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Abstract: We investigated the role of heat shock transcription factors (Hsfs) during induction of 

defense response by heat-shock treatment (HST) in tomato. Leaf disease symptoms were 

significantly reduced at 12 and 24 h after HST, consistent with upregulation of pathogenesis-related 

(PR) genes PR1a2 and PR1b1 peaking at 24 h after treatment. These genes were upregulated at the 

treatment application site, but not in untreated leaves. In contrast to HST, inoculation of the first 

leaf induced systemic upregulation of acidic PR genes in uninoculated second leaves. Furthermore, 

heat shock element motifs were found in upstream regions of PR1a2, PR1b1, Chitinase 3, Chitinase 

9, Glucanase A, and Glucanase B genes. Upregulation of HsfA2 and HsfB1 peaked at 6 h after HST, 

6 h earlier than salicylic acid accumulation. Foliar spray of heat shock protein 90 (Hsp90) inhibitor 

geldanamycin (GDA) induced PR gene expression comparable to that after HST. PR gene expression 

and defense response against Pseudomonas syringae pv. tomato (Pst) decreased when combining HST 

with Hsfs inhibitor KRIBB11. The Hsfs and PR gene expression induced by heat or GDA, together 

with the suppression of heat shock-induced resistance (HSIR) against Pst by KRIBB11, suggested a 

direct contribution of Hsfs to HSIR regulation in tomato. 

Keywords: heat shock element; geldanamycin; KRIBB11; pathogenesis-related gene; salicylic acid; 

plant-pathogen interaction 

 

1. Introduction 

Plant disease resistance acquired under heat stress is known as heat-shock-induced resistance 

(HSIR) [1]. Heat shock (HS) reportedly triggers defensive responses against Colletotrichum 

gloeosporioides (Penz) Sacc. in strawberry [2], as well as against Botrytis cinerea Pers. (Bc) in melon [1] 

and cucumber [3]. Furthermore, HS-treated plants accumulated salicylic acid (SA) [1], the primary 

signaling molecule in systemic acquired resistance (SAR), which plays a role in the initial activation 

of the heat shock response (HSR) by inducing higher levels of heat shock protein 70 (Hsp70) [4,5]. In 

the present study, we focused on HSIR by studying the regulation of HSR by heat shock transcription 

factors (Hsfs). 

Upon exposure of an organism to heat stress, Hsfs activate gene expression of heat shock 

proteins (Hsps) by binding the heat shock element (HSE) in the promoter DNA sequence of the 
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corresponding gene [6–8]. HSEs are trinucleotide core sequences, 5′-nGAAn-3′ or 5′-nTTCn-3′, in 

alternating orientation, separated by two nucleotides [9]. Plants have several homologous Hsfs 

classified as A, B, and C subfamilies [10]. Tomato has eleven A-, three B-, and one C-class Hsfs [10,11] 

among which HsfA2 and HsfB1 are heat-stress-inducible proteins themselves [12]. HsfA1 is a master 

regulator that interacts with HsfA2 and HsfB1 to regulate gene expression in response to heat stress 

[13]. According to Hahn et al. [14], the formation of the HsfA1/HsfA2 super activator complex is 

responsible for enhancing the expression of Hsps in tomato cell suspension cultures. Under normal 

conditions, Hsp90 and Hsp70 bind HsfA1, thereby inactivating HsfA1. In contrast, under HS, the 

complex dissociates, and free HsfA1 enters the nucleus, where it binds HsfA2 to form a super-

activator complex that regulates gene expression by binding HSEs located in the upstream regions of 

genes that are essential for survival under heat stress [14]. 

Certain stress-related genes with HSEs regulated by Hsfs have been reported. For instance, 

Storozhenko et al. [15] reported that HsfB1 from a cloned tomato bound the HSE of ascorbate 

peroxidase (apx) 1 gene and activated its transcription under HS in Arabidopsis. Similarly, an apx 

bearing a similar HSE motif was also upregulated after exposure of rice seedlings to 42 °C [16]. 

Moreover, HsfB1 regulated the expression of defensin-like protein 16 (Pdf1.2a) gene and pathogen 

resistance in Arabidopsis [17]. These results suggest that the transcription of pathogenesis-related 

(PR) genes is regulated by Hsfs and that Hsfs are involved in defense responses. 

Inhibitors of Hsps and Hsfs have been used to investigate the role of Hsfs in the activation of 

gene expression after HST. For example, geldanamycin (GDA; NSC 122750) was applied for 

suppressing the Hsp90 chaperone ATPase cycle in eukaryotic cells by binding the ATP-binding site 

of the N-terminal domain of Hsp90 [18]. Similarly, the application of GDA on leaves of heat-treated 

tomato induced accumulation of HsfA2 [19]. Further, pretreatment of tomato cell cultures with GDA 

before HS enhanced the endogenous levels of HsfA2 and HsfB1, relative to the control treatment [14]. 

In another case, Hsfs-HSE binding was hindered by KRIBB11 (N2-(1H-indazole-5-yl)-N6-

methyl-3-nitropyridine-2, 6-diamine; KB), the only known transcription factor inhibitor that binds 

directly to HSF1, a transcription factor that regulates Hsps in human cancer cells [20]. KB showed a 

maximal inhibitory concentration (IC50) of 1.2 µM in an Hsps transcription inhibition assay [21]. 

Induction of Hsp70 was blocked in human colon cancer 116 cells through inhibition of HSF1, thereby 

completely suppressing the expression of Hsp70 when cells were exposed to HS in the presence of 

KB. The ability to suppress Hsp70 upon HS exposure suggested that KB might be successfully applied 

to suppress HSIR. 

Based on the foregoing discussion, we hypothesized that if Hsfs are involved in the activation 

of HSIR, the inhibition of Hsp90 will release HsfA1 and induction of HsfA2 and HsfB1, as well as 

induction of PR genes, will follow. On the other hand, inhibition of Hsfs will suppress the enhanced 

expression of PR genes, as well as disease resistance after HS. Moreover, Hsfs gene expression should 

be upregulated earlier than that of PR gene and the induction of disease resistance. 

The objective of this study was to assess the role of Hsfs in the regulation of HSIR. Tomato PR 

protein 1a2 (PR1a2) and PR protein 1b1 (PR1b1) were chosen as resistance marker genes, because of 

their distinctive characteristics. An earlier study showed that tomato PR1a2 and PR1b1 genes were 

upregulated by different modes of action: Upon infection by tobacco mosaic virus, the PR1b1 gene is 

strongly activated locally in tissues undergoing the hypersensitive response, but not systemically in 

uninoculated tissues [22]. In addition, wounding was shown to induce PR1b1 expression and wound-

induced resistance (WIR) against Pseudomonas syringae pv. tomato (Okabe) Young et al. (Pst) [23], 

suggesting that PR1b1 tended to be expressed after physical damage via jasmonic acid and ethylene 

pathway, whereas PR1a2 is positively activated by reactive oxygen species [24], independently from 

ethylene [22]. Gene expression profile of PR1a2 and PR1b1, SA accumulation, as well as the 

appearance of resistance against Pst after HS treatment (HST) were evaluated. In addition, we studied 

the time-course of the expression of Hsf genes and the existence of HSEs in the upstream area of PR 

genes. GDA and KB were applied to provide evidence for the regulation of HSIR via Hsfs. 
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2. Materials and Methods 

2.1. Growth and Maintenance of Pathogens and Plant Materials 

Cultures of Pst strain MAFF302666 with pathogenicity of bacterial speck leading to straight-

edged brown spots or circular spots with yellow haloes were obtained from the culture collection of 

the Genetic Resources Center, National Agriculture and Food Research Organization, Tsukuba, 

Japan. The stock Pst culture was stored in glycerol solution at −80 °C. For the experiments designed, 

the culture was maintained on King’s B agar slant at 4 °C and subcultured every four weeks. 

Pathogenicity of Pst was confirmed by challenge inoculation prior to the experiment. Plants of the 

tomato cultivar Natsunokoma were grown in soil (Super Mix A; Sakata Co., Ltd., Yokohama, 

Kanagawa, Japan) at room temperature under a 16:8 h (light: dark) regime, until the second true leaf 

was fully expanded. Square plastic propagation liner tray arranged in a 2 × 2 cell configuration (4 

plant/replication) or in a 3 × 2 cell configuration (6 plants/replication) was used. For partial treatment, 

plants were grown in individual pots. Plants with abnormal leaves were excluded. 

2.2. Pathogen Inoculation 

Pst cultures were grown overnight at 28 °C in King’s B broth in a shaker (BioShaker BR-13FP; 

Taitec co., Ltd., Koshigaya, Saitama, Japan). Next, 10 mL of each culture was pelleted by centrifuging 

at 3200 g for 20 min and resuspended in 500 µL of 10 mM MgCl2 (Nacalai Tesque, Nakagyo, Kyoto, 

Japan). Cell concentration was measured by determining optical density at 600 nm using the 

GeneQuant Pro DNA/RNA Calculator (Amersham Biosciences, Little Chalfont, BKM, UK). These Pst 

cultures were diluted to 2 × 107 colony-forming units/mL in inoculation buffer containing 10 mM 

MgCl2 plus 200 µL/L Silwett-L77 (Momentive Performance Materials Inc., Waterford, NY, USA). For 

whole plant treatment, seedlings were inoculated by dipping upside down into the bacterial 

suspension at different times after HST. For partial treatment, only the first leaf was inoculated in the 

same manner. Plants dipped into inoculation buffer were used as mock. Then, mock and inoculated 

plants were separated for incubation in different growth chambers and maintained under the same 

conditions described above. Disease severity was estimated by the extent of leaf area showing a lesion 

at 3 days after inoculation according to the following scale: Rank 0, without injuries; rank 1, less than 

10%; rank 2, from 10% to 20%; rank 3, from 20% to 40%; and rank 4, above 40% of leaf tissue affected. 

Disease index (DI) was calculated as follows: DI = [Σ(n × v)/N × Z], where n is the lesion score as 

ranked, v is the number of samples in the score category, N is the highest score value, and Z is the 

total number of samples. The experiment was repeated thrice; DI data shown are means of both first 

and second leaves from three plants per replicate. 

2.3. Heat Shock, GDA, and KB Treatments 

Whole seedlings or only the first leaf of tomato seedlings at the second-leaf stage, were dipped 

upside down into water at 45 °C for 2 min as described by Sato et al. [25] (Heat shock treatment, HST). 

Non-treated (NT) plants were used as negative controls. GDA (Tokyo Chemical Industry co., ltd., 

Chuo, Tokyo, Japan) and KB (Tocris Bioscience, Bristol, BRS, UK) were dissolved into dimethyl 

sulfoxide (DMSO) at 10 and 20 mM, respectively and diluted by ion exchange water up to the desired 

concentration. In addition, DMSO (Nacalai Tesque, Nakagyo, Kyoto, Japan) was diluted to 0.1% (v/v). 

GDA and KB were applied manually by foliar spray of 2.5 ml solution each plant using a spray bottle. 

KB was applied three times on the leaves at 6, 12, and 18 h after HST. Mock plants treated with DMSO 

were used as negative controls. 

2.4. Gene-Expression Analysis 

For time-course sampling, total RNA was isolated from the first leaf at different time intervals 

(3, 6, 12, 24, 48, or 72 h after HST) using Sepasol-RNA I (Nacalai Tesque, Nakagyo, Kyoto, Japan), 

following manufacturer instructions. Thereafter, mRNA was reverse transcribed using the Prime 

Script RT Reagent Kit (Takara Bio Inc., Kusatsu, Shiga, Japan). The synthesized first strand cDNA 
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was used as a template for quantitative real-time polymerase chain reaction (qPCR) analysis. The 

reaction was performed using the KOD SYBR qPCR Mix (TOYOBO, Kita, Osaka, Japan) on a CFX 

Connect Real-Time PCR system (Bio-Rad, Hercules, CA, USA) according to the user’s manual. The 

following cycling condition was used for qPCR reaction: Initial denaturation at 98 °C for 120 s, then 

40 cycles of 98 °C for 10 s, 60 °C for 15 s, and 68 °C for 30 s. The gene-expression levels in each sample 

were normalized to those of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene. Gene-

specific primers used for qPCR were designed using the National Center for Biotechnology 

Information (NCBI; Bethesda, MD, USA) program Primer Blast, with the parameters set to create a 

product of 200–500 base pairs (bp) within the region of the target mRNA (Table 1). In a preliminary 

experiment, no significant changes were observed in the expression levels of PR1b1 and HsfA2 from 

0 to 3 h after HST (Supplementary Figure S1). In partial-treatment tests, only the first leaf of tomato 

was treated by HS or inoculation, and gene-expression levels in treated (first leaf) and untreated 

(second leaf) plants were independently analyzed using the protocol described above. The second 

leaves of untreated plants were also analyzed as references. Three technical replicates of qPCR were 

performed for each biological replicate. 
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Table 1. Primers used to amplify pathogenesis-related (PR), heat shock transcription factors (Hsfs), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 

genes from tomato leaves. 

Target Gene Location Accession Number Properties Primer Name Sequence (5′ to 3′) 

PR1a2 chr 9 NM_001321040.1 Pathogenesis-related leaf protein 4 Acidic 
SLPR1a2 F TGTTACTTATGACTTGTCTCATGGT 

SLPR1a2 R CGACCCAATTGCCTACAGGA 

PR1b1 unplaced scaffold NM_001247385.2 Pathogenesis-related leaf protein 6 Basic 
SLPR1b1 F ACATCTCATTGTTACTCACTTGTCT 

SLPR1b1 R GACGTTGTCCGATCCAGTT 

GluA chr 1 NM_001247869.2 Glucan endo-1,3-beta-D-glucosidase Acidic 
SLGluA F GGTCTCAACCGCGACATATT 

SLGluA R CACAAGGGCATCGAAAAGAT 

GluB chr 1 NM_001247876.2 β-1,3-glucanases Basic 
SLGluB F TCTTGCCCCATTTCAAGTTC 

SLGluB R TGCACGTGTATCCCTCAAAA 

Chi3 chr 2 NM_001247475.2 Class III endochitinase Acidic 
SLChi3 F TGCAGGAACATTCACTGGAG 

SLChi3 R TAACGTTGTGGCATGATGGT 

Chi9 chr 10 NM_001247474.2 
Class I chitinase 

Basic 

SLChi9 F CTCCAATGGCTCTTCCACAT 

SLChi9 R GAAATTGCTGCTTTCCTTGC 

HsfA2 chr 8 XM_010326728.2 Heat shock transcription factor A2 
SLHsfA2 F GCGAATGGAGGTTTTCTGGG 

SLHsfA2 R GTCACAACAGAATCCGGCCT 

HsfB1 chr 2 NM_001321450.1 Heat shock transcription factor B1 
SLHsfB1 F CTATACGCCGTCGGAAGACC 

SLHsfB1 R TACCACGTCCACCACAAGTC 

GAPDH chr 5 NM_001279325.2 Glyceraldehyde-3-phosphate dehydrogenase 
SLGAPDH F GGTTTGGCATTGTTGAGGGTC 

SLGAPDH R  TCGACAACGGAGACATCAGC 
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2.5. Measurement of SA and Salicylic Acid b-D-Glucoside (SAG) Levels 

The extraction and measurement of SA and salicylic acid b-D-glucoside (SAG) by liquid 

chromatography-tandem mass spectrometry (LC-MS/MS) was conducted as previously described by 

Widiastuti et al. [26]. The first leaf from three plants was mixed for one analysis. Each of three 

replications consisted of three plants. A standard methanolic solution was prepared by diluting SA 

(Kanto Chemical Inc., Chuo, Tokyo, Japan) and SAG (Santa Cruz Biotechnology Inc., Dallas, TX, 

USA). 

2.6. Identification of HSEs in the Upstream Regions of PR Genes 

Sequences of PR1a2, PR1b1, Chitinase 3 (Chi3), Chitinase 9 (Chi9), Glucanase A (GluA), and 

Glucanase B (GluB) genes were retrieved from the tomato genome (assembly SL2.50) stored in the 

NCBI Reference Sequence Database. The upstream regions of tested PR genes were investigated for 

the existence of HSE-like sequences by manual annotation. 

2.7. Statistical Analysis 

The Tukey-Kramer test was performed for experiments involving inoculation. For SA and SAG 

determination, significant differences between NT and HST were evaluated by a two-tailed t-test at 

each sampling time-point. Arcsine-transformed values were applied for statistical analysis when data 

were distorted from the normal distribution. All analyses were performed by Statistical Analysis 

System (SAS) University Edition software (version: university.cny.sas.com@sas: university-

6p.2/6p.2.688de4662a09-1-1; SAS Institute Inc., Cary, NC, USA). 

3. Results and Discussion 

3.1. Changes in Resistance Induced by HST 

There was no significant difference in disease severity between mock (DI 1.00) and plants 

inoculated at 3 h (DI 1.00) and 6 h (DI 0.97) after HST. Disease severity significantly reduced in plants 

inoculated at 12 and 24 h after HST to DI 0.35 and 0.46, respectively, relative to mock plants. 

Thereafter, disease severity increased to DI 0.81 at 48 h and decreased again to DI 0.64 at 72 h after 

HST (Figure 1a). Significant reduction in disease severity was observed in the first leaves, but not in 

the second leaves when only the first leaves were treated with HS (Figure 1b,c). 

  

 

(a) (b) (c) 

Figure 1. Effect of Pst inoculation-timing on disease severity. (a) NT: No HST followed by Pst 

challenge by inoculation at 3, 6, 12, 24, 48, or 72 h after HST (45 °C, 2 min). (b) Partial HST tests, only 

the first leaf of tomato plants was treated by HS, followed by inoculation on both first and second 

leaves at 24 h after HST. (c) bacterial speck symptom caused by Pst. Vertical bars indicate the standard 
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error of the mean (n = 3). Different letters indicate significant differences between treatments, based 

on Tukey’s test, p < 0.05. 

Disease severity was reduced in plants under HST compared to mock plants when inoculation 

was done 12 h after HST. However, the effect was not systemic. Induction of the defense response by 

HST was observed previously in melon [1]. HST at 50 °C for 20 s resulted in the maximum reduction 

of Bc symptoms in plants inoculated immediately after HST and 24 h after HST. On the other hand, 

when inoculation was performed more than 24 h after HST, plants were not protected against the 

pathogen. This result indicated that a similar mechanism mediates HSIR against Bc in melon plants 

and against Pst in tomato plants. On the other hand, HST reportedly activated systemic induction of 

the defense response, which was different to the result observed in tomato under the current 

experimental conditions [23]. Hot water dipping of the first leaves (50 °C for 20 s) of melon seedlings 

significantly reduced Bc lesion diameter on detached untreated leaves. It is unclear whether the 

experimental conditions or the difference in plant species was the main reason for failure to induce 

systemic resistance in tomato. Nevertheless, the reduction in Pst lesions suggested that the defense 

response against Pst in tomato was effectively induced by HST. 

3.2. PR1a2, PR1b1, HsfA2, and HsfB1 Expression Profiles and SA Accumulation 

Gene expression analysis showed that PR1a2 (Figure 2a) and PR1b1 (Figure 2b) upregulation 

started at 12 h after HST and peaked at 24 h after HST, followed by a decline at 48 h after HST; 

whereas PR1a2 and PR1b1 gene expression was not detectable in NT. Furthermore, upregulation of 

PR1a2 and PR1b1 were not observed in the second leaf, which was not treated in partial HS 

experiments (Figure 3a,b). On the other hand, PR1a2, but not PR1b1, was upregulated in the second 

leaf at 24 h after partial inoculation (Figure 3c,d). Both PR1a2 and PR1b1 were upregulated at 72 h 

after HST in Pst-inoculated plants at 24 h after HST to a similar extent as HST-untreated Pst-

inoculated plants, while plants subjected to HST only did not show induced gene expression (Figure 

3e,f). The upregulation of both HsfA2 and HsfB1 peaked at 6 h after HST (Figure 4a,b). Although 

HsfA2 was upregulated at 3 h after HST and peaked at 6 h after HST, expression declined starting at 

12 h after HST and until the end of the experimental period. The expression pattern of HsfB1 was 

different from that of HsfA2, as it gradually decreased from 12 to 24 h after HST, but still retained a 

higher expression level than that in NT. SA accumulated significantly at 12 h after HST, but then 

constantly decreased from 24 to 48 h after HST (Figure 5a). In turn, SAG started to accumulate 

significantly at 48 h after HST, when SA accumulation had already ceased (Figure 5b). 

 

Figure 2. Changes in (a) PR1a2, and (b) PR1b1 expression levels in the tomato cultivar Natsunokoma. 

Gene expression levels in the first leaf at 3, 6, 12, 24, 48, or 72 h after HST (45 °C, 2 min) were quantified 

by qPCR and normalized to GAPDH expression. Vertical bars indicate the standard error of the mean 

(n = 4). 
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Figure 3. Relative expression levels of PR1a2 and PR1b1 in the leaves of the tomato cultivar 

Natsunokoma after partial treatment by HS, Pst inoculation or combined HS + Pst inoculation. Only 

the first leaf was subjected to HST at 45 °C for 2 min (a,b) or dipped into Pst solution (c,d). Thereafter, 

total RNA from the first and second leaf was extracted at 24 h after HST or Pst inoculation. In 

combined treatment (e,f), Pst was inoculated at 24 h after HST. Total RNA from the first leaf was 

extracted at 48 h after Pst inoculation, which was 72 h after HST. Gene-expression levels were 

quantified by qPCR and normalized to GAPDH expression. Vertical bars indicate the standard error 

of the mean (n = 6). 
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Figure 4. Changes in the relative expression level of (a) HsfA2 and (b) HsfB1. Gene expression levels 

in the first leaf at 3, 6, 12, 24, 48, or 72 h after HST (45 °C, 2 min) were quantified by qPCR and 

normalized to GAPDH expression. Vertical bars indicate the standard error of the mean (n = 4). 

 

Figure 5. Accumulation of (a) salicylic acid (SA) and (b) salicylic acid b-D-glucoside (SAG) at 6, 12, 24 

and 48 h after HST. Vertical bars indicate the standard error of the mean (n = 3). Significant differences 

between groups (indicated by asterisks) were obtained from performing two-tailed t-tests, p < 0.05. 

FW, fresh weight. 

Widiastuti et al. [1,26] showed that peroxidase and chitinase genes were upregulated at 12 h 

after HST in melon plants, whereas in cucumber, the peroxidase gene was upregulated at 24 h after 

HST [3]. The results in tomato leaves were consistent with those in melon and cucumber, although 

experimental conditions differed. Transient expression profiles of PR1a2 and PR1b1 (Figure 2) 

corresponding with the appearance of induced resistance against Pst (Figure 1a) suggested that the 

expression of these genes was triggered as part of the HSIR pathway of plant response to heat stress. 

However, the expression was not systemic, thereby confirming the difference between partial-HST 

and Pst challenge. When plants were inoculated with Pst, systemic expression of PR1a2 was 

observed. This result indicated that the defense response triggered by HS was different from that 

triggered by pathogen infection. Stout et al. [27] observed that partial inoculation induced SAR in 

tomato. The failure of systemic induction of disease resistance and PR gene expression showed that 

HST could not activate SAR after 24 h. 

The expression pattern of HsfA2 (Figure 4a) was different from that of HsfB1 (Figure 4b). 

According to Hahn et al. [14], the interaction of HsfB1 with Hsp70/90 under normal conditions 

maintains HsfB1 production at a low level, due to rapid degradation, thus, explaining the low 

expression of HsfB1 over time under NT, which was not observed for HsfA2. These results suggest 

the possibility that Hsfs might be activated prior to SA accumulation or PR gene expression in 

response to HS. Hence, Hsfs might be the triggering molecules that induce defense responses 

following HST in addition to SAR. 
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SA is involved in providing systemic immunity to pathogens [28–30]. Transient accumulation of 

SA was considered to cause the failure of systemic resistance. In case of pathogen infection or 

chemical activator treatment, an elicitor derived from the pathogen or a chemical derivative often 

remains around the infected part and acts as a signaling compound persistently. In contrast, the 

duration of HSIR was shorter than that of SAR, because no compound was applied to plants 

externally in conjunction with HST. 

SA plays a different role in response to HS, from the one it plays on alleviating the damaging 

effect of high temperature. Exogenous application of SA protects Arabidopsis against heat-induced 

oxidative damage [31], thus, reducing the adverse effects of heat stress on photosynthesis in wheat 

[32] and grapevine [33]. Snyman and Cronjé [34] reported that SA assisted the binding of Hsfs to 

HSEs in the promoter regions of stress genes in tomato. They noted that SA alone had no significant 

effect on HsfA1 and HsfB1 expression, but potentiated the basal level of HsfA1, followed by 

accumulation of Hsps in heat-treated plants. Moreover, tomato PR1b1 promoter activity was 

enhanced by SA [22]. It appears that SA content post-HS did not reach a SAR-inducing concentration; 

thus, it was unable to induce systemic expression of PR genes, as well as systemic resistance against 

Pst. Further, it was not clear whether the appearance of local resistance after HST was induced by SA. 

However, if previous studies on the ability of SA to enhance Hsf-DNA binding are considered, the 

hypothesis of a direct regulation of locally induced resistance by Hsfs gains strong support. 

3.3. Identification of HSEs Motifs in the Upstream Regions of Target Genes 

Multiple possible HSE motifs were discovered in the upstream regions up to 2500 bp from the 

start codon of all tested PR genes. Four possible HSE motifs were found on PR1a2 and Chi9; two 

motifs on PR1b1, Chi3, and GluA; and one motif on GluB (Figure 6a). As far as we could learn, all 

tested genes possessed these motifs. At least two HSE motifs are in reverse orientation and perfectly 

match the requirements for the minimal Hsfs-binding motif 5′-nGAAn-3′ or 5′-nTTCn-3′ (Figure 6b). 

 

Figure 6. (a) The location of possible heat shock elements (HSEs) in tomato PR genes. The numbers 

indicate the distance (in bp) from the proximal transcription start site (ATG). TATA represents the 

TATA box consensus sequence. (b) Comparison of the HSE from tomato PR genes (Sl-) and 

Arabidopsis apx1 (At-). Sequences matching the nGAAn, the basic 5 bp HSE motif are indicated in 

uppercase letters. Orientation of the nGAAn-like motifs are indicated by arrows. 

The number of HSEs, as well as the distance from the start codon, varied among PR genes. 

Nevertheless, the expression profiles of PR genes did not change. Nover [35] reported that heat shock 

inducible genes possessed a functional HSE at a distance of −40 to −400 from the start codon in 

eukaryotic cells, such as those of Drosophila melanogaster Meigen., humans, Xenopus laevis Daudin., 

Caenorhabditis elegans Maupas., plants, and Dictyostelium discoideum Raper. Our data showed that 

PR1a2, PR1b1, Chi9, and GluA fulfilled those criteria. Consistently, Hoffman and Corces [36] 

a b
ATGPR1a2

ATGPR1b1

-1643 -1492 -381

-309 -113

HSE3 HSE2 HSE1

HSE1HSE2

TATA

TATA

-60

-69

ATGChi3

ATGChi9

ATGGluA

ATGGluB

TATA

-51-1169

HSE1

TATA

-57

HSE1

-101

HSE2

-558

TATA

-77

HSE1

-217

HSE1

-2449

TATA

-54

HSE2

-2438

HSE2

-2281

HSE3

-1897

HSE4

-2262

-1889

HSE4

Sl-PR1a2 HSE1 5'- ttatTTAgattGAAttTTCctTTAaaaaagctt - 3' 

HSE2 5'- ggtaatGGAgaGAAacTTAttTTCttGAAttgc - 3' 

HSE3 5'- cattttTTCtaGAAttTCCtttGAAtatttttc - 3' 

HSE4 5'- caaccTCCtttGAAttTTCttcacatgtGAAat - 3' 

Sl-PR1b1 HSE1 5'- taatTTCctttGAAttTTCttcacacaTACtta - 3' 

HSE2 5'- taatTTCctttGAAttTTCttcaTACatgctaa - 3' 

Sl-Chi3 HSE1 5'- ggcctcTTCtaGAAgcaGTAagaTACactcttg - 3' 

HSE2 5'- tTTCtaaacaaGAAatTTCtataataTCAcaac - 3' 

Sl-Chi9 HSE1 5'- gcCAActaataGAAaaTTCacaGTAggtctcca - 3' 

HSE2 5'- atctctaTTCtGAAatTTCgtactcGAAaaTTG - 3' 

HSE3 5'- aataaaTTCatGAAtGAAcatagTCAaaaaaaa - 3' 

HSE4 5'- tcagatTTCtcGAAagGAAaatTTCacTTCgtt - 3' 

Sl-GluA HSE1 5'- tcactaGATttGAActTTCttcatcTCCacTTG - 3' 

HSE2 5'- ataagaTTCtaGAAtTTCagtcataacGTAgga - 3' 

Sl-GluB HSE1 5'- actaaaCAAatGAAggTTCaatatcTACtatat - 3' 

At-Apx1 HSE1 5'- cagatcTACcaGAAcgTTCtcaTTCatgactct - 3' 
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demonstrated that cascades of HSE that extend up to −2100 must interact for optimum HS-induced 

Hsp28 activity in Drosophila. In tomato, PR1b1 with distinct HSE structure has been extensively 

studied as a major protein responsive to chilling temperature. Exposure of tomato fruits to chilling 

temperature (2 °C) followed by re-warming of the fruits at 20 °C led to a several-fold increase in 

PR1b1 content [37]. This result confirmed that PR1b1 was responsive to changes in temperature. 

Moreover, the interaction between cloned tomato HsfB1 and the Arabidopsis apx1 promoter 

confirmed that apx1 HSE was functional as an Hsfs-binding site [15]. Therefore, it is possible that the 

existence of an HSE in the upstream area contributes to HS-induction of PR genes, although further 

experimentation is required to confirm that the corresponding HSE in PR genes is recognized by Hsfs. 

3.4. HSP90 and HSF Inhibitor Treatment 

Optimum concentration of GDA required to induce PR1b1 gene expression was 10 µM, while 

lower or higher concentrations failed to induce it (Figure 7). Upregulation of PR1a2, PR1b1, Chi3, Chi9, 

GluA, GluB, HsfA2, and HsfB1 after GDA treatment, as well as HST, are shown in Figure 8a, b, c, d, e, 

f, g, and h, respectively. The most effective concentration of KB to inhibit HSR was 100 µM, and the 

expression level of PR1b1 was reduced to 60.9% of the level induced by HST (Figure 9). Foliar spray 

of KB repeated at 6, 12, and 18 h after HST, successfully suppressed the upregulation of all tested PR 

genes. The expression level of PR1a2, PR1b1, Chi3, Chi9, GluA, and GluB decreased to 30.5%, 32.1%, 

46.2%, 62.3%, 36.4%, and 54.2%, respectively (Figure 10a–f), upon KB treatment. Conversely, the 

expression levels of HsfA2 and HsfB1 were increased by 39.9% (Figure 10g) and 25.1% (Figure 10h), 

respectively. The effect of KB-induced inhibition of Hsfs on disease resistance against Pst was 

confirmed by challenge inoculation. HST alone caused a significant reduction in disease severity, 

while the results from HST combined with KB were similar to those of DMSO (Figure 11). 

 

Figure 7. The relative expression level of PR1b1 in the leaves of the tomato cultivar Natsunokoma at 

24 h after geldanamycin (GDA) treatment. Different GDA concentrations (0.1, 1, 10, and 100 µM) and 

0.1% (v/v) dimethyl sulfoxide (DMSO) were applied by foliar spray. Gene expression levels were 

quantified by qPCR and normalized to GAPDH expression. Vertical bars indicate the standard error 

of the mean (n = 4). 
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Figure 8. Relative expression level of PR (a,b,c,d,e,f) and Hsfs (g,h) genes in the leaves of the tomato 

cultivar Natsunokoma at 24 h after treatment with DMSO, HST, and GDA. 0.1% (v/v) DMSO and 10 

µM GDA were manually applied by foliar spray. Gene expression levels were quantified by qPCR 

and normalized to GAPDH expression. Vertical bars indicate the standard error of the mean (n = 4). 

 

Figure 9. The relative expression level of PR1b1 in the leaves of the tomato cultivar Natsunokoma at 

24 h after HST combined with KB. Different KB concentrations (1, 10, and 100 µM) were manually 

applied by foliar spray at 6 h after HST. Gene expression levels were quantified by qPCR and 

normalized to GAPDH expression. Vertical bars indicate the standard error of the mean (n = 4). 
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Figure 10. The relative expression level of PR (a,b,c,d,e,f) and Hsfs (g,h) genes in the leaves of the 

tomato cultivar Natsunokoma at 24 h after HST combined with KB. 100 µM of KB was manually 

applied by foliar spray at 6, 12, and 18 h after HST. Gene expression levels were quantified by qPCR 

and normalized to GAPDH expression. Vertical bars indicate the standard error of the mean (n = 6). 
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Figure 11. Disease severity upon inoculation of Pst. 1% DMSO, 100 µM KB, HST, and HST combined 

with 100 µM KB manually applied by foliar spray at 6, 12, and 18 h after HST. Vertical bars indicate 

the standard error of the mean (n = 3). Different letters indicate significant differences among 

treatments based on Tukey’s test, p < 0.05. 

Induction of gene expression was lower in GDA-treated plants, compared to HST plants, except 

for GluA and Chi9. Under HS, HsfA1 is released from HSP90 complexes; thus, a high amount of free 

HsfA1 can bind the HSE to induce downstream gene transcription. On the other hand, the mode of 

action of GDA is to prevent Hsp90 binding the newly synthesized HsfA1 by substrate competition; 

thus, GDA cannot release HsfA1 already bound to Hsp90. Therefore, the amount of free HsfA1 is less 

than that under HST; consequently, downstream gene transcription is also lower. 

GDA has been shown to enhance HsfB1 protein production. The amount of HsfB1 protein 

gradually increased from 3 to 9 h after incubation of tomato suspension-cell cultures in the presence 

of 1 µM GDA [14]. In addition, Hsp90-silenced tomatoes showed an increased level of HsfA2 protein 

compared to the leaves transformed with an empty vector [19]. Since Hsp90 regulates the activation 

of HsfA1 [14], previous results of HsfB1 induction by GDA treatment [14] and HsfA2 upregulation 

in Hsp90-silenced cells indicated that both HsfA2 and HsfB1 were regulated by HsfA1 [19]. 

Meanwhile, the application of Hsp90 inhibitor GDA induced the expression of HsfA2, HsfB1, and PR 

genes (Figure 8), which was found to have an HSE in the upstream gene area (Figure 6). These results 

suggested that the mechanism that regulates HSR via Hsfs might also operate in the regulation of 

HSIR. Moreover, data from an analysis of the time-course followed by gene-expression profiles 

showed that the induction of HsfA2 and HsfB1 preceded the expression of PR genes, which means 

that either HsfA2 or HsfB1 is likely responsible for the upregulation of PR genes after HST. 

Upregulation of both, HsfA1 and HsfB1 under the combined HST-KB treatment showed that KB 

did not affect the master regulator of HSR, HsfA1, which regulates the expression of HsfA2 and HsfB1. 

On the other hand, the expression of PR genes, as well as the preventive effect of HS against Pst were 

suppressed under the same treatment. Since PR gene expression was detected following HsfA2 and 

HsfB1, the suppression of PR genes is likely caused by KB-induced inhibition of HsfA2 or HsfB1. 

4. Conclusions 

A protective effect of HST against pathogen infection was observed in tomato at 12 and 24 h 

after HST. The accumulation of SA after HST showed that SAR was involved in HSIR. However, HST 

failed to induce systemic PR gene expression or systemic resistance against Pst. Local induction of 

the defense response and PR gene expression following HST demonstrated that a different 

mechanism was involved. Induced Hsfs gene expression preceded SA accumulation and PR gene 
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upregulation. A schematic representation of our interpretation of the results reported herein is 

presented in Figure 12. We proposed that Hsfs-mediated HSIR is activated (Figure 12a) before SAR 

becomes activated (Figure 12b). This hypothesis was substantiated by the results of GDA-induced 

inhibition of Hsp90 and KB-induced inhibition of Hsfs. PR gene expression was upregulated after HS 

or GDA treatment, while KB suppressed HS-induced PR gene expression, but not HsfA3 and HsfB1. 

Overall, these results suggest that Hsfs were responsible for the activation of PR genes, which in turn 

led to the induction of resistance against Pst in tomato leaves. 

 

Figure 12. Comparison between HSIR (a) and systemic acquired resistance (SAR) (b). Black lines 

indicate proved pathways and gray lines indicate proposed pathways as elucidated by the work 

reported herein. During HSIR, Heat shock induced Hsfs gene expression, followed by SA 

accumulation, which in turn enhanced Hsfs binding to HSE, thereby activating non-systemic 

stimulation of basic and acidic PR gene expression. Disease severity in the first leaf was significantly 

reduced concomitantly with upregulation of PR gene expression when Pst was inoculated. 

Further, if Hsfs were also induced by infection, they can be proposed as a universal trigger for 

the activation of a defense response. Finally, the possibility that Hsfs function as triggering molecules 

in HSIR provides new insights into the molecular mechanisms of plant defense systems against 

pathogens, as well as the opportunity to develop new approaches for crop protection. 

Supplementary Materials: The following are available online at www.mdpi.com/link, Figure S1: Changes in the 

relative expression level of (a) PR1b1, and (b) HsfA2. 
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