179]

Rice Cold 20–100 ↑ tolerance, growth, photosynthesis, redox balance,
↓ ROS [180]

Salinity 10–20 ↑ Chls, ↓ senescence, ROS, cell death [181]

Metal-Cd ↑ tolerance, growth, photosynthesis, redox balance,
panicle number, grain yield [182,183]

Bacterial blight 200 ↓ bacterial proliferation, motility [184]

Salt, cold, Blast fungus - ↑ tolerance, melatonin induction, hormones, ↓
fungi proliferation [185]

- 0.5–1 ↑ seminal roots, lateral roots, root growth, root
biomass [186]
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Table 1. Cont.

Plant Species Stress Type Melatonin Treatment (µM) Effects Observed Reference

Soil 10–50 ↑ number of lateral roots, root growth, shaping
root architecture [187]

Soybean Salinity, drought 50–100 ↑ tolerance, seedling growth, leaf size, biomass,
seed yield [188]

Drought 100
↑ RWC, Chls, photosynthetic gas-exchange

parameters, osmoregulation, antioxidant enzymes,
and seed growth-related indicators

[189]

Metal-Al 0.1–1 ↑ tolerance, root growth, antioxidant enzymes,
osmoregulation, ↓ ROS, [190]

Spinach Boron 100–300
↑ tolerance, growth, photosynthesis, RWC, CO2

uptake, sugars, carotenoids, redox balance, ↓ ROS,
MDA

[191]

Strawberry Post-harvest 100 ↑ nutritional quality, antioxidant enzymes,
anthocyanins, phenols, GABA, ATP ↓ fungal decay [192]

Post-harvest 0.1–1 ↑ color, firmness, TSS, ASA, flavonoids, ↓weight
loss, senescence, ROS, MDA [193]

Sunflower Salinity 15 ↑ root, hypocotyl growth, antioxidant potential,
antioxidant enzymes, GSH [194–196]

Tea plant Salinity, cold, drought 100 ↑ photosynthesis, GSH, ASA, antioxidant enzymes,
↓ ROS, MDA [197,198]

Tobacco Tobacco mosaic virus 100 ↑ tolerance, ↓ virus proliferation, virus-RNA, viral
disease [199]

Tomato Salinity 50–150 ↑ photosynthesis, PSII efficiency, D1 protein
turnover, ↓ ROS burst [200]

Salinity 20–50 ↑ growth, photosynthesis, Rubisco, proline,
C-metabol., ASA-GSH cycle, ↓ ROS, MDA [201]

Salinity 150 ↑ tolerance, photosynthesis, PSII repair, ASA-GSH
cycle, ↓ ROS [202]

Cold 100
↑ antioxidant enzymes, GSA, ASA, CO2 uptake,

sucrose, proline, Calvin cycle, polyamines, ↓ ROS,
MDA, electrolyte leakage

[203]

Cold 100
↑ tolerance, growth, VAZ cycle, photosynthesis,

photosystem efficiency, ↓ ROS, MDA,
photoinhibition

[204]

Cold-fruit 100 ↑ tolerance, proline, polyamines, membrane
integrity [205]
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Table 1. Cont.

Plant Species Stress Type Melatonin Treatment (µM) Effects Observed Reference

Heat 10 ↑ thermotolerance and cell protection [206,207]

Heat-pollen 20 ↑ thermotolerance, polen germination, antioxidant
enzymes, reproductive development [208]

Metal-Cd 25–500 ↑ Cd tolerance, phytochelatins, ATPase activity [209]

Metal-Cd - ↑ Cd tolerance, heat-shock factor A1a induction by
melatonin [210]

Metal-Cd-Se - ↑ growth, photosynthesis, electrolyte leakage,
phytochelatins, GSH, ↓ ROS, Cd leaf, [211]

Alkalinity 0.25–1 seedling growth, photosynthesis, ion homeostasis,
burst [212]

Acid rain 100 ↑ tolerance, growth, chloroplast integrity,
photosynthesis, antioxidant enzymes, ↓ ROS, MDA [213]

Drought 100 ↑ tolerance, waxes-cutin leaf, RWC, Chls, [214]

Drought 100 ↑ tolerance, Chls, antioxidant enzymes,
p-coumaric acid, ↓ ROS, MDA [215]

S-low 100
↑ S uptake, assimilation, transport and metabolism,
peroxiredoxins, redox homeostasis, ↓ ROS, DNA

damage
[216]

Rooting 50 ↑ adventitious root formation, auxin, auxin
transport and signal transduction [217]

On vine-ripening ↑ fruit yield and quality, ASA, citric acid, lycopene,
TSS, Ca, P ↓ N, Mg, Cu, Zn, Fe, Mn, [218]

Post-harvest 50

↑ fruit ripening, fruit quality, colour, carotenoids,
polygalacturonase and related, biosynthesis,

perception and signalling of ethylene,
anthocyanins, ↓weight loss

[74,219]

Mosaic virus 100 ↑ tolerance, ↓ virus proliferation, virus-RNA, viral
disease [199]

Valerian Metal-Zn-Cd 1000 ↑ tolerance, growth, antioxidant enzymes [157]

Watermelon Cold 150 ↑ photosynthesis, ↓ cold-related microRNA [220]

Salinity 50–500 ↑ tolerance, growth, photosynthesis, antioxidant
enzymes, GSH, ASA, ↓ ROS, MDA [221]
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Table 1. Cont.

Plant Species Stress Type Melatonin Treatment (µM) Effects Observed Reference

Metal-V 0.1 ↑ tolerance, growth, photosynthesis, antioxidant
enzymes, ↓ V level, V transport, ROS, MDA [222]

Wheat Cold 1000 ↑ redox balance, Chls, osmoregulation, ↓ ROS [223]

Cold 1000 ↑ tolerance, growth, Chls, photosynthesis, CO2
uptake, grain filled [224]

Cold 1000 ↑ photosynthesis, stomatal conductance,
antioxidant enzymes, membrane stability [225]

Salinity 1 ↑ tolerance, growth, photosynthesis, IAA,
polyamines, ↓ ROS [226]

Salinity 50–500 ↑ growth, yield, antioxidant enzymes, ↓ ROS,
MDA [227]

Drought 500 ↑ tolerance, RWC, photosynthesis, antioxidant
enzymes, ASA, GSH, ↓ ROS, membrane damage [228]

Metal-Cd 100 ↑ tolerance, antioxidant enzymes, ASA, GSH, ↓
ROS [229]

Metal-Cd 50–100 ↑ tolerance, growth, Chls, photosynthesis, RWC,
Ca, K, antioxidant enzymes, ↓ ROS, MDA, Cd [230]

Metal-Zn 1000 ↑ tolerance, Chls, photosynthesis, Rubisco, ATPase [231]

N-low 1 ↑ N and nitrate, N absorption, N metabolism,
growth, yield, in shoots and roots [232]

↑, Increased content or increased action. ↓, decreased content or decreased action; ABA, abscisic acid; AGR, absolute growth rate; ASA, ascorbic acid; CGR, crop growth rate; Chls,
chlorophylls; CMC, component materials categories of fertilizers; EC, European Community; ECHA, European Chemical Agency; EU, European Union; GA4, gibberellin-4; GABA,
γ-aminobutyric acid; GSH, glutathione; JA, Jasmonic acid; LAI, leaf area index; MDA, malondialdehyde; MAPKK, mitogen-activated protein kinase cascade; NAR, net assimilation rate;
OXI1, oxidative signal-inducible1 kinases; PFC, product function categories of fertilizers; ROS, reactive oxygen species; RWC, relative water content; SA, salicylic acid; SAR, systemic
acquired resistance; TA, total valuable acidity; TCA, Krebs cycle; TSS, total solid soluble.
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4. Melatonin in the Health and Environment of EC

In accordance with the Classification, Labelling and Packaging (CLP, EC-No 1272/2008) regulation,
which is based on the United Nations’ Globally Harmonized System, which has a purpose to
ensure a high level of protection of health and the environment, as well as the free movement
of substances, mixtures and articles, the European Chemical Agency (ECHA) classified melatonin
(EC No. 200-797-7 (CAS 73-31-4), N-(2-(5-methoxyindol-3-yl)-ethyl)-acetamide), as a non-hazardous
substance in terms of physical and chemical hazards. With respect to human health, it is classified as
a non-hazardous substance in the oral, dermal, inhalation and irritation categories, and in regards
to mutagenicity and carcinogenicity. However, melatonin is classified as a health hazard substance
(code H-361) in terms of reproductive toxicity because it is suspected of damaging fertility or an
unborn child. This classification reflects one of its multiple functions as an animal hormone, in which
its participation in the modulation of sexual behavior in mammals has been demonstrated, and also,
it is believed, the same of fertility [233,234]. In fact, it is usually applied to sheep as a hormonal regulator
of sexual zeal to homogenize the reproductive process in ovine, with demonstrated higher conception
and pregnancy rates when applied [235]. Nevertheless, melatonin is classified as non-hazardous in
terms of its possible damage to the environment and atmosphere.

5. Melatonin as an Active Substance or as a Plant Biostimulator/Protector in Crops: Concepts and
Legal Considerations in EC

After many changes and adaptations, the EC finally seems to have established its policy regarding
the authorization, classification, use, distribution, importation, management, etc., of plant protectors
and fertilizers, in an attempt to improve agricultural production, while minimizing risks and hazards
for humans, animals and the environment. In order to establish the minimum basis for the possible
use of melatonin in plant production and post-harvest application, several requirements regarding its
human consumption must be taken into account:

(i) Melatonin is a highly studied substance that has given rise to abundant physicochemical and
biological data; (ii) there are numerous studies in animals and humans regarding its beneficial effects
on health, in aspects as diverse as neurodegenerative, immunological, liver, renal, heart, skin and
gastrointestinal diseases, in addition to osteopathy, retinopathy, etc. It also helps in the treatment
of various cancers, particularly, chemical and radiological therapies; (iii) in regards to melatonin for
human consumption, although it is classified as a drug in the EC, there are some cases in which it
does not need a medical prescription, such as those where the amount of melatonin is less than 1 mg.
Generally, these are used for jet-lag and sleep disorders. In many other countries (e.g., USA, Canada)
melatonin is not treated as a drug, but as a food supplement; (iv) in no case has melatonin been
declared as toxic, even at the intake of 1 g/day. Only some slight side effects such as migraine and
headache have been described.

The possible use of melatonin in plant production involves particular aspects such as: (i) Melatonin
is a molecule that exists in all living things, from bacteria to humans, but also in plants, algae, fungi, etc.;
(ii) its action in animals and humans is well known since it has been investigated for many years.
In plants, although many physiological effects of melatonin are known, new data are being acquired
every day; (iii) in all cases, only positive effects have been described, all beneficial for the development
of plants (the same can be said for animals); (iv) little information is available on its effect on bacteria
and fungi, especially those that are part of the soil microbiota (rhizosphere); (v) there are also few or no
data on its effect on the environment, in particular on agricultural and aquatic fauna; (vi) the levels of
melatonin described in plants, and which appear to be effective in pharmacological treatments known
to date, are much higher than those described in animals or humans, which may be a cause for caution.

Council Directive 91/414/EEC of 15 July, 1991 concerning the marketing of plant protection
products provides rules governing plant protection products and the active substances contained in
those products. This old directive has been replaced by two more current ones that are as follows:
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• Regulation #1. Regulation EC 1107/2009 of the European Parliament and of the Council of
21 October 2009 concerning the placing of plant protection products on the market and repealing
council directives 79/117/EEC and 91/414/EEC, and;

• Regulation #2. Regulation EU 2019/1009 of the European Parliament and of the Council of
5 June 2019 laying down rules on the making available on the market of EU fertilizing products
and amending Regulations (EC) No. 1069/2009 and (EC) No. 1107/2009 and repealing Regulation
(EC) No 2003/2003.

If we review the actions confirmed so far for melatonin in plants, we find that melatonin exerts a
clear action as a plant protector in situations of biotic stress against bacterial, fungal and viral diseases
(Regulation #2), but it can also be used as an agent against situations of abiotic stress (Regulation #1).
Thus, Regulation #2 says in point 22:

“Certain substances, mixtures and micro-organisms, referred to as plant biostimulants, are not
as such inputs of nutrients, but nevertheless stimulate plants’ natural nutrition processes.
Where such products aim solely at improving the plants’ nutrient use efficiency, tolerance to
abiotic stress, quality traits or increasing the availability of confined nutrients in the soil or
rhizosphere, they are by nature more similar to fertilising products than to most categories
of plant protection products. They act in addition to fertilisers, with the aim of optimising
the efficiency of those fertilisers and reducing the nutrient application rates. Such products
should therefore be eligible for CE marking under this Regulation and excluded from the
scope of Regulation (EC) No 1107/2009”.

These two regulations attempt to classify the substances and products applicable to crops into
two large groups: Those that are plant protectors (phyto-sanitary) (Regulation #1) and those that
can be used as fertilizers (Regulation #2). As we have seen in the previous section, melatonin is
classified as a health hazard substance (code H-361) for its reproductive toxicity in ECHA, so its
possible authorization as an active substance by regulation EC 1907/2006 of Registration, Evaluation,
Authorisation and Restriction of Chemicals (REACH) could be difficult.

Although Regulation #1 on plant protection products extends the concept of an active substance,
since it includes microorganisms and preparations (art. 1 point 2): This Regulation shall apply to
substances, including micro-organisms having general or specific action against harmful organisms
or on plants, parts of plants or plant products, referred to as ‘active substances’, some interesting
restrictions appeared in:

• Art. 23b: “Basic substances shall be approved in accordance with paragraphs 2 to 6. ( . . . ) For the
purpose of paragraphs 2 to 6, a basic substance is an active substance which ( . . . ), (b) does not
have an inherent capacity to cause endocrine disrupting, neurotoxic or immunotoxic effects”;

• Annex II, Impact on Human Health, 3.6.5: “An active substance, safener or synergist shall only be
approved if, on the basis of the assessment of community or internationally agreed test guidelines
or other available data and information, including a review of the scientific literature, reviewed by
the Authority, it is not considered to have endocrine disrupting properties that may cause adverse
effect in humans, unless the exposure of humans to that active substance, safener or synergist in a
plant protection product, under realistic proposed conditions of use, is negligible, . . . ” and in;

• Annex II. Ecotoxicology, 3.8.2. An active substance, safener or synergist shall only be approved if,
on the basis of the assessment of community or internationally agreed test guidelines, it is not
considered to have endocrine disrupting properties that may cause adverse effects on non-target
organisms unless the exposure of non-target organisms to that active substance in a plant protection
product under realistic proposed conditions of use is negligible.

Thus, taking into account all this legal information, and ruling out the possibility of using
melatonin as an active substance (pure chemical substance) for agronomic application, the possibility
of using plant, bacterial, algae, or fungi extracts rich in melatonin would remain. Thus, a good plan
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might be to use plant (or other) extracts rich in melatonin as a fertilizer, in the category of biostimulants.
A biostimulant could also be defined as a formulated product of biological origin that improves plant
productivity as a consequence of the emergent properties of its constituents. Thus, biostimulants could
be defined by their demonstrated mode of action and origin, or solely by their demonstrated beneficial
impact on plant productivity. The challenges in developing a definition are also complicated by the
multi-component and largely undefined composition of many biostimulant products and the possibility
that the activity of a biostimulant may not be explained by the presence of any individual constituent,
but is a result of the interaction of many constituents in the product. Indeed, most biostimulants in
use today are complex mixtures of chemicals derived from a biological process or the extraction of
biological materials [236].

According Regulation #2 (EU 2019/1009) on fertilizing products, in Annex I, Product Function
Categories (PFCs) of EU fertilizing products, in Category 6, two types of plant biostimulant can
be developed: Microbial plant biostimulants (subtype A) and non-microbial plant biostimulants
(subtype B). In Annex II, it says: “An EU fertilizing product shall consist solely of component materials
complying with the requirements for one or more of the CMCs listed in this Annex”, where the different
component materials categories (CMC) were defined. Of interest are the following:

• CMC2: Plants, plant parts or plant extracts is described as: “An EU fertilizing product may
contain plants, plant parts or plant extracts having undergone no other processing than cutting,
grinding, milling, sieving, sifting, centrifugation, pressing, drying, frost treatment, freeze-drying
or extraction with water or supercritical CO2 extraction. For the purpose of this point, plants
include mushrooms and algae and exclude blue-green algae (cyanobacteria).”

• CMC6: Food industry by-products, point (e): “Plants, plant parts or plant extracts having
undergone only heat treatment or heat treatment in addition to processing methods referred to in
CMC 2”

• CMC7: Micro-organisms. “An EU fertilising product belonging to PFC 6A may contain
micro-organisms, including dead or empty-cell micro-organisms and non-harmful residual
elements of the media on which they were produced”.

The strategies to obtain melatonin-rich extracts may involve microorganisms (PFC6A) or plants
(PFC 6B). At present, there seem to be no data on the production of melatonin by bacteria or fungal
cultures. The objective to obtain melatonin-rich plants (CMC2) is ambitious since phytomelatonin levels
in plants are usually very low, and less than 5–10 ng per gram of plant. An exhaustive classification
of many plants according to their phytomelatonin content can be consulted [37,237,238]. Generally,
medicinal plants have high phytomelatonin content, but this tends to vary widely due to the varied
origin of plants, technical conditions of growth, variety, post-harvest treatment, etc. Several strategies
can be followed: (i) Selecting plant species with high levels of phytomelatonin which can be extracted
and concentrated, and (ii) inducing the biosynthesis of phytomelatonin in in vitro cultured pre-selected
plant tissues. A discussion on this aspect can be consulted [239]. Our group is developing a formulation
where only aromatic/medicinal plants are used to obtain a botanical mixture rich in phytomelatonin
through the application of a simple process. A rigorous plant selection protocol and careful management
will ensure high phytomelatonin content in the plant extracts generated. The formulation and its
protocol are being patented before being made available to interested companies for commercial
exploitation. We are currently characterizing it and conducting the appropriate studies and bioassays
in plants to confirm its beneficial biological activity related with its high phytomelatonin content.

Figure 2 shows, according to the legislation analyzed, the pros and cons of melatonin (as a chemical
substance) and phytomelatonin-rich extracts and its possible regularization as a plant protector or
fertilizer (biostimulant).
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6. Future Prospects

Numerous studies with melatonin have resulted in a set of data that indicate the excellent beneficial
effects that this compound has on plants, especially in stress situations. It should not be forgotten that
melatonin is a natural compound, endogenous to plants and other organisms including humans. It is
this last aspect that makes it more interesting and also more delicate or sensitive, when using it as
a plant protective agent or as a biostimulator. However, demonstrating through trials that its use is
possible in crops and does not entail risks to human and wildlife health will be the only way forward
in this field. The alternative of using phytomelatonin-rich extracts seems more interesting, but also
more laborious. The search and selection of plants with high endogenous levels of phytomelatonin is a
first requirement for subsequent extraction and preparation. The analysis and study of its potential as
a protector against plant stress will throw light on the true effect on crops. However, although many
aspects of the mechanism of action of phytomelatonin are already known, there are other relevant
aspects to study as: (i) The optimal mode of application, time and rate; (ii) the phenological state;
(iii) the effect on rhizosphere; (iv) the persistence in soil or in foliar applications; (v) the synergic or
antagonic effects with other plant treatments (pesticides, fertilizers, etc.), among others. Obviously,
companies in the phytochemical sector (manufacturers) will need to start field studies and deal with
possible legal regularization.

Abbreviations

ABA abscisic acid
AGR absolute growth rate
ASA ascorbic acid
CGR crop growth rate
Chls chlorophylls
CMC component materials categories of fertilizers
EC European Community
ECHA European Chemical Agency
EU European Union
GA4 gibberellin-4
GABA γ-aminobutyric acid
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GSH glutathione
JA jasmonic acid
LAI leaf area index
MDA malondialdehyde
MAPKK mitogen-activated protein kinase cascade
NAR net assimilation rate
OXI1 oxidative signal-inducible1 kinases
PFC product function categories of fertilizers
ROS reactive oxygen species
RWC relative water content
SA salicylic acid
SAR systemic acquired resistance
TA total valuable acidity
TCA Krebs cycle
TSS total solid soluble
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