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Abstract: Conyza canadensis is a species invading large areas throughout the world, mainly due to its
ability to evolve herbicide resistance. In Hungary, extensive areas have been infested by this species
due to the difficulty in controlling it with glyphosate. To determine whether poor control was a
result of misapplication or glyphosate resistance, eight suspected glyphosate-resistant C. canadensis
populations from different Hungarian regions were studied. In whole-plant dose-response assays
with glyphosate, the LD50 and GR50 values (survival and fresh weight reduction at 50% relative
to the untreated control, respectively) indicated that resistance was confirmed in five of the eight
populations (H-5 population being the most resistant). Additionally, the shikimic acid accumulation
tests corroborated the results observed in the dose–response assays. 11 alternative herbicides from six
different modes of action (MOA) were applied at field doses as control alternatives on populations
H-5 and H-6 (both in the same regions). The H-5 population showed an unexpected resistance to
flazasulfuron (ALS-inhibitor). The ALS enzyme activity studies indicated that the I50 for H-5 with
flazasulfuron was 63.3 times higher compared to its correspondent susceptible population (H-6).
Therefore, the H-5 population exhibited multiple-resistance to flazasulfuron and glyphosate, being
the first case reported in Europe for these two MOA.
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1. Introduction

Herbicide resistance is an evolutionary phenomenon that allows weeds that are exposed to
the recommended field dose of a herbicide to maintain growth with little or no symptomology [1].
Factors that are important for the selection of herbicide-resistant weed populations include a strict
dependence on herbicides with the same mode of action (MOA) and its continuous use [2].

One of the most widely used herbicides over the last four decades has been glyphosate, which has
a demonstrated high efficiency in weed control [3]. Its continued use however, together with the
resistance evolution, have resulted in a large number of weed species resistant to glyphosate [4].
Amongst these are the three common species of Conyza genus (Conyza bonariensis (L.) Cronquist.,
C. canadensis (L.) Cronquist., and C. sumatrensis (Retz.) E. Walker), found in many countries [4–7].

The first case of glyphosate resistance in C. canadensis was confirmed in North America in 2000 [8].
Since then, there have been many cases of resistance observed in this genus around the world [4].
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Conyza species are one of the most prone to evolve resistance to glyphosate. This incidence has been
corroborated in Europe in a large number of populations.

The survival of resistant weeds after herbicide applications can occur because of two distinct
resistance mechanisms: target-site resistance (TSR) and non-target site resistance (NTSR) [2]. The NTSR
mechanisms are caused, for example, by reduced absorption and/or translocation, increased vacuolar
sequestration [9], and/or metabolism into non-toxic compounds [10,11]. By contrast, the TSR
mechanisms are caused by the increased expression of the target protein or structural changes in
the herbicide-binding site [12,13].

Another important problem is when multiple resistances or coexisting resistance mechanisms
for different modes of action (MOA) herbicides in the population occur. Given its importance in
agriculture, the most serious multiple herbicide resistance cases are those involving glyphosate.
Half of the glyphosate-resistance cases around the world include cases of multiple resistance [4].
The continued use of herbicides with different MOA (i.e., acetolactate synthase–ALS–inhibitor) to
control glyphosate-resistant weeds under non-herbicide-rotation regimes have resulted in decreased
weed control efficiency [14], leading to the appearance of multiple resistance and reducing the
alternatives for growers when acting against it.

Hungary is a country with significant agricultural activity, due in part to its favorable
climatic conditions [15]. In recent years, Hungary has observed infestations of its crop fields
(pastures, vineyards, and corn crops) by weeds—such as Cirsium arvense, Conyza canadensis,
and Sorghum halepense—that are herbicide resistant (synthetic auxins, EPSPS inhibitors and ALS
inhibitors, respectively). However, no studies have reported the resistance level in these C. canadensis
which present multiple resistance. According to Heap [4] this would be the first case of multiple
resistance to group G and B in Europe in this species.

The objectives of the present study were: to evaluate the level of glyphosate resistance in eight
suspected C. canadensis populations from two different vineyard regions of Hungary; to evaluate
chemical control alternatives in two glyphosate resistant populations; and to determine the level of
multiple resistance if it was found.

2. Materials and Methods

2.1. Plant Material

Eight suspected glyphosate-resistant (GR) C. canadensis populations from two different regions of
Hungary were studied. Populations were provided by Monsanto Europe and denominated as H-1
to H-8. Additionally, two populations, one GR and one GS (glyphosate-susceptible) of C. canadensis,
(characterized as the R and S-glyphosate populations by University of Cordoba, Spain, respectively)
were compared to the Hungarian populations (Table 1). In all cases, seeds were taken from 10 mature
plants in vineyard crop and non-crop areas.

Table 1. Conyza canadensis populations harvested in different Hungarian (HUN) and Spanish
(ESP) areas.

Population Location Crops Herbicide Application Dose/Year Coordinate
GR Córdoba/ESP Olive grove Glyphosate 1440 a/20 37.999, −4.448
GS Córdoba/ESP Railway Mechanical control —— 37.916, −4.717
H-1 Badacsony/HUN Vineyard Glyphosate + 2,4-D 1440 a/10 + 600 b/5 46.786, 17.382
H-2 Badacsony/HUN Vineyard Glyphosate + flazasulfuron 1440 a/10 + 750 c/4 46.790, 17.428
H-3 Badacsony/HUN Vineyard Glyphosate 1800 a/20 46.785, 17.449
H-4 Balaton/HUN Vineyard Glyphosate 1800 a/20 46.787, 17.716
H-5 Balaton/HUN Vineyard Glyphosate + flazasulfuron 1800 a/20 + 750 c/7 46.788, 17.770
H-6 Balaton/HUN Vineyard Organic crop —/20 46.811, 17.830
H-7 Balaton/HUN No crop No herbicide —— 46.871, 17.944
H-8 Badacsony/HUN Vineyard Organic crop —/10 46.787, 17.487

a glyphosate g ae ha−1, b 2,4-D mL ha−1, c flazasulfuron g ai ha−1.
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Mature seeds were germinated in Petri dishes with filter paper moistened with distilled water.
Petri dishes were placed in a growth chamber at 28/18 ◦C (day/night) with a photoperiod of 16 h,
850 µmol m−2 s−1 photosynthetic photon flux, and 80% relative humidity. Seedlings from each
population were transplanted individually into plastic pots (448 cm3) containing sand/peat at a 1:2
(v/v) ratio, and they were then placed in a greenhouse at 28/18 ◦C (day/night).

2.2. Dose–Response Assays with Glyphosate

Conyza canadensis plants were treated with glyphosate at the rosette stage (BBCH 16–18 stage) [16].
Herbicide treatments were carried out in a laboratory chamber sprayer (SBS-060 De Vries
Manufacturing, Hollandale, MN, USA) equipped with an 8002 E flat fan nozzle delivering 200 L ha−1

at 250 kPa at a height of 50 cm. The different glyphosate doses are shown in Table 2. Plant survival, i.e.,
plants that survived the herbicide treatment, was recorded at 28 days after treatment (DAT). The plants
were then harvested at the ground level and weighed to determine their fresh weight. Fresh weight
and survival data were converted to percentages in comparison with the untreated control plants.
All populations were compared to the GS population.

The experiment was repeated three times with five replicates per treatment and
population combination.

Table 2. Herbicides, formulation (type and concentration) a/manufacturer, HRAC group, doses used
in the curve dose–response in g ai ha−1 (Dose–response), and recommended field doses in g ai ha−1

(Dose) applied on C. canadensis populations from Spain (GR and GS) and Hungary (H1–H8) at the
rosette stage (BBCH 16–18).

Herbicide HRAC b Formulation/Manufacturer Dose–Response Dose

Glyphosate c G
Roundup Energy®

(SL 50.9% w/v)/Monsanto
0/31.25/62.5/125/250/500/

1000/2000/4000/6000 1080

Flazasulfuron B Terafit® (WG 25% w/w)/Syngenta 0/5/10/20/40/50/100/200 80
2,4-D O U46 D Complet® (SL, 60% w/v)/Nufarm 0/45/90/180/360/720/1200 600

Carfentrazone E Affinity 240 CE® (CE 22.3% w/v)/FMC 0/3.75/7.5/15/30/60/100 100
Flumioxazin E Pledge® (WP 50% w/w)/Kenogard 0/25/50/100/300/600 400
Fluroxypyr O Praxis® (EC 20% p/v)/Nufarm 0/25/50/100/200/400 200
Diflufenican F1 Mohican 50 SC® (SC 50% w/v)/Sapec 0/125/250/500/1000/2000 375
Fomesafen E Flex 25 SL® (25% w/v)/Syngenta 0/50/100/200/300/600 400

MCPA O U 46 SP Fluid® (SL 40% p/v)/Nufarm 0/250/500/750/1000/2000 1000
Pyraflufen-ethyl E Gozai® CE, 2.65% w/v)/Belchim 0/1/2/3/6/8 6.62

Glufosinate H Finale® (SL, 20% w/v)/BayerCropScience
0/31.25/62.5/125/250/

500/1000/2000/4000 750

Diquat D Reglone® (SL, 17% w/w)/Syngenta 0/5/25/50/100/200/400/600/800 400
a Formulation type: SL, soluble (liquid) concentrate; SC, suspension concentrate; WG, water dispersible granules;
EC, emulsifiable concentrate; WP, wettable powder. Concentration in percentage: w/w = weight/weight or
w/v = weight/volume. Mention of trade names in this publication is solely for providing specific information
and does not imply their recommendation. b HRAC: Herbicide-Resistance Action Committee; G: EPSPS inhibitors;
B: ALS inhibitors; O: Synthetic auxins; E: PPO inhibitors; F1: PDS inhibitors; H: Glutamine synthase inhibitors;
D: PSI electron diverter. c Doses expressed as g acid equivalent (ae) ha−1 (50.9% potassium salt of glyphosate equals
450 g ae L−1).

2.3. Shikimic Acid Accumulation

Leaf disks of 4-mm diameter were harvested from the youngest fully expanded leaf at the BBCH
16–18 stage from each C. canadensis population. Shikimate accumulation was determined according
to Dayan et al. [17] and Hanson et al. [18]. The disks of fresh tissue (~50 mg) from each population
were transferred to 2 mL Eppendorf tubes containing 1 mL of 1 mM NH4H2PO4 (pH 4.4). At this
point, 1 µL of glyphosate at different concentrations was added to each tube resulting in the following
concentrations: 0 (blank), 10, 50, 100, 500, and 1000 µM. The Eppendorfs were incubated in a growth
chamber for 24 h under the above temperature, humidity, and light conditions. After 24 h, the tubes
were stored at −20 ◦C for further analysis. For analysis, tubes were thawed at 60 ◦C for 30 min.
Thereafter, 250 µL of 1.25 N HCl were added to each Eppendorf tube and shaken with the mechanical
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stirrer Selecta (Barcelona, Spain) for 5 min. The tubes were incubated at 60 ◦C for 15 min and then
shaken again for the same period. A 125 µL aliquot from each Eppendorf tube was pipetted into a new
2 mL Eppendorf tube, and 500 µL of periodic acid and sodium metaperiodate (0.25% (w/v) each) were
added. After incubation at room temperature for 90 min, 500 µL of 0.6 N sodium hydroxide and 0.22 M
sodium sulfite were added. Finally, the liquid in the tubes was transferred to glass vials. Within 30 min,
the light absorption at 380 nm was measured in a spectrophotometer mod. DU-640 from Beckman
Coulter (Fullerton, CA, USA). This experiment was replicated three times with five repetitions for
glyphosate concentration and population in a randomized design.

2.4. Dose–Response Assays with Alternative Herbicides

To evaluate the potential efficacy of an integrated weed management (IWM) program and
screening for potential multiple herbicide resistances, alternative herbicides were applied at the same
conditions and spraying volume as the previous assay on the H-5 and H-6 C. canadensis populations,
which presented the highest and lowest LD50 values for glyphosate, respectively. The different
herbicides and doses used are shown in Table 2. H-5 was compared to the H-6 population, which was
considered susceptible and from the same region (Balaton, Hungary). Plants were cut at 28 DAT,
and GR50 and LD50 values were determinate. Treatments were replicated three times in a completely
randomized design using five plants per dose and population.

2.5. ALS Enzyme Activity

Three grams of young leaf tissues were harvested from the H-5 and H-6 populations according
to Hatami et al. [19]. They were ground with liquid N2 and mixed with an extraction buffer in a
proportion of 1:2 (tissue: buffer). This buffer was composed of 0.5 g in polyvinylpyrrolidone (PVP),
1 M K-phosphate (at pH 7.5), 10 mM sodium pyruvate, 5 mM MgCl2, 50 mM thiamine pyrophosphate,
100 µM flavint adenine dinucleotide (FAD), 12 mM dithiothreitol, and glycerol (1:9 v/v). The mix
was agitated for 10 min at 4 ◦C in a magnetic stirrer from Bunsen (Humanes de Madrid, Spain).
The homogenate was filtered through four layers of cheesecloth and centrifuged in an Avanti J-25
Beckman Coulter centrifuge (Fullerton, CA, USA) at 20,000 rpm for 20 min. The supernatant contained
a crude ALS enzyme extract, which was immediately used for the enzyme assays.

The ALS activity was assayed by adding 0.09 mL of enzyme extract to 0.11 mL of freshly prepared
assay buffer (0.08 M K-phosphate buffer solution at pH 7.5, 0.5 M sodium pyruvate, 0.1 M MgCl2,
0.5 mM thiamine pyrophosphate, and 1 µM FAD) containing increasing concentrations of flazasulfuron
(Sulfonylureas): 0, 1, 5, 10, 50, 100, 500, 1000, 5000, and 10,000 µM. A solution of 0.04 M K2HPO4

(pH 7.0) was added to complete a final volume of 0.25 mL. This mixture was incubated at 37 ◦C
for one hour. The reaction was stopped with 50 µL of H2SO4. (1:50 v/v) and heated at 60 ◦C for
15 min. An aliquot of 0.25 mL creatine (5 g L−1 freshly prepared in water) and 0.25 mL of 1-naphthol
(50 g L−1 freshly prepared in 5 N NaOH) were added followed by incubation at 60 ◦C for 15 min.
The acetoin from decarboxylate acetolactate was detected as a colored complex (A520 nm) in the
spectrophotometer. The background was subtracted using control tubes in which the reaction was
stopped prior to incubation.

The protein was determined using the Bradford method [20] in which an acidic solution of
Coomassie Brilliant Blue G-250 was used for protein binding. The absorbance used for measurement
was 595 nm. The maximum ALS-specific activity (nmol acetoin mg−1 STP h−1) was measured
without herbicide.

The experiment was performed three times with five repetitions per herbicide concentration and
population following a randomized design.

2.6. Statistical Analysis

To determine the dose of glyphosate and alternatives herbicides needed to reduce the fresh weight
(GR50), cause mortality (LD50), or inhibit the ALS activity (I50) by 50%, the data of dose–response and
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ALS enzyme activity assays were subjected to non-linear regression analysis using a three-parameter
log-logistic Equation (1)

y = ([(d)/1 + (x/g)b]) (1)

where y is the fresh weight, survival, or enzyme activity expressed as the percentage in relation to the
non-treated control; d is the coefficient corresponding to the upper asymptote; b is the slope of the line;
g is the GR50, LD50, or I50; and x (independent variable) is the herbicide dose/concentration.

The drc package in R (version 3.2.5) was used to conduct the regression analyses [21]. Plots were
generated with SigmaPlot 11.0 (Systat Software, Inc., San Jose, CA, USA). Resistance factors (RF) were
obtained as R-to-S GR50, LD50, or I50 ratios. A lack-of-fit test was used to compare the model that
consisted of curves with population-specific g values to a reduced model with a common g [21].

Statistix 9.0 (Analytical Software, Tallahassee, FL, USA) was used to conduct the analysis
of variance (ANOVA) to test for differences between populations in terms of the shikimic acid
accumulation. Differences of p < 0.05 between means were considered significant and separated
using the Tukey HSD test.

3. Results

3.1. Dose–Response Assays with Glyphosate

Numerical differences were observed in the GR50 and LD50 values of the Hungarian populations
in comparison to the GR and GS populations from Spain (used as references) (Figure 1). Of the eight
populations studied, the H-4 (RF ≈ 11) and H-5 (RF ≈ 13) populations showed the largest resistance
factors (RF) based on the LD50 values, followed by the H-2 (RF ≈ 10), H-3 (RF ≈ 9), and H-1 (RF ≈ 9)
populations. These five populations survived at the recommended field dose and had values similar
to the GR C. canadensis used as a references. By contrast, the H-6, H-7, and H-8 populations were
susceptible to glyphosate. Differences between these three populations, compared to the GS population
used as a reference, were not found. However, a difference of almost 200 g ae ha−1 based on the LD50

values between the H-8 and GS populations was observed (Table 3).

Table 3. Parameters of the log-logistic equations a used to calculate the glyphosate rates (g ea ha−1)
required for 50% survival (LD50), or reduction fresh weight (GR50) of C. canadensis populations from
Spain (GR and GS) and Hungary (H1–H8).

Population d b LD50 RF * P d b GR50 RF * P
GR 100.3 4.53 3453.6 ± 91.4

11.3 0.0001
100.0 2.03 1474.0 ± 106.4

30.5 0.0001GS 102.1 1.81 305.7 ± 33.1 101.3 4.23 48.3 ± 4.3
H-1 98.9 3.33 2761.8 ± 62.5 9.0 0.0001 98.7 1.26 574.5 ± 38.6 11.9 0.0001
H-2 100.2 6.96 3055.8 ± 87.2 10. 0.0001 98.3 1.08 500.1 ± 29.8 10.3 0.0001
H-3 99.3 5.88 2937.7 ± 83.8 9.6 0.0001 99.6 1.10 990.9 ± 102.4 20.5 0.0001
H-4 99.6 5.72 3358.6 ± 102.9 11.0 0.0001 99.7 1.46 995.5 ± 74.4 20.6 0.0001
H-5 100.0 3.18 4029.4 ± 115.4 13.2 0.0001 99.9 0.82 638.4 ± 21.5 13.2 0.0001
H-6 100.4 4.20 383.0 ± 21.9 1.5 0.2671 100.5 1.67 83.3 ± 5.4 1.7 0.1227
H-7 100.9 5.09 436.4 ± 38.9 1.4 0.1089 102.4 1.33 89.4 ± 9.6 1.8 0.1098
H-8 99.3 3.78 493.2 ± 17.5 1.6 0.3516 100.5 1.76 79.7 ± 12.0 1.6 0.2539

a Y = d/1 + (x/g)b: where Y = percentage of survival or fresh weight with respect to the control, d = upper
limit, b = slope of the curve, g = herbicide dose at the inflection point (i.e., LD50 or GR50), and x = herbicide dose.
Resistance factor (RF = LD50 or GR50 of a resistant population/LD50 or GR50 of GS).
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Figure 1. Glyphosate dose–response on (A) survival and (B) fresh weight reduction expressed as a
percentage of the mean untreated control of the populations of C. canadensis from Spain (GR and GS)
and Hungary (H1–H8). Symbols denote the mean (n = 15) ± standard errors.

3.2. Shikimic Acid Accumulation

From 10 to 500 µM of glyphosate, the accumulation of shikimic acid increased slightly in each
population. At 500 µM, the accumulation increased strongly, with the largest amount occurring at
1000 µM. The R-populations (H-1, H-2, H-3, H-4, H-5, and GR) accumulated approximately four-fold
less shikimic acid at 1000 µM compared to the H-6, H-7, H-8, and GS populations (Table 4).

Table 4. Shikimic acid accumulation (µg of shikimic acid g−1 fresh weight) at different glyphosate
concentrations (µM) in C. canadensis populations from Spain (GR and GS) and Hungary (H1–H8).

Glyphosate Concentration
Populations

10 50 100 500 1000
GR 4.3 ± 0.7 G 23.5 ± 3.9 DE 54.9 ± 6.4 C 63.1 ± 7.3 B 65.8 ± 6.1 B
GS 10.2 ± 1.8 EF 78.7 ± 7.6 B 160.4 ± 15.3 B 273.7 ± 23.1 A 289.5 ± 24.3 A
H-1 6.2 ± 1.3 G 20.1 ± 4.6 E 60.1 ± 8.1 C 66.7 ± 5.5 B 71.5 ± 7.5 B
H-2 13.9 ± 2.1 CDE 22.0 ± 2.6 DE 56.6 ± 6.9 C 62.5 ± 7.0 B 69.4 ± 5.4 B
H-3 10.5 ± 3.3 DEF 25.5 ± 3.0 CD 61.8 ± 5.4 C 70.4 ± 6.1 B 76.0 ± 8.3 B
H-4 7.7 ± 2.5 FG 29.1 ± 4.4 C 52.3 ± 7.1 C 64.5 ± 5.8 B 71.5 ± 7.1 B
H-5 14.3 ± 3.8 BCD 25.1 ± 3.7 CDE 61.3 ± 6.5 C 68.3 ± 7.3 B 75.0 ± 6.4 B
H-6 18.2 ± 3.1 AB 83.9 ± 6.1 A 176.5 ± 20.1 AB 250.9 ± 24.3 A 276.8 ± 29.2 A
H-7 16.9 ± 2.4 ABC 75.6 ± 7.4 B 171.9 ± 17.6 AB 268.8 ± 27.3 A 283.2 ± 25.1 A
H-8 20.1 ± 5.4 A 80.4 ± 6.0 AB 182.7 ± 18.3 AB 276.3 ± 30.6 A 288.9 ± 27.4 A

Means with different letter within are statistically different at 95% probability determined by the Tukey’s test.
± Standard error of the mean (n = 15).
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3.3. Dose–Response Assays with Alternative Herbicides

The H-6 population from Hungary, that was susceptible to glyphosate, was compared with the
H-5 population (the most resistant to glyphosate) in order to avoid variant factors. The resistant
factors (RF) obtained for GR50 and LD50 values of the alternative herbicides with different MOAs
were close to unity, except for H-5 with flazasulfuron (Table 5). The LD50 value of the H-5 population
with flazasulfuron was two times higher than the recommended field dose and was 27.8 times more
resistant than for the H-6 population (Figure 2).
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Table 5. Parameters of the log-logistic equations a used to calculate the herbicide rates (g ea ha−1) required for 50% survival (LD50), or reduction fresh weight (GR50)
of C. canadensis populations H-5 and H-6 from Hungary (n = 15).

Herbicide/Population d b LD50 RF * P d b GR50 RF * P

Flazasulfuron
H-5 100.6 2.41 161.2 ± 24.4

27.9 0.0001
98.5 1.15 52.6 ± 5.7

16.5 0.0001H-6 100.0 3.55 5.8 ± 0.4 102.5 2.18 3.2 ± 0.3

2,4-D H-5 102.7 2.11 184.4 ± 21.0
1.1 0.3902

99.3 0.82 124.8 ± 25.4
1.6 0.0968H-6 101.6 1.72 164.8 ± 22.7 102.3 0.87 79.5 ± 18.6

Carfentrazone
H-5 100.9 2.64 30.9 ± 0.8

1.3 0.2571
99.0 1.13 19.1 ± 1.7

1.3 0.2861H-6 100.4 1.76 23.6 ± 1.6 100.6 1.14 15.1 ± 2.4

Flumioxazin
H-5 100.3 2.92 200.6 ± 25.9

1.4 0.0984
101.4 0.97 75.7 ± 7.9

1.6 0.3875H-6 103.3 2.01 141.5 ± 20.6 99.9 0.79 47.4 ± 10.8

Fluroxypyr H-5 101.3 3.75 114.8 ± 4.6
1.1 0.0996

100.0 3.31 28.7 ± 1.2
1.2 0.4392H-6 100.5 2.69 101.2 ± 2.3 100.3 2.90 24.5 ± 4.0

Diflufenican
H-5 101.0 3.01 258.0 ± 32.2

1.1 0.1583
101.3 2.99 208.7 ± 13.8

1.1 0.2447H-6 101.3 5.86 231.4 ± 9.3 100.5 2.78 183.3 ± 10.8

Fomesafen
H-5 102.1 3.53 206.8 ± 15.5

1.0 0.1034
98.5 1.66 189.2 ± 17.7

1.4 0.2816H-6 99.1 3.58 198.6 ± 10.9 97.1 1.65 131.2 ± 21.8

MCPA
H-5 100.4 6.03 545.2 ± 12.3

1.0 0.2190
99.9 0.97 172.3 ± 21.1

1.3 0.1648H-6 96.8 4.13 506.01 ± 27.7 100.0 0.93 130.3 ± 18.4

Pyraflufen-ethyl H-5 96.3 6.03 2.2 ± 0.1
1.1 0.1693

99.9 1.02 1.3 ± 0.3
1.1 0.1739H-6 97.4 3.88 2.0 ± 0.1 100.0 1.39 1.2 ± 0.2

Glufosinate
H-5 100.6 2.47 77.7 ± 6.0

1.2 0.3591
101.5 2.05 46.1 ± 4.4

1.2 0.1520H-6 100.1 3.66 62.8 ± 3.5 102.8 3.23 38.1 ± 5.5

Diquat H-5 100.3 1.77 14.1 ± 1.9
1.3 0.2745

102.0 0.98 7.3 ± 0.6
1.3 0.3435H-6 99.9 2.42 11.1 ± 1.4 101.1 1.11 5.7 ± 0.3

a Y = d/1 + (x/g)b: where Y = percentage of survival or fresh weight with respect to the control, d = upper limit, b = slope of the curve, g = herbicide dose at the inflection point (i.e., LD50
or GR50), and x = herbicide dose. Resistance factor (RF = LD50 or GR50 of a resistant population/LD50 or GR50 of GS).
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3.4. ALS Enzyme Activity

The I50 values determined for the H-5 and H-6 populations were 603.7 ± 17.6 and 9.5 ± 1.6 µM,
flazazulfuron respectively. These results indicated that resistance to this herbicide was 63.3 times
higher in the H-5 population than in the H-6 population (Figure 3).
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4. Discussion

4.1. Dose–Response Assays with Glyphosate

Growers use glyphosate because it is a highly versatile, broad-spectrum herbicide for weed
control. This herbicide has been an important tool to control perennial and annual weeds in crop areas,
highlighting the control of perennial weeds in perennial crops, as well as prior to planting or after
harvesting in annual crops. Another important aspect is that glyphosate is a herbicide that has high
compatibility in mixture with other herbicides with different MOA, increasing its action spectrum.
For these reasons, glyphosate has been used excessively. The appearance of resistance to glyphosate in
weeds is a problem for growers who are deprived of this effective molecule for weed control.

The observed resistance in H-1–H-5 populations may be due to numerous herbicide applications
over successive years, increases in the recommended field dose, or because the MOA was not
changed [14].

Control failures are often due to applications at a later growth stage or because environmental
factors during the use of herbicides were ignored [22]. These situations may result in resistance
after several years, or a false resistance signal (as a consequence of a bad application and not due
to resistance mechanisms). RFs variability between C. canadensis populations may be attributed to
different resistance mechanisms, and/or the existence of multiple or cross-resistance [23–25].

4.2. Shikimic Acid Accumulation

Differential accumulation of shikimic acid between R and S plants may occurs when glyphosate
does not inhibit the EPSPS enzyme mechanisms [13,26,27], due to either target site or non-target site
resistance mechanisms [28]. Glyphosate resistant C. canadensis plants could accumulate more shikimic
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acid; however, larger amounts of herbicide would be needed, i.e., an increase in glyphosate doses.
The variable accumulation of shikimic acid between the C. canadensis populations was in agreement
with that observed in the dose–response assays, and other glyphosate resistant Conyza spp. populations
from Hungary [29], confirming the resistance to glyphosate of the H-1 to H-5 populations.

4.3. Dose–Response Assays with Alternative Herbicides

The results found in the H-6 population treated with flazasulfuron showed that it is an efficient
herbicide, but only if an IWM plan is followed with other MOA herbicides. Although not yet reported,
multiple resistance flazasulfuron × glyphosate as a consequence of applying the same herbicide
alternatives, it is beginning to be observed in the European Mediterranean region. Some farmers are
now reporting low effectiveness due to the continuous use of flazasulfuron over a five year period
without alternative MOA herbicides. This effect may soon de observed in Hungary.

4.4. ALS Enzyme Activity

In consideration of the results reported here, a goal for further research will be to identify
the resistance mechanisms that are involved in both herbicides, glyphosate, and flazasulfuron.
For glyphosate, reduced absorption/translocation and/or amino acid substitution(s) are commonly
observed [26]; however, for ALS-inhiting herbicides it is not common to see absorption/translocation
as the resistance mechanisms [19,30], although it is common to find metabolism and/or amino acid
substitution(s) [11,31]. Studying the NTSR and TSR mechanisms endowing resistance to glyphosate
and fazasulfuron in the H-8 C. canadensis population may help us to understand how resistance
has been selected, as reported recently in many other weed species [14,32,33]. We plan to study
these mechanisms in the future; meanwhile, taking into account these results, we have determined
multiple-resistance to flazasulfuron (ALS-inhibitors) and glyphosate in C. canadensis from Hungary.
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