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Abstract: Despite a high abundance and diversity of natural plant pathogens, plant disease
susceptibility is rare. In agriculture however, disease epidemics often occur when virulent pathogens
successfully overcome immunity of a single genotype grown in monoculture. Disease epidemics
are partially controlled by chemical and genetic plant protection, but pathogen populations show
a high potential to adapt to new cultivars or chemical control agents. Therefore, new strategies
in breeding and biotechnology are required to obtain durable disease resistance. Generating and
exploiting a genetic loss of susceptibility is one of the recent strategies. Better understanding of host
susceptibility genes (S) and new breeding technologies now enable the targeted mutation of S genes
for genetic plant protection. Here we summarize biological functions of susceptibility factors and
both conventional and DNA nuclease-based technologies for the exploitation of S genes. We further
discuss the potential trade-offs and whether the genetic loss of susceptibility can provide durable
disease resistance.

Keywords: plant immunity; effector-triggered susceptibility; necrotrophic effector; biotroph;
susceptibility gene; host reprogramming; pathogen nutrition; plant cell development; natural
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1. Introduction

In crop production systems, plant diseases are controlled by standard field management practices
(e.g., crop rotation, ploughing), usage of disease-resistant cultivars and pesticide applications. However,
disease resistance and pesticide efficacy are often not durable because pathogen populations rapidly
adapt to the selection pressure that is exerted by these disease control mechanisms. This and potentially
harmful effects of pesticides on off-target organisms can render plant protection unsustainable,
necessitating novel approaches to combat plant pathogens. In recent years, fundamental research on
molecular plant-microbe interactions has revealed new insights on how plants defend themselves
against pathogens and how pathogens subvert plant immunity. This knowledge and the development
of new breeding technologies holds the potential for innovative approaches in genetic plant protection,
which could complement the limitations of conventional technologies to provide greater resistance
durability [1].

In plants, invading pathogens are challenged at several levels of plant-pathogen interactions [2].
Preformed defensive barriers together with pathogen-induced plant defense responses successfully
restrict parasitic growth on resistant plants. Induced plant defenses have, however, led to the
adaptation of pathogens to certain host species and the evolution of host-specific virulence strategies.
This includes the secretion of proteinaceous and non-proteinaceous pathogenicity factors that support
pathogen virulence. Since these so-called effector molecules are required to actively overcome host
immune barriers, the term “effector-triggered susceptibility” (ETS) was coined [1]. Most reports on
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effector activities show that effectors function as suppressors of plant immune receptor functions,
signal transduction and defense reactions [3]. Hence, the suppression of plant defense appears to be
pivotal for virulence. Effectors can either specifically modulate host immune processes or more broadly
influence host physiology. The latter often contributes to the development of disease symptoms. Such
effectors may even provoke strong symptoms when applied as pure substances to plants. In this case,
they are considered as toxins that can act either host-specifically or host-nonspecifically. Some effectors
influence plant development and some pathogens produce plant hormones or hormone analogs to
manipulate host development or physiology.

Pathogen detection either takes place at the plant cell surface, where surface receptor complexes
function, or in the host plant cytoplasm or nucleoplasm by intracellular receptor proteins or receptor
complexes [1,4]. Plant immune receptors (so-called resistance proteins encoded by major disease
resistance genes [R]) detect the presence of effector proteins in a race-cultivar specific manner as
determined by monogenic inheritance in both the host and parasite. At the molecular level, this
classical gene-for-gene model is described by the term “effector-triggered immunity” (ETI) [1]. A more
basal, race-nonspecific type of immunity operates within the broader context of ETS and ETI and it is
mediated by the detection of a broad spectrum of non-self or altered-self molecules. This is collectively
summarized as pattern-triggered immunity (PTI) [4,5].

2. The Principle of Susceptibility Genes and How to Find Them

Host immune components are encoded by dominantly inherited genes, which show either major
(qualitative) or minor (quantitative) effects on disease resistance. However, the observation that disease
resistance can also be recessively inherited indicates that pathogens can also profit from dominantly
inherited host functions or susceptibility factors [1,6,7]. The corresponding dominantly inherited genes
are called susceptibility genes (S). Recessive s genes have been successfully used in conventional and
marker assisted plant breeding for the improvement of disease resistance. Recessive mlo (mildew locus o),
several virus resistance genes and ToxA-insensitive tsn1 genes are prominent examples for this [8,9].
Here we discuss the mechanisms of disease susceptibility and how provoking and exploiting genetic
loss of susceptibility can aid durable disease resistance.

Farmers and breeders have selected naturally occurring mutations of s genes for the improvement
of crop health. Additionally, breeders and researchers searching for mutagenesis-induced resistance in
crop and model plants have identified a broad variety of recessive disease resistances. High research
effort over the last three decades enabled the identification of several of the corresponding mutations
in S genes and first insights into the mechanisms of disease susceptibility.

The mlo-mediated powdery mildew resistance is perhaps the most prominent example of recessive
plant disease resistance. It is of particular interest, because it is race-nonspecific and durable in the field.
The MLO-gene was originally characterized in spring barley but it seems to function in all interactions
in which MLO S-gene functions have been studied in detail [8]. Ethiopian highland farmers may have
originally selected the barley mlo-11 allele in old land races, collected during expeditions in the 1930s,
and used later in European plant breeding in the 1970s [10]. However, the first description of mlo
goes back to an X-ray induced powdery mildew mutant generated in the 1940s [11]. Across multiple
plant species, many mutagenesis-derived loss-of-function mlo alleles exist and MLO null-mutants
are generally resistant to powdery mildew assuming no genetic redundancy with other MLO family
members exists. The exact biochemical function of the f protein is not understood, but it may act as a
negative regulator of pathogen-triggered and spontaneous defense reactions, putting mlo mutants in a
primed defensive status [8,12].

The model plant Arabidopsis thaliana has been instrumental for the identification of many more
susceptibility factors. For instance, forward genetic screens for powdery mildew resistance (pmr)
or gene expression studies of compatible interactions with diverse biotrophic pathogens, followed
by reverse genetic approaches have identified several candidate S genes [6,13–15]. Additionally,
educated guesses and translational approaches have proved similarly successful in discovering
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S genes in crop plants [16,17]. In vivo protein-protein interaction screens are yet another suitable
approach to identify susceptibility factors using effector proteins as bait [18,19]. Candidate
susceptibility genes were also identified via host gene expression profiling, as it was shown
with Hyaloperonospora arabidopsidis-infected Arabidopsis thaliana and Phytophthora cinnamoni-infected
Castanea [20,21]. Once an S gene is identified, studying the physiological function of the susceptibility
factor and genetic or physical interactions can identify susceptibility mechanisms or associated
pathways and thereby new susceptibility factors [22,23].

3. Biological Functions of Susceptibility Genes

Considering the role of susceptibility genes in compatible plant-microbe interactions, the question
arises as to what physiological function host susceptibility factors (or compatibility factors in terms
of microbial symbiosis) may exert in healthy and microbe-attacked plants (Figure 1). Some plant
susceptibility factors are regulators of host defense responses or cell death. Depending on whether the
pathogen is a biotroph, hemibiotroph, or a necrotroph, it can be more or less sensitive to individual
plant defense reactions or even profit from host cell-death. Biotrophs often profit from negative
regulators of host defense reactions or cell death whereas necrotrophs can profit from host programmed
cell-death. This might explain why certain host susceptibility factors show an ambivalent character
and can turn into a resistance factor in interaction with another pathogen (see also chapter 5 for
trade-offs below). Similarly, individual plant hormone pathways can positively or negatively influence
plant-pathogen interactions, depending on the pathogen’s lifestyle [24]. In other cases, susceptibility
factors do not have reported functions in regulating plant defense. They could be involved in
physiological reprogramming of the susceptible host to establish and maintain a compatible interaction.
This is particularly well described for the interaction with biotrophic pathogens that show a tight
parasitic symbiosis with their host plants and appear to depend on many host functions for disease
development. An increasing amount of publications support that successful obligate biotrophs not
only successfully inhibit plant immunity, but also heavily rely on and reorganize host cell physiology
and development. In the next paragraphs we discuss some prominent examples of S gene functions.
For more comprehensive overviews, we refer to other review articles [25–27].
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Figure 1. Plant physiological functions and microbial utilization of host susceptibility factors (S).
Host S factors can have diverse physiological functions (highlighted by the green background box),
which would also operate in pathogen-free plants. This can include control of immune responses
or normal host cell development and metabolism. In healthy plants, S factors are regulated by host
endogenous signals (e.g., hormones, peptides, second messengers, protein-protein interaction, and
protein modification). Microbial pathogens can simply profit from S factor functions or they actively
take advantage of S factors via virulence effectors. Effectors might directly act on S factors or on their
physiological environment.



Agronomy 2018, 8, 114 4 of 16

3.1. Host Cues for Recognition by the Pathogen

Upon first contact of a pathogen with the host aerial surface or rhizosphere, silent pathogen genes
need to be activated e.g., for germination, directed growth, the development of infection structures, and
for secretion of virulence factors. Gene activation requires recognition of host cues that trigger pathogen
development. For example, epicuticular waxes and cutins of plants provide such cues for germination
and formation of appressoria (the pathogen organ for surface adherence and cell wall penetration)
by oomycetes, powdery mildew, anthracnose, and rust fungi. Correspondingly, plant mutants that
show alterations in leaf wax composition can be less susceptible to fungal invasion [28–33]. Wild type
forms of mutated genes that function in or interfere with biosynthesis of wax or cutin components
can be considered as S genes. There are also reports about other types of chemical cues from the host
(e.g., volatiles, flavonoids, acetosyringone, etc.), which are considered to be responsible for metabolic
compatibility with adapted pathogens [34–36], and corresponding biosynthetic pathways may contain
S factors. Additionally, plant surface hydrophobicity and topology trigger early pathogen development
on susceptible plants [37,38].

3.2. Support of Pathogen Demands

Host-adapted necrotrophs can usually tolerate preformed and induced plant defensive barriers,
but biotrophs, in particular, require additional support from the host because they lack saprophytic
potential [39]. This host support means that, for example, the plant is involved in establishing
pathogen feeding structures (haustoria or analogous feeding hyphae) in living host cells. Additionally,
the host actively provides nutrients, e.g., by changes in carbohydrate metabolism, sugar transport, or
carbohydrate source-sink transitions. Some obligate biotrophs have lost certain biosynthetic pathways,
and hence, they might depend on host metabolite supply for primary or secondary metabolite
biosynthesis. Thus, the pathogen requires plant components, whilst simultaneously suppressing
the same plant’s defense. In plant-virus interactions, host primary metabolism and basic cell functions
are involved in susceptibility because they provide the building blocks and biochemical machinery
for synthesis of the virus itself. For instance, several components of the plant translation machinery
contribute to virus replication and they are S factors in virus diseases [40]. An example for a host
protein that supports fungal infection is the ROP GTPase RACB of barley, which is required for the
susceptibility to fungal growth into epidermal cells and the expansion of haustoria of the powdery
mildew pathogen Blumeria graminis f.sp. hordei. The physiological function of RACB in a healthy plant
lies in polar cell development of leaf and root epidermal cells. RACB supports the outgrowth of root
hairs from trichoblasts and the ingrowth of haustoria in leaf epidermal cells [41,42]. Another example
is SWEET proteins; SWEET sugar transporters transport sucrose out of plant cells for reallocation
of sugars. SWEETS are S factors, because they can be overexpressed in pathogen interactions and
function in providing nutrients for the pathogen [43]. In summary, host cellular processes support
certain demands of pathogens that feed from live tissue and the components of these processes can
be S factors.

3.3. Control of Plant Defense Responses

Many S genes encode negative regulators of plant defense responses. Consequently,
corresponding homozygous loss-of-function-mutants show either instantaneous defense responses
or stronger defense responses after pathogen contact, which can be considered as a genetic priming
mechanism. Mutant screens provided several lesion mimic or constitutive defense gene expression
mutants, and in many of these mutants, stress hormone signaling is imbalanced. Prominent examples
are lesion-simulating disease 1 (lsd1) or constitutive expressor of PR genes (e.g., cpr1 or cpr5). These
mutants are usually less susceptible to biotrophic pathogens. In fewer cases, such mutants show a
resistance to necrotrophs or broad-spectrum resistance [44]. Powdery mildew resistant mlo mutants
show primed defense in young tissues and spontaneous defense in older tissues. However, in this
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particular case, it remains unclear as to whether deregulated defense is decisive for disease resistance
because double mutants in mlo and stress hormone pathways lose spontaneous defense yet they retain
pathogen resistance [45]. Genetic studies have shown that secondary indole metabolism appears
crucial for mlo-mediated resistance in Arabidopsis [46], and vesicle fusion involved in protein secretion
appears to be generally crucial for mlo-mediated resistance [45,47].

4. Effector Targets

Plant pathogenic microbes benefit from a certain repertoire of secreted effector proteins that
interact with host molecules aiming to create a more favorable environment for the microbe
(Figure 1). Hence, any host protein that directly or indirectly supports the susceptibility to any given
phytopathogen represents an attractive potential effector target. Our knowledge of microbial effector
proteins and susceptibility factors as genuine targets of these effectors has increased significantly over
the last years [3,26], and some examples are described below.

4.1. Hub Proteins

Proteins at the center of signaling networks constitute hubs that are by definition key players
during plant development and hence represent potential effector targets. In a recent study, a
protein-protein interaction network was generated based on Arabidopsis thaliana host proteins and
virulence effector proteins of biotrophic (Golovinomyces orontii and Hyaloperonospora arabidopsidis)
and hemibiotrophic (Pseudomonas syringae) phytopathogens. The authors showed that certain plant
proteins are targeted simultaneously by effector proteins from bacterial, fungal, and oomycete
pathogens, thereby demonstrating exemplary effector convergence on key targets [19]. Several of
these concurrently targeted plant proteins have also been shown to be susceptibility factors. Mutants
of the COP9 signalosome complex subunit 5A (CSN5A), for example, showed enhanced disease
resistance against both biotrophic and hemibiotrophic pathogens, suggesting a role for CSN5A in
facilitating pathogen sustenance in the host. In contrast, transcription factor TCP14, being the most
effector-targeted protein, seems to act as a susceptibility factor only in hemibiotrophic interactions,
similar to other TCPs. Likewise, APC8, a protein involved in cell-cycle phase transitions, is one of the
five most targeted hub proteins and acts as susceptibility factor in hemibiotrophic interactions [19].
The C3HC4 RING finger protein HUB1 was found to be targeted by only one pathogen effector protein.
However, its function as susceptibility factor was demonstrated in hub1 mutant plants that showed
enhanced disease resistance against biotrophic pathogens [19].

RIN4 (RPM1-INTERACTING PROTEIN 4) is another excellent and well-studied example of
an effector-targeted susceptibility factor. This negative regulator of plant immune responses is also
guarded by R proteins RPM1 (RESISTANCE TO PSEUDOMONAS SYRINGAE PV. MACULICOLA 1)
and RPS2 (RESISTANT TO PSEUDOMONAS SYRINGAE 2), which are activated upon perception
of the effectors AvrB-, AvrRpm1- or AvrRpt2-induced state modifications of RIN4 to subsequently
trigger ETI. RIN4 nicely demonstrates that guarding of susceptibility factors by R-proteins sometimes
is the plant’s only efficient way for protection, as opposed to S-gene mutation or the entire
elimination from the genetic background, which regarding RIN4 would have detrimental pleiotropic
consequences [48,49].

4.2. Bacterial Effector Targets

Certain race-specific susceptibility genes are targeted by transcription activator-like effectors
(TALEs) of phytopathogenic bacteria from the genus Xanthomonas. They are known to drive host gene
expression in a sequence-specific manner, leading to enhanced disease symptoms [50]. For example,
AvrXa7 and PthXo3 activate the expression of sugar transporter OsSWEET14 in rice cultivars by directly
binding to the effector binding element (EBE), which is located in the promoter region of OsSWEET14,
OsSWEET11, and OsSWEET13, like OsSWEET14, are likewise major susceptibility genes and targets of
TAL effectors [51,52]. Intriguingly, host transcription factors seem to be an attractive target for TALEs,



Agronomy 2018, 8, 114 6 of 16

as several other studies have now shown [53–55]. With the increasing amount of EBEs found in nature,
the next years will continue to enrich the arsenal of TALE-targeted susceptibility genes.

4.3. Effector Targets of (Hemi)Biotrophic Pathogens

In contrast to bacteria, filamentous pathogens like fungi and oomycetes possess a plethora of
effector proteins, indicating probable effector function redundancy. Biotrophs might, furthermore,
require multiple effectors for manipulating host S factors, as suggested recently [56]. Barley MLO
has not been described yet as a powdery mildew effector target, in contrast to its functional
ortholog MLO2 from Arabidopsis thaliana, which is targeted by bacterial Pseudomonas syringae effector
HopZ2 [8,57]. Likewise, the barley S factor ROP GTPase RACB was recently shown to interact with
the ROP-interactive peptide 1 (ROPIP1) from Blumeria graminis f.sp. hordei. ROPIP1 is encoded on
repetitive DNA, supports fungal penetration, and can provoke host cell microtubule disorganization.
It may therefore represent an unconventional powdery mildew effector [58].

Hemibiotrophic pathogens require living host tissue during the initial stage of infection,
suggesting that any host proteins that are involved in suppressing early resistance-associated cell
death reactions might constitute susceptibility factors. For example, the effector Avr3a from the late
blight pathogen Phytophthora infestans targets and stabilizes the E3 ubiquitin ligase CMPG1. CMPG1
degradation is required for INF1 elicitor-mediated cell death, which would, in turn, obstruct further
pathogen spreading during the biotrophic phase of the infection [59]. A similar stabilization, followed
by an enhanced infection, was observed with the putative potato K-homology (KH) RNA-binding
protein KRBP1 that is targeted by P. infestans effector Pi04089 [60]. Targeting S factors is a well-exploited
strategy that oomycetes like P. infestans follow, as additional studies have shown [61,62].

4.4. Effector Targets of Necrotrophic Pathogens

The pathogenicity of necrotrophs can also rely on secreted effectors that interact with host
susceptibility factors to establish foliar necrosis and/or chlorosis in a cultivar-specific manner.
For example, it was recently reported that some subunits of the membrane tethering exocyst
complex from solanaceous plants seem to act as susceptibility factors for the grey mold pathogen
Botrytis cinerea [63]. Profound knowledge of necrotrophic effector proteins was gained from studying
effector proteins ToxA and ToxB from the tan spot pathogen Pyrenophora tritici-repentis, with ToxA being
the best studied to date. The ToxA gene was acquired by horizontal gene transfer from the leaf blotch
pathogen Parastagonospora nodorum [64]. ToxA itself interacts directly with a chloroplast-localised
protein, ToxABP1. The presence of both, ToxA and ToxABP1, or the silencing of ToxABP1 in the absence
of ToxA leads to similar necrotic phenotypes, indicating ToxA altering ToxABP1 function [65,66].
ToxA genetically interacts with the product of the toxin sensitivity gene Tsn1, which encodes a
protein that resembles canonical Resistance proteins [9,67]. Functional TSN1 is involved in triggering
ToxA-dependent cell death, which favors necrotrophic pathogen growth, and is thus a major S factor
with agronomic relevance for both tan spot and leaf blotch in wheat [68].

5. Trade-offs and Prediction of Durability

S gene-based resistance has been suggested to be more durable than the widely applied
R gene-based resistance [25]. Indeed, there are many reasons why R gene resistances, even when
combined, might not be durable [69]. Thus, loss-of-susceptibility could potentially be a way to
create more durable resistance. However, little is known about general S gene durability with only
a few examples of long term durability being reported: Mlo resistance in barley has been in use
for over 35 years and eIF4E-mediated virus resistance in pepper for almost 60 [11,70]. It is often
thought that a combination of (functional) redundancy and pleiotropic effects contribute to the
durability of S genes. Yet, which factors specifically contribute to this durability remains unclear.
However, the non-race-specific nature of s gene-mediated resistance (e.g., mlo-mediated powdery
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mildew resistance) makes it less likely that population dynamics rapidly select for single races that are
capable of circumventing the loss of susceptibility.

5.1. Broad Spectrum Resistance & Functionality

It has been hypothesized that S genes are more durable because of the central role they play
in facilitating the initial infection stages. This could be tightly linked to biological functions and
the physical environment of S factors. As described above, S factors can generally be considered as
(indirect) negative regulators of immunity [71]. In s mutant genotypes, it is therefore possible that the
whole plant is in a primed state or that certain defense-associated processes are more active, preventing
the pathogen from establishing infection [13].

S factors are often intra-cellular and well-embedded in physiological pathways. It has been shown
that certain S genes can be classified as protein hubs [19]. They are therefore unlikely to steer a single
physiological process, which, when missing, can be easily circumvented by the pathogen. In the
case of host S gene null mutants, pathogens would have to evolve new functions to overcome loss
of susceptibility. This would be particularly relevant if an S factor serves an essential requirement
for the pathogen. Such evolution of a new biological function can be considered to be slow or even
impossible, according to complexity. In addition, the subcellular location and the presence of many
possible guard and decoy proteins will impede even rapidly evolving effectors to reach and modify
their intracellular target, as opposed to cell-surface receptors or apoplastic R proteins [72]. Thus,
it is easier for a pathogen to lose or modify a single R-protein-recognized effector to tackle ETI than to
overcome the loss of a host susceptibility gene.

5.2. Pleiotropy and Trade offs

S genes often have key physiological functions within the host. This implies a high chance of
pleiotropic effects of S gene mutation. On the one hand, if the recessive s gene of interest displays
deleterious phenotypes, even in a different genetic background, it would not be easily exploitable [26].
On the other hand, mutants that do not show pleiotropic effects are extremely valuable and they could
provide sustainable solutions in resistance breeding. Interestingly, pleiotropic effects also complicate
the assessment of both durability and the broadness of the resistance spectrum. For example, elF4E1
provides virus resistance in cultivated tomato (S. lycopersicum) and the wild species S. habrochaites,
yet the null mutant in S. habrochaites show stronger and broader resistance than the S. lycopersicum
mutant. The addition of an independent mutation in a related gene, elF4E2, did increase the strength
and breadth of resistance, but lead to detrimental growth [73], although elF4E2 mutants alone do not
confer resistance. Also, Mlo genes occur as gene families and in A. thaliana, independent mutations
of three orthologs are required for mlo resistance, each having their own major or minor effect [46].
A trade-off has been shown between mlo resistance to powdery mildew and increased susceptibility
to Magnaporthe grisea [74] or the toxins of the necrotroph Bipolaris sorokiniana [75]. On the other side,
reduced pleiotropic effects in barley have been reported in moderate mlo variants [76]. So far, no
trade-offs have been detected in tsn1 plants, but recent work by See et al. [67] suggested that the tan
spot infection could develop in some wheat backgrounds, independent of the tsn1 allele. Moreover,
the strong day/night rhythm of Tsn1 gene expression might indicate an additional function in wheat.

5.3. Decoys and Protection

Many S genes have allelic variants in the genome that may act as a “sponge” decoy [72], attracting
effectors and triggering defense responses. In addition, the molecular inclusion of S gene domains in
R genes has been reported, thus combining recessive resistance with active defense signaling. Pi21 is
a gene that encodes an HMA domain containing protein that suppresses the plant defense response
in rice [77]. HMA domains are virulence targets for multiple pathogens [78]. Additionally, HMA
domains have also been found as integrated domains in R genes. Effectors from the rice blast fungus
Magnaporthe oryzae bind to the HMA domain of the R protein Pik and trigger defense responses [79].
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Many more integrated domains have been described to date [80], yet the question remains how many
of these are “orthologs” of true s genes.

5.4. S Gene Diversity

Durability of S genes could possibly contribute to the fact that different homologs and s alleles
are present in different plant cultivars or ecotypes. Assuming lack of pleiotropic effects, it will
be theoretically possible to maintain many different s alleles in a population. Yet, evidence seems
inconclusive. Additional elF4E1 alleles have been identified in wild tomato species, albeit with a
limited resistance spectrum [81]. Conversely, in chili peppers (Capsicum annuum), many variants confer
resistance and are thought to have originated from loci under positive selection. Nevertheless, it is
striking that elF4E2 shows no polymorphisms in chili pepper [73]. In barley, the viral S factor HvEIF4E
also occurs in many diverse resistance-conferring haplotypes. For another unrelated virus S gene,
HvPDIL5-1, many haplotypes are present in wild barley and landraces, yet none of these are actual
virus resistance conferring alleles (rym-alleles) [82,83]. The fact that several barley cultivars with
different resistance conferring alleles exist, does suggest that the s alleles arose by mutation during
domestication in an area where the virus was also present [83]. Also, Tsn1 shows large variety in spelt
and other grasses, but in turn, it has hardly any polymorphisms in bread and durum wheat [9].

6. Exploitation of Susceptibility Genes

6.1. Breeding for Reduced Susceptibility/Loss of Susceptibility

In several cases, naturally occurring s genes have been identified in breeding material without
actually knowing the nature of the corresponding dominant gene. In many other instances, random
mutagenesis and selfing have produced disease resistant offspring with mutant s genes (Figure 2).
Recessive resistance is best identified in inbreeding plant species or artificial double haploid plants.
Cloning of S genes from crop plants has been successful in several cases and has sometimes facilitated
the identification of related genes in other crop or model plant species. MLO is an s gene with
many mlo resistance alleles being identified in diverse plant species, making it a “universal weapon”
against powdery mildew [8]. Likewise, once ToxA and the Tsn1 tan spot S-gene of wheat were
identified, it became straightforward to eliminate the susceptibility from breeding material. Even the
phenotypic identification of Tsn1 genotypes became possible because ToxA, which is as a host-genotype
specific toxin, could be directly applied to distinguish Tsn1 from tsn1 genotypes by differentially
ToxA-provoked symptoms [67].

Another breeding strategy for loss of susceptibility starts from a known S gene and looks for
natural or induced allelic diversity by TILLING (Targeting Induced Local Lesions In Genomes).
TILLING has the advantage that it starts from mutagenesis of any desired genotype, followed by S gene
re-sequencing, and can identify mutant s alleles even in complex genomes, such as that of hexaploid
wheat [84]. The hexaploidy of bread wheat and the presence of three barley Mlo orthologues (TaMlo-A1,
TaMlo-B1 and TaMlo-D1) make the natural occurrence of mlo mutants including pathogen resistance
quite unlikely for bread wheat. Using TILLING technology to select partial loss-of-function alleles
of TaMlo however enhanced powdery mildew resistance in some lines without negative pleiotropic
effects [84]. Naturally occurring variation of S genes can be identified by EcoTILLING: re-sequencing S
genes in natural populations of crop progenitors or land races. EcoTILLING identified a new allele of
eIF4E for melon necrotic spot virus resistance [85], and similar to our previous example of HvPDIL5-1,
a TILLING approach further confirmed the identity of the mutated S gene in rym1 genotypes [83].
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6.2. Gene Editing Possibilities for Targeted Exploitation of Susceptibility Genes

Besides targeted S gene-associated traditional breeding strategies, there are several additional
opportunities for exploiting S gene function (Figure 2). In fundamental research, susceptibility factors
can be used as bait to either find antagonists that are involved in resistance or downstream interactors
that themselves act as susceptibility factors. If the molecular mode-of-action of an S factor has
already been elucidated, one way to inhibit its function can be the application of a biocompatible
chemical treatment. Alternatively, the ectopic expression of dominant negative S gene variants
might outcompete and eventually eliminate the endogenous S factor function. Genome editing
using sequence-specific nuclease mutagenesis technologies has gained much attention over the
last ten years, as it provides researchers with constantly improving tools like zinc finger nucleases
(ZFNs), TALE nucleases (TALENs), and clustered regularly interspaced short palindrome repeats
(CRISPR)/CRISPR-associated systems (Cas) to create transgene-free genetically modified crops [86–88].
CRISPR/Cas9-targeted editing has been successfully applied on the citrus susceptibility gene CsLOB1
and its promoter, resulting in resistance to Xanthomonas citri subsp. citri (Xcc), and also for creating
novel alleles of rice eIF4G, which conferred resistance to Rice tungro spherical virus [89–91]. A strong
disease resistance against powdery mildew has been achieved in tomato by transgene-free genetically
CRISPR/Cas-mutated slmlo1, one of 16 Mlo genes in tomato [92], exemplifying again how powerful
and versatile these novel genome editing approaches can be.

Furthermore, the EBE of OsSWEET14 is targeted by TALEs AvrXa7, PthXo3, TalC and Tal5 from
Xanthomonas oryzae pv. oryzae. TALEN-mediated genome editing of AvrXa7 and Tal5 EBEs conferred
resistance to bacterial strains relying on the corresponding TALE [93]. Nature itself teaches us of
how to benefit from the EBE-promoter repertoire. To counteract TALE activity, several R proteins
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have recently been found in pepper and in rice that contain corresponding EBEs for Xanthomonas
TALEs AvrBs3, AvrXa10, AvrXa23, and AvrXa27, displaying a promoter-trap strategy in a decoy-like
manner to confer disease resistance [94–97]. Using TALENs or genome-based engineering, artificial
EBE-promoter traps could be generated using EBEs of S gene promoter regions upstream of known R
genes. Moreover, it is even feasible to combine different EBEs and R genes in a consecutive manner
aiming for broad-spectrum resistance against a range of microbial pathogens [50]. Additionally, with
the help of genome editing technology, broad resistance to different phytopathogenic fungi may be
achieved by generating loss-of-function alleles of genes encoding HMA domain-containing proteins,
like plant defense suppressor Pi21 [77,98].

6.3. Other Possibilities to Exploit S Factors

In the event that the constitutive knock-out or the silencing of susceptibility genes by genome
editing is rendered impossible due to deleterious pleiotropic phenotypes, “silencing on demand” using
pathogen-inducible promoters can be an alternative approach. In barley, the pathogen-inducible
Hv-Ger4c promoter has been successfully used to control the expression of Ta-Lr34res, an ABC
transporter that confers resistance against several fungal pathogens in wheat [99].

S genes can also be modified to give rise to artificial decoys that inform R proteins to trigger ETI.
This neofunctionalization is of course only applicable for susceptibility factors that are effector targets.
Targeting of the artificial decoy by the particular effector protein would consequentially lead to a dead
end for this particular effector function. Artificial decoys based on susceptibility genes could eventually
be even used to switch plant immunity between pathogen kingdoms, as it was recently shown for
artificial R proteins. RPS5, which is an intracellular R protein from Arabidopsis thaliana, is normally
activated upon the recognition of AVRPPHB SUSCEPTIBLE1 (PBS1) cleavage by Pseudomonas syringae
effector AvrPphB, with PBS1 serving as a decoy. The AvrPphB cleavage site within PBS1 was
substituted with cleavage sites for other pathogen protease effectors, e.g., protease effectors of Turnip
mosaic virus, thereby conferring resistance to different pathogens [100].

7. Future Direction

We have discussed several methods and trade-offs for S gene exploitation (Figure 2). For the
optimal exploitation of S genes, future research should focus on further unraveling the molecular
mechanisms of S gene resistance. This is essential to identify novel susceptibility factors to increase
our breeding capacities. Furthermore, intensive research is required to take full advantage of S gene
exploitation by controlling and, in the best case, diminishing pleiotropic effects. Additionally, whole
genome resequencing studies could reveal the diversity and variability of S genes in wild crop relatives
and heirloom varieties. Combined with large scale protein-protein interaction studies, these findings
can be put in a larger S gene defense signaling context. Such information will help to understand the
durability of s gene resistance when compared to R gene resistance. One could also try to identify
partial S gene mutants. Such genes might confer less, but still sufficient field resistance while suffering
less from pleiotropic effects. Such genes might be found in natural populations, where they have been
selected for, or they might be created by random or knowledge-based approaches.

These new findings can be used for modern breeding and genome editing technologies. In fact,
transgenic and marker-assisted breeding have already been utilized for over several decades. More
recently, new mutagenesis and gene editing approaches have also been shown to generate strong
and functional s genes. Thus, the targeted exploitation of susceptibility factors forms a credible and
potentially durable route for future resistance breeding.
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