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Abstract: Efficient use of nitrogen (N) fertilizer is critically important for China’s food security
and sustainable development. Crop models have been widely used to analyze yield variability,
assist in N prescriptions, and determine optimum N rates. The objectives of this study were to use
the CERES-Rice model to simulate the N response of different high-latitude, adapted flooded rice
varieties to different types of weather seasons, and to explore different optimum rice N management
strategies with the combinations of rice varieties and types of weather seasons. Field experiments
conducted for five N rates and three varieties in Northeast China during 2011–2016 were used to
calibrate and evaluate the CERES-Rice model. Historical weather data (1960–2014) were classified
into three weather types (cool/normal/warm) based on cumulative growing degree days during the
normal growing season for rice. After calibrating the CERES-Rice model for three varieties and five
N rates, the model gave good simulations for evaluation seasons for top weight (R2 ≥ 0.96), leaf area
index (R2 ≥ 0.64), yield (R2 ≥ 0.71), and plant N uptake (R2 ≥ 0.83). The simulated optimum N
rates for the combinations of varieties and weather types ranged from 91 to 119 kg N ha−1 over 55
seasons of weather data and were in agreement with the reported values of the region. Five different
N management strategies were evaluated based on farmer practice, regional optimum N rates,
and optimum N rates simulated for different combinations of varieties and weather season types
over 20 seasons of weather data. The simulated optimum N rate, marginal net return, and N partial
factor productivity were sensitive to both variety and type of weather year. Based on the simulations,
climate warming would favor the selection of the 12-leaf variety, Longjing 21, which would produce
higher yield and marginal returns than the 11-leaf varieties under all the management strategies
evaluated. The 12-leaf variety with a longer growing season and higher yield potential would require
higher N rates than the 11-leaf varieties. In summary, under warm weather conditions, all the
rice varieties would produce higher yield, and thus require higher rates of N fertilizers. Based on
simulation results using the past 20 years of weather data, variety-specific N management was a
practical strategy to improve N management and N partial factor productivity compared with farmer
practice and regional optimum N management in the study region. The CERES-Rice crop growth
model can be a useful tool to help farmers select suitable precision N management strategies to
improve N-use efficiency and economic returns.
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1. Introduction

Rice (Oryza sativa L.) is an important staple cereal crop that is sustenance to over half of the
world’s population [1]. China produces 28% of global rice production, but consumes 36% of the global
nitrogen (N) used for rice production [2]. While rice farm size in China is typically less than one ha,
rice farm size in the Sanjiang Plain of Northeast China is around 20 ha, representing a large-scale
farming system in China. Northeast China has a cool climate, but rice production in this region is vital
for the nation’s food security [3,4]. Most farmers apply N fertilizers based on their experience, but this
has led to common problems, such as over-application, improper timing, low N-use efficiency (NUE),
and environmental N losses [4–6]. New approaches to develop N management strategies are urgently
needed to improve NUE and reduce N loss to the environment.

The current priority for China to improve N management is to develop regional optimum N rates
(RONR) at the scales of provinces, counties, or townships to avoid significant over- or under-application
of N fertilizers [7]. It has been found that RONRs for rice ranged from 114 to 224 kg ha−1 in China,
with an average of 167 kg ha−1 [8]. If this RONR approach were adopted in China, N fertilizer
applications would be decreased in 56% of fields and increased in 33% of fields. This would result
in a 7% increase in rice yield and an 11% reduction in greenhouse gas emissions [8]. This approach
is simple to implement, and does not require soil and plant testing, thus making it a good starting
point to bring farmer N application rates to a relatively optimal range [9]. However, it should be
realized that with the RONR strategy, N fertilizers are applied at a fixed timing and rate and does not
consider differences in soil fertility, varieties, and weather conditions, which can significantly influence
optimum N rates [10–12].

Remote and proximal sensing technologies are commonly used to diagnose crop N status and
determine in-season N application rates [13–15]. In addition, crop simulation models and their
associated decision support systems have been demonstrated in many countries around the world
for a wide range of applications, including determining site-specific and variety-specific optimal N
application rates and making N recommendations [11,16–18]. Crop models can extend the results of
limited field experiments to other soil types and weather conditions.

The DSSAT (Decision Support System for Agrotechnology Transfer) family of crop growth
models is widely used around the world [11,16,19–23]. The CERES-Rice model included in
DSSAT is physiologically based and simulates daily canopy photosynthesis, respiration, growth,
biomass partitioning, and development as a function of input information, including daily weather
conditions, soil properties, management practices, and variety characteristics. The model has primarily
been evaluated in warm climates for different crop management practices [24–27]. It has also been used
to evaluate the impact of various planting densities and N application rates on rice yield and economic
returns under irrigation [28] and to simulate the impacts of climate change on rice production [29].

However, the CERES-Rice model has not been evaluated for rice grown under high-latitude
cool climate conditions like Northeast China. Therefore, the specific objectives of this study were to:
(1) calibrate and evaluate the CERES-Rice model using N rate experiments with three rice varieties
conducted in the Sanjiang Plain, China; (2) use the model to evaluate the long-term economic optimum
N rates for different varieties and weather types (cool, normal, and warm); and (3) evaluate the
potential benefits of variety-specific and weather-specific N management strategies, as compared to
the RONR approach in Northeast China.
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2. Materials and Methods

2.1. Study Site Description

The study site at Jiansanjiang, located in the Sanjiang Plain, Heilongjiang province, is the leading
large-scale rice farming system in China. It has a temperate continental monsoon climate with cold
winters and warm summers, with an annual average temperature of about 1–2 ◦C, annual rainfall
between 500 and 600 mm, and annual frost-free period of 120 to 140 days [30]. The area consists of
typical alluvial soil formed by the Songhua River, Heilong River, and Wusuli River. The soil is classified
as Mollisol with an Albic horizon, wet black clay approximately 20 cm thick, and high organic matter
content (>4%) [31]. The region was reclaimed from wetlands approximately 60–70 years ago, and has
been used primarily for paddy rice production.

2.2. Field Management

Two field experiments with five N rates were conducted during 2011–2016 at the Jiansanjiang
Experiment Station of China Agricultural University. The two experiments consisted of five N rate
treatments, including 0, 70, 100, 130, and 160 kg N ha−1 from 2011 to 2013, and 0, 40, 80, 120, and 160 kg
N ha−1 from 2014 to 2016. The varieties Kongyu 131 and Longjing 21 were planted from 2011 to 2013,
and Longjing 31 and Longjing 21 were planted from 2014 to 2016. Both Kongyu 131 and Longjing 31 are
11-leaf varieties, and Longjing 21 is a 12-leaf variety. A randomized complete block design with three
replicates was used for these experiments. The total N (urea as source) was split into three applications,
with 40%, 30%, and 30% being applied before transplanting, at the tillering stage and stem elongation
stage, respectively. All other field management practices, including irrigation, planting, and pest
management, followed the local recommended practices. Weather data, including the daily maximum
and minimum temperature, rainfall, and sunshine hours were collected from the local weather station.

2.3. Plant Sampling and Measurements

Rice plant biomass samples were collected at the panicle initiation, stem elongation, and heading
stages. The average tiller number for each plot was measured at the tillering stage. Leaf area index (LAI)
was calculated using the dry weight method [32]. Plant samples were separated into leaves, stems,
and panicles, and dried in an oven at 105 ◦C for 30 minutes to deactivate enzymes. Next, the samples
were dried at 75 ◦C until constant weight, and then biomass was weighed. Total aboveground biomass
was determined and total N concentration was analyzed using the Kjeldahl-N method. Plant N uptake
was calculated by multiplying the total aboveground biomass with plant N concentration. At maturity,
three 1-m2 areas were randomly selected for grain yield measurement in each plot.

2.4. Model Calibration and Evaluation

Experimental data for Longjing 21 during 2015 and 2016, Longjing 31 during 2016, and Kongyu
131 during 2012 and 2013 were selected for the calibration of CERES-Rice. Nine cultivar coefficients
(Table 1) were estimated to calibrate the model for each variety and N rate treatment. The CERES-Rice
model calibration involved making systematic adjustments to the development and growth cultivar
coefficients to minimize error between simulated and measured total aboveground biomass, LAI,
and yield. The coefficients P1, P2O, and P2R were adjusted so that the model simulated the correct
timing of top weight and LAI, which were measured at different key growth stages during the growing
season. The coefficient PHINT was adjusted to give the best fit for peak LAI, which occurred at
the transition between the vegetative and reproductive stages. The coefficient P5 was set to match
the period of time between the simulated onset of linear grain growth and measured maturity date.
The coefficient G3 was set to minimize error between simulated and measured tillers. Coefficients G1
and G2 were adjusted to minimize error between simulated and measured final yield. After calibration,
the experimental data for Longjing 21 during 2011 to 2014, Longjing 31 during 2014 and 2015,
and Kongyu 131 during 2011 were used for model evaluation.
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Table 1. Nine cultivar coefficients in CERES-Rice, calibrated for three cultivars.

Cultivar Coefficient Definition Longjing 21 Longjing 31 Kongyu 131

P1
Time period expressed as growing degree days

(GDD) 1 from emergence during which the plant
is not responsive to photoperiod

209 161.5 184.5

P2O Critical photoperiod at which the development
occurs at the maximum rate (hours) 13 13 13

P2R
Extent to which phasic development leading to

panicle initiation is delayed for each hour
increase in photoperiod above P2O (GDD)

5 5 5

P5 GDD from beginning of grain filling to
physiological maturity 620 540 545

G1 Potential spikelet number per g main culm 90 86 90

G2 Single grain weight under ideal growing
conditions, mg 0.027 0.027 0.027

G3 Tillering coefficient relative to IR64 cultivar
under ideal conditions 0.9 0.9 1

G4 Temperature tolerance coefficient. 1 1 1

PHINT Phyllochron interval, ◦C 70 74 80
1 GDD is the cumulative growing degree days from emergence.

2.5. Weather Type Classification

A total of 55 years of weather data (1960–2014) were available for long-term model analysis from
a nearby weather station at Fujin, China. Weather years were statistically divided into three classes
(cool, normal, and warm years) by summing up the accumulated growing degree days (GDD) from
May 1st through to September 30th. This period was selected because the local rice gets transplanted
in early May and harvested in late September. For perpetual years, May 1st has been a day of year 121
and September 30th has been a day of year 273. For leap years, May 1st and September 30th have been
days of year 122 and 274, respectively. The GDD was calculated using Equation (1) given by Iwata [33]
with a base temperature for rice of 10 ◦C, as given by Gao et al. [34]. The accumulated GDD1 was
calculated each year in perpetual years using Equation (2), and the accumulated GDD2 was calculated
each year in leap years using Equation (3):

GDD =
(Tmax + Tmin)

2
− Tb (1)

Accumulated GDD1 =
n=273

∑
i=121

(GDD) (2)

Accumulated GDD2 =
n=274

∑
i=122

(GDD) (3)

where Tmax is the daily maximum temperature (◦C), Tmin is the daily minimum temperature (◦C),
and Tb is the base temperature (◦C).

The Shapiro-Wilk and Kolmogorov-Smimov tests were used to determine whether the distribution
of the cumulative GDD from May 1st to September 30th was normal. The significance analysis of 55
years of accumulated GDDs for the Shapiro-Wilk test was 0.6, and Kolmogorov-Smirnov test was 0.2.
Both were larger than 0.05 and indicated that the distribution of the accumulated GDDs over 55 years
of weather conformed to a normal distribution. Then, the 55 years of accumulated GDDs were divided
into three weather categories based on a quartile statistical analysis. The 14 years with the lower 25%
of accumulated GDDs were classified as cool weather years. The 26 years with the middle 50% of
accumulated GDDs were classified as normal weather years. The 14 years with the upper 25% GDDs
were classified as warm weather years.
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2.6. Estimating Long-Term, Economically Optimum N Rates for Varieties and Different Weather Types

The calibrated model was used to estimate the long-term economically optimum N rate (EONR)
for each variety of rice under different types of weathers. The model was run for 21 different N rates
ranging from 0 to 200 kg N ha−1 in increments of 10 kg N ha−1 for each season of weather data.
Nitrogen applications were split into 40% applied before transplanting, 30% applied at tillering,
and 30% applied at the stem elongation stage. This generated 1155 values of yield from each
combination of year and N rate for each variety. The marginal net return (MNR) was computed
for each N rate and year, following Equation (4):

MNR = Yield × Price − Nrate × Ncost (4)

where Yield is the simulated rice yield with N applied, kg ha−1; Price is the price for rice, assumed
to be $0.43 kg−1; Nrate is the N application rate, kg ha−1; and Ncost is the cost of N, assumed to be
$0.5 kg−1.

The EONR for a variety was defined as the N rate that maximized the MNR averaged over all
weather years of a particular weather type (cool, normal, and warm), providing different estimates of
EONR for each weather type.

2.7. Evaluation of Different N Management Strategies

In order to compare different strategies of N management responses to rice variety and weather
type, we assumed the management of three hectares of fields from 1995 to 2014 (20 years), with one
hectare each being planted with Longjing 21, Longjing 31, and Kongyu 131, respectively. During this
period, 13 years belonged to the normal weather type, and 7 years belonged to the warm weather
type. Note that none of the seasons from 1995–2014 was identified as a cool season based on the
55-season weather analysis. This was likely due to the impacts of climate change in the region. This
first strategy consisted of running the model for 20 years using the current practice of 150 kg N
ha−1 in this region, representing Farmer Practice (FP). The second strategy consisted of running the
model over 20 years using the RONR of 120 kg N ha−1, representing regional optimal N management
(RONM). In the third strategy, the average N rates for normal and warm weather types based on
previous model simulation were used across rice varieties for the 13 normal weather years and 7 warm
weather years, respectively, representing weather-specific N management (WSNM). In the fourth
strategy, the average optimal N rates for the three different varieties were used across all weather types,
respectively, representing variety-specific N management (VSNM). For the fifth strategy, the average
variety- and weather type-specific N rates based on the previous simulation results were used for each
variety and weather type of the 20 seasons, representing variety- and weather-specific N management
(VWNM). The partial factor productivity (PFP) was calculated with rice yield divided by the amount
of N applied.

3. Results and Discussion

3.1. Model Calibration and Evaluation

The CERES-Rice model performed well in both calibration and evaluation across rice varieties
and N rates (Figure 1, Table 2) during the study period. Top weight and plant N uptake were
simulated better either across varieties or for each variety than yield and LAI. Compared to the other
three variables, the R2 values for LAI were lower. The LAI calculations in the model are driven
by coefficients embedded in the model code based on older varieties, and the user cannot easily
change these values. It is likely that rice LAI in newer varieties is higher than what is programmed
in CERES-Rice; thus, the model tended to underestimate the maximum LAI. The root mean square
error (RMSE) (≤0.90) and R2 values (≥0.70) for variety-specific LAI simulations were acceptable and
comparable with other studies [35]. The model had the best performance for top weight (R2 ≥ 0.97,
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RMSE ≤ 1594), followed by plant N uptake (R2 ≥ 0.83, RMSE ≤ 29) and yield (R2 ≥ 0.74, RMSE ≤ 632).
The CERES-Rice model performance in this study was consistent with that in warm climates [26].
This indicated that the model was able to simulate N yield responses well under a cool climate in the
high-latitude area.Agronomy 2018, 8, x FOR PEER REVIEW  6 of 14 
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Table 2. Summary of CERES-Rice calibration and evaluation of three varieties, including four variables
(yield, plant N uptake, top weight, LAI) with the experimental data during 2011–2016.

Variety Parameter
Calibration Evaluation

R2 Mean RMSE R2 Mean RMSE

Longjing 21 Yield (kg ha−1) 0.71 6520 550 0.80 6197 758
Plant N uptake (kg ha−1) 0.91 72 22 0.83 85 29

Top weight (kg ha−1) 0.98 5507 993 0.96 7036 1094
Leaf area index 0.90 2.29 0.47 0.64 2.60 0.62

Longjing 31 Yield (kg ha−1) 0.80 6370 306 0.74 6068 632
Plant N uptake (kg ha−1) 0.88 61 15 0.85 75 26

Top weight (kg ha−1) 0.97 4214 1594 0.97 5989 1158
Leaf area index 0.85 2.31 0.69 0.73 2.00 0.58

Kongyu 131 Yield (kg ha−1) 0.95 7259 359 0.85 6283 403
Plant N uptake (kg ha−1) 0.88 86 23 0.92 70 27

Top weight (kg ha−1) 0.98 6287 1268 0.98 5275 672
Leaf area index 0.71 2.49 0.90 0.70 1.74 0.50

3.2. Simulating Economically Optimum N Rates and Yields of Three Varieties Under Three Weather Types

The calibrated CERES-Rice model was used to simulate the N rate that maximized the MNR for
each of the three varieties using 55 seasons of weather from 1960–2014 (Table 3). The average simulated
EONR for Longjing 21 over the 55 years was 119 kg N ha−1, which was higher than that of Longjing
31 (100 kg N ha−1) and Kongyu 131 (91 kg N ha−1) (Table 3). The minimum and maximum EONRs of
Longjing 21 were also higher than the other two varieties, and had the least coefficient of variation
(CV,18%) (Table 3). Longjing 21 (a 12-leaf variety) has a longer growing season than Longjing 31 and
Kongyu 131, which are both 11-leaf varieties with a shorter growing season. The extra leaf and longer
growing season of Longjing 21 resulted in higher biomass and yield potential, which required more
N over the season to maximize MNR. Recent studies indicated that the optimum N application rate
in this area was about 90–120 kg N ha−1 [36]. Therefore, the results of this study are consistent with
what others found in this region. Additionally, the EONRs varied significantly across the years for
each variety (Table 3); for example, EONRs ranged from 50 to 170 kg N ha−1 for Longjing 31. This was
mainly caused by year-to-year weather variability and associated yield potential changes.

Table 3. Descriptive statistics of simulated, economically-optimum N rates that maximized marginal net
return for the years of 1960–2014. Max. and Min. standard for maximum and minimum, respectively.

Variety
Economically Optimum N Rate

Mean (kg ha−1) Max. (kg ha−1) Min. (kg ha−1) CV (%)

Longjing 21 119 180 80 18
Longjing 31 100 170 50 19
Kongyu 131 91 160 50 23

Next, the model was used to determine the EONRs that maximized MNR for all three varieties
for each of the three weather types (cool, normal, and warm). Results are summarized in Table 4.
The average simulated EONR for the warm weather years was 115 kg N ha−1, which was higher
than the average EONR for the normal (100 kg N ha−1) and cool (99 kg N ha−1) weather years,
which were nearly the same. Less variation in EONRs for cool weather years (CV = 20%) was observed.
Warm weather extends the rice-growing period, and rice tends to consume more N and has a high
NUE compared with the normal- and cool-weather years. A previous study reported that the high
temperature or warm weather during the rice-growing season accelerated soil N mineralization and
shortened the N release period [37]. These results suggested that if seasonal weather is warmer
than normal, a farmer should increase the N rate to target a higher MNR. However, if the seasonal
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weather forecast indicates that a normal or cool season is likely, a farmer should follow a strategy of
normal or lower N rates to obtain the highest possible MNR and reduce N loss in soil after harvest.
The simulation results using the CERES-Rice model are in agreement with the understanding of a N
cycle for rice.

Table 4. Summary of simulated, economically-optimum N rates that maximized marginal net return
under three weather types across all varieties during 1960–2014.

Weather Type
Economically Optimum N Rate

Mean (kg ha−1) Max. (kg ha−1) Min. (kg ha−1) CV (%)

Cool 99 160 50 20
Normal 100 170 60 22
Warm 115 180 70 24

Furthermore, in order to explore the relationships between variety, N rate, and weather type,
the EONRs of nine variety–weather combinations were simulated (Table 5). The variation of average
EONRs ranged from 87 to 134 kg ha−1. The Longjing 21-warm season combination had the highest
EONR (134 kg ha−1), while the Longjing 31-cool and Kongyu 131-normal combinations had the lowest
EONRs (≤88 kg ha−1). Generally, the combinations with warm weather had higher EONRs than those
with normal weather, and least for the cool weather seasons. The variety of Longjing 21 with one
more leaf and a longer growing season had higher EONRs than the other two varieties under the same
weather type.

Table 5. Summary of simulated, economically-optimum N rates that maximized marginal net return
for nine variety–weather combinations during 1960–2014.

Variety Weather Type
Economically Optimum N Rate

Mean (kg ha−1) Max. (kg ha−1) Min. (kg ha−1) CV (%)

Longjing 21
Cool 114 160 80 17

Normal 114 170 90 24
Warm 134 180 90 18

Longjing 31
Cool 94 110 50 18

Normal 98 150 70 19
Warm 111 170 70 23

Kongyu 131
Cool 88 100 50 16

Normal 87 150 60 23
Warm 101 160 70 26

The simulated yield responses to N rates in a typical cool-, normal-, and warm-weather year for
the three varieties are shown in Figure 2. Simulated yield in a warm year was consistently higher than
a normal year, which had higher yield than a cool year. The same trend was observed for the EONRs
under different weather conditions (Figure 2). The EONRs of the 12-leaf variety (Longjing 21) were
also shown to be relatively higher than the two 11-leaf varieties. The patterns of yield associated with
N rates for varieties and types of weather seasons can be divided into two stages: the rapid increase
of yield in response to N, and the plateau stage where yield no longer responds to N. Therefore,
the simulated optimum N rates represented a common understanding of rice N uptake for different
combinations of variety and types of weather years.
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3.3. Evaluating Different N Management Strategies

The simulated results of different N management strategies are shown in Table 6. Without
consideration of weather-type effects (FP, RONM, and VSNM), the highest MNR ($3097 ha−1) was
observed for Longjing 21 with 115 kg N ha−1 in the VSNM strategy (Table 6). Although the yield
(6931 kg ha−1) was slightly less than that of the Longjing 21 in FP, the MNR and NUE (PFP) was
improved by about $160 ha−1 and 10 kg kg−1, respectively. The NUE for three varieties in the VSNM
strategy were apparently greater than those with FP and RONM. The highest PFP (72 kg kg−1) was
observed for Kongyu 131 with a relatively low N rate (91 kg ha−1). This suggested that the EONRs
found using the CERES-Rice simulations could enhance the current farmer and regional N management
for different varieties.
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Table 6. Simulated marginal net return (MNR), partial factor productivity (PFP), and yield under five
management strategies based on different N rates, rice varieties, and weather types.

Strategy N rate (kg ha−1) Variety Weather Type MNR ($ ha−1) PFP(N) (kg kg−1) Yield (kg ha−1)

FP 150 Longjing 21 2938 48.3 7238
Longjing 31 2792 44.5 6668
Kongyu 131 2791 44.4 6665

Average 2840 45.7 6857

RONM 120 Kongjing 21 2920 57.8 6931
Longjing 31 2800 55.4 6651
Longyu 131 2794 55.3 6636

Average 2838 56.2 6739

WSNM 100 Longjing 21 Normal 2712 64.2 6424
Longjing 31 Normal 2634 62.4 6242
Kongyu 131 Normal 2624 62.2 6218

115 Longjing 21 Warm 3225 66.4 7633
Longjing 31 Warm 3106 64.0 7358
Kongyu 131 Warm 3088 63.6 7316

Average 2826 63.5 6694

VSNM 119 Longjing 21 3097 58.2 6931
100 Longjing 31 2770 65.5 6548
91 Kongyu 131 2769 72.0 6556

Average 2879 65.3 6678

WVNM 114 Longjing 21 Normal 2739 57.0 6502
134 Longjing 21 Warm 3288 58.2 7801
98 Longjing 31 Normal 2625 63.3 6206

111 Longjing 31 Warm 3072 65.4 7262
87 Kongyu 131 Normal 2622 71.4 6211

101 Kongyu 131 Warm 3077 72.1 7285
Average 2831 64.4 6706

Note: FP: farmer practice; RONM: regional optimum N management; WSNM: weather-specific N management;
VSNM: variety-specific N management; WVNM: weather- and variety-specific N management.

The effects of N rate and weather type were integrated into the WSNM strategy. The MNR and
yields of the warm weather years with 115 kg N ha−1 were consistently greater than those of the
normal weather years with 100 kg N ha−1 for all three varieties in the WSNM strategy, but their PFP
values were nearly the same. The effects of six combinations of N rate, variety, and weather year types
were investigated in the WVNM strategy. Like WSNM, MNR, PFP, and the yields of three varieties
favored the warm weather type. Higher PFP values and low N rates were observed for Kongyu 131.

The highest MNR ($3288 ha−1) and yield (7801 kg ha−1) were found for Longjing 21, with 134 kg
N ha−1 for the warm-weather years in the WVNM strategy and a PFP of 58.2 kg kg−1, which is higher
than all the combinations from different strategies. Therefore, the model analysis indicates that there
is an opportunity to improve MNR and yield without reducing PFP. However, weather variability
should be considered for the high-latitude region, and planting the 12-leaf variety could be risky in
cooler weather.

3.4. Implications for Rice N Management

Variety selection is an important management decision, as demonstrated in this study. Due to
climate warming, the average annual temperature in Heilongjiang has increased by about 2 ◦C from the
1960s to 2000s [38]. Crop growth conditions have been greatly improved, with increased accumulated
GDDs and an extended growth period [39], which is why the 12-leaf varieties have been introduced
to Jiansanjiang in recent years. Such varieties were susceptible to failure due to low GDDs and cold
weather in the past, but has now been able to mature safely in the Sanjiang Plain of Heilongjiang for
most of the time in recent years. The results of this study indicated that the 12-leaf variety, Longjing 21,
could produce higher yield than the commonly planted 11-leaf varieties (Kongyu 131 and Longjing 31)
in all the N management scenarios. Therefore, farmers are encouraged to select 12-leaf varieties in the
Sanjiang Plain if the accumulated GDDs can meet the requirement of 12-leaf varieties. This is a crucial
decision they can make in rice production, and is also an adaptation strategy to climate warming.
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After a variety is selected, determining the variety-specific optimal N rate is the next important
consideration. The long-term optimal N rate for the 12-leaf variety, Longjing 21, was higher than
the 11-leaf varieties. This is because the longer growing-season variety has higher yield potential
and requires more N. Variety differences in N responses and optimal N rates have been previously
reported by researchers for rice [40], maize [12,41], and so forth. The results of this study indicated
that our particular strategy of adjusting N rates according to different varieties performed better than
other strategies. The variety-specific EONR can be easily determined using crop growth models and
long-term weather data, and farmers do not need to make any adjustments according to different
weather types; therefore, it is a more practical N management strategy. A challenge is that varieties
on the market are changing very fast, so it may not be easy to determine the suitable N rates for all
varieties. The extension should work closely with breeding companies to get new data on different
varieties and also provide variety-specific N rates when new varieties are introduced into their regions.
A practical approach may be to classify major crop varieties into a few categories based on their
responses to N fertilization, and determine the category-specific optimal N rates for all varieties to
guide farmers in crop management.

Another consideration could be the possible type of weather condition for the upcoming growing
season. Meteorologists can often forecast whether the seasonal weather will be warmer or cooler than
normal. Under warm weather conditions, rice yield is higher than under normal weather conditions,
and therefore requires higher N fertilizer rates. The long-term optimal N rates were similar for cool
and normal weather conditions in this study. The challenge of adjusting N management according to
different weather conditions is that the weather type of the coming season is not reliably forecasted at
planting time. Since rice farmers generally apply N fertilizers in 3–4 splits in this region, the topdressing
N rates can be adjusted according to the specific weather conditions of the current growing season.
Remote and proximal sensing technologies are commonly used for diagnosing rice N status and
guiding in-season N management [13,14,42]. The results of the study indicated that WSNM and
WVNM did not improve MNR and NUE compared with VSNM. A possible reason is that the current
classification of three weather year types may not be enough, and there is still significant year-to-year
variability in weather conditions and EONRs within the same weather year type (Tables 4 and 5).

It should be noted that even NUE can be increased using the different N management
strategies evaluated in this study, whereas grain yield is generally lower than farmer practice. Thus,
farmers would not be convinced to change their N management practices, meaning that it is necessary
to integrate precision N management strategies with other high-yield management practices to increase
both yield and NUE simultaneously to make it attractive to farmers. For example, Zhao et al. [4]
combined chlorophyll meter-based precision N management with optimized planting density and
alternate wetting and drying irrigation to increase yield by 10% and NUE by 97% at the same time.

In summary, variety-specific N management demonstrated in this study has the potential to
significantly increase NUE compared with either farmer practice or regional optimum N management
strategies. The CERES-Rice crop growth model can be a useful tool to help determine the variety-
and weather-specific N rates based on long-term simulation analysis. Further studies are needed
to improve the classification of weather year types, develop methods to predict weather year types
using in-season weather data before planting and topdressing N applications, and validate such
model-assisted variety- and weather-specific N management strategies under on-farm conditions.

4. Conclusions

The CERES-Rice model gave good simulations of rice top weight, plant N uptake, yield, and LAI
for a high-latitude cool climate. The simulated optimum N rates of three rice varieties under different
weather types were in the range of local and regional optimum N rates reported by recent studies.
Through the comparison of five different N management strategies, both varieties and weather types
contributed to the variation of MNR and PFP under different optimal N rates. Due to global warming,
selection of the 12-leaf variety, Longjing 21, is likely to produce a higher crop yield and MNR than
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the 11-leaf varieties under all the management strategies evaluated. The longer growing season for
the high-yielding, 12-leaf variety would require higher N rates than 11-leaf varieties. In general,
under warm weather conditions, all the rice varieties would produce higher yield, and thus require
higher rates of N fertilizers. The model simulations indicated that variety-specific N management
was a practical N management strategy that would improve MNR and NUE over FP and RONM.
The CERES-Rice crop growth model can be used as a useful tool to provide farmers with multiple
alternatives of precision N management based on weather forecast and variety selection.
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