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Abstract: Water stress is a serious concern in the citrus industry due to its effect on citrus 

quality and yield. A sensor system for early detection will allow rapid implementation of 

control measures and management decisions to reduce any adverse effects. Laser-induced 

breakdown spectroscopy (LIBS) presents a potentially suitable technique for early stress 

detection through elemental profile analysis of the citrus leaves. It is anticipated that the 

physiological change in plants due to stress will induce changes in the element profile. The 

major goal of this study was to evaluate the performance of laser-induced breakdown 

spectroscopy as a method of water stress detection for potential use in the citrus industry. 

In this work, two levels of water stress were applied to Cleopatra (Cleo) mandarin, Carrizo 

citrange, and Shekwasha seedlings under the controlled conditions of a greenhouse. Leaves 

collected from the healthy and stressed plants were analyzed using LIBS, as well as with a 

spectroradiometer (visible-near infrared spectroscopy) and a thermal camera (thermal 

infrared). Statistical classification of healthy and stressed samples revealed that the LIBS 

data could be classified with an overall accuracy of 80% using a Naïve-Bayes and bagged 

decision tree-based classifiers. These accuracies were lower than the classification 

accuracies acquired from visible-near infrared spectra. An accuracy of 93% and higher was 

achieved using a bagged decision tree with visible-near infrared spectral reflectance data. 
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1. Introduction 

Water stress can decline citrus quality and yield, and is an important issue to be addressed [1].  

With early detection of water stress, effective control measures and management decisions can be 

implemented to reduce its adverse effects. Ideally, water stress should be detected prior to the 

appearance of visible symptoms of stress in the plant. Currently available techniques are not 

sufficiently sensitive to detect water stress at early stages. Laser-induced breakdown spectroscopy 

(LIBS) presents a potentially suitable technique for not only water stress, but also other types of stress 

detection (e.g. nutrient deficiencies) in the field conditions.  

LIBS determines the nutrient profile of a sample by creating a plasma plume that emits light at 

wavelengths unique to elements within the sample [2–4]. Nutrient profile analysis has expanded the 

applications of LIBS systems in agriculture. In addition to success in the detection of pesticide 

contamination in plants [5], LIBS has been used to evaluate heavy metal pollution [6].  

The detection limits of nutrients such as magnesium, calcium, sodium and potassium in spinach and 

rice plants were estimated using LIBS system. Moreover, the study [6] found that the pesticide 

contaminated spinach could be identified with an error of 2% using LIBS system. The LIBS have also 

been used in soil analysis [2]. In this study, the LIBS was used to evaluate the nutrient profile in order 

to estimate the changes in the nutrient profile, which can be an indicator to water stress. The nutrient 

uptake in the plants can be affected by water stress [7]. 

The visible-near infrared (VNIR) reflectance spectrometry has also been used to detect water stress in 

plants, resulting from change in reflectance of plant leaves due to loss of water [8,9]. Spectrometry can 

be used in the large-scale management of crops when used with unmanned aerial vehicles (UAVs) [10].  

In water-stressed plants, transpiration rate reduces, allowing the temperature of leaves to increase [10]. 

For this reason, thermal infrared cameras can be used for water stress detection as well. Therefore, in 

this work, three different sensing techniques, LIBS, VNIR spectrometry and thermal imaging were 

evaluated for water stress detection in citrus cultivars.  

2. Results and Discussion 

2.1. Water Stress Monitoring and Characterization  

The stem water potential of the seedlings was used as reference for monitoring water stress in the 

seedlings. There were three treatments (control/healthy, moderate stress, extreme stress) induced on 

replicate seedlings of three cultivars, Cleopatra (Cleo) mandarin, Carrizo citrange, and Shekwasha. 

Five sets of data on stem water potential and spectral signatures using LIBS and VNIR technique were 

collected from the seedlings. As Figure 1 illustrates, all cultivars had a higher stem water potential 

values in the extreme stress conditions, beginning with the second dataset, indicating the onset of water 

stress. Stem water potential data could not be collected from the moderately and extremely stressed 
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Shekwasha seedlings during final data collection as no water droplets were apparent within the applied 

pressure range using the water stress test unit. The stem water potential results correlated well with the 

physical observations made for each cultivar, with the Shekwasha seedlings having more severe 

physical stress symptoms (leaf wilting and curling) during fourth and fifth dataset collection and the 

Cleo seedlings with least apparent physical symptoms. Initial stem water potential trends (first dataset) 

were different, which may be attributed to the shock experienced by the seedlings due to repotting 

prior to the start of water stress experiments. 

Figure 1. Stem water potential measurements collected throughout the experiment for the  

(a) Cleo; (b) Carrizo; and (c) Shekwasha seedlings.  

  

 

Thermal infrared imaging showed potential in the detection of water stress. However, the high 

ground and soil temperatures, and variations in lighting produced many challenges during the data 

collection [11]. A sample thermal image of the Shekwasha seedlings is shown in Figure 2. The 

configuration of the plants in the image allowed for the distinction between the stressed and control 

plants. The control group is represented in the top row; while bottom plants showed the extremely 

stressed seedlings. The higher pixel values correlated with higher temperatures. When the average 

pixel value of multiple seedlings for each stress level within the cultivars was measured, there was a 

variation between the values (Figure 3). The Cleo and Shekwasha showed larger differences in the 

average pixel values related to each level of stress in comparison with the Carrizo seedlings. One of 

the possible reasons could be the leaf shape (narrow three lobed leaf of the Carrizo) that made the 

distinction between the leaf and background difficult. 
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Figure 2. (a) RGB and (b) thermal images of Shekwasha seedlings with varying degree  

of stress.  

 

Figure 3. Average pixel value estimated with thermal image data. 

 

The results of the nutrient analysis completed on dried plants following the final dataset collection 

are displayed in Figure 4. Nutrient concentration trends between stress levels for each cultivar were 

analyzed for statistical significance using analysis of variance (ANOVA) with a confidence level of 

95%. In Cleo plants, phosphorus, sulfur, boron, and zinc concentrations varied with stress levels. 

However, in Carrizo plants, only phosphorus and manganese were found to be significant. Potassium, 

calcium, sulfur, and copper concentrations in the Shekwasha seedlings were also found to be 

statistically significant. Due to small data size, conclusive results could not be made. 

  

(a) (b) 



Agronomy 2013, 3 751 

 

 

Figure 4. Nutrient concentrations of seedlings following the conclusion of the 

experiments. (a) Concentrations of boron, zinc, manganese, copper and iron in ppm, and 

(b) concentrations of nitrogen, phosphorous, potassium, magnesium, calcium, and sulfur  

in percent.  

 

(a) 

 

(b) 

Prior to data classification, Normalized Difference Vegetation Index (NDVI) was calculated for the 

samples to observe the temporal change in NDVI pattern for each cultivar (Figure 5). The first dataset 

showed very low NDVI values for all three conditions and cultivars, which could be due to plant 

adaptation to repotting. However, the exact reason for this observation is unknown. From datasets 2 to 

4, the NDVI values between the three treatments were comparable. Only in the dataset 5, the NDVI 

values decreased significantly with increase in stress conditions, especially for Carrizo and Shekwasha. 

For Cleo, the NDVI values of the moderately stress conditions was comparable to the healthy plants, 

which could be due to the absence of any visible stress symptoms.  
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Figure 5. Normalized Difference Vegetation Index (NDVI) values of (a) Cleo; (b) Carrizo; 

and (c) Shekwasha seedlings. 

  

 

2.2. LIBS and VNIR Classification  

Table 1 summarizes the classification results using multiple algorithms using LIBS and VNIR 

sensing techniques. The algorithms tested were Linear Discriminant Analysis (LDA), Naïve-Bayes 

(NB) classifier, and Bagged Decision Tree (BDT). As indicated by Table 1, the three algorithms used 

in the LIBS spectral data classification were unsuccessful in accurately identifying stress levels in the 

Cleo seedlings. Overall accuracy values for the first week of testing, prior to any evidence of stress in 

the plants through stem water potential, began at values over 50% and continued to fluctuate 

throughout the study. In the fourth dataset the LDA, NB, and BDT algorithms resulted in overall 

accuracy values of 70% or higher. The classification accuracy for Shekwasha seedlings were about 

80% in datasets 3 and 4 using bagged decision tree.   

Table 1. Overall accuracy (%) of classification algorithms on data collected using  

laser-induced breakdown spectroscopy (LIBS); LDA: Linear Discriminant Analysis, NB: 

Naïve Bayes classifier, BDT: Bagged Decision Tree 

Dataset 
Cleo Carrizo Shekwasha 

LDA NB BDT LDA NB BDT LDA NB BDT 

1 67 58 67 20 0 10 36 27 36 

2 50 50 26 11 33 22 44 22 22 

3 60 60 70 22 22 44 56 56 78 

4 70 70 60 70 80 80 70 80 80 

5 45 30 50 60 50 60 35 35 30 
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Comparing the nutrient profiles and stress levels, the Carrizo seedlings displayed significant trends 

in two of eleven nutrients measured, while four were significant in the Cleo and Shekwasha seedlings. 

The lower classification accuracy values of Cleo seedlings could be related to the cultivar’s leaf  

water-use efficiency, which is higher than the Carrizo and was the least symptomatic of the three 

cultivars [12]. The Shekwasha seedlings that resulted in the higher classification accuracy were the 

most sensitive to water stress with highly symptomatic physical characteristics. The low accuracy 

achieved in the fifth dataset for all cultivars is most likely related to the highly symptomatic leaves 

observed in the moderately and extremely stressed seedlings in the final week of the study.  

For the VNIR spectroscopy classification accuracies given in Table 2, the BDT algorithm was the 

most accurate for all three cultivars in the final dataset. In the fourth dataset, the point at which 

physical stress symptoms started to appear, LDA showed the highest overall classification accuracy for 

Shekwasha. Differences between the cultivars in the classification accuracy related to the VNIR 

spectroscopy method can likely be attributed the variance in leaf shape and configuration as these 

parameters are known to affect the VNIR reflectance data [13,14].  

Table 2. Overall accuracy (%) of classification algorithms on data collected through  

visible-near infrared (VNIR) spectroscopy.  

Dataset 
Cleo Carrizo Shekwasha 

LDA NB BDT LDA NB BDT LDA NB BDT 

1 47 60 67 40 33 60 67 80 73 

2 40 60 67 40 60 67 64 86 86 

3 36 43 57 47 60 67 71 57 79 

4 67 47 73 33 73 67 86 64 71 

5 67 77 100 57 63 93 58 73 97 

3. Experimental Section  

3.1. Citrus Rootstock Seedlings  

Three cultivars of citrus rootstocks were utilized in this study: Cleopatra (Cleo) mandarin, Carrizo 

citrange, and Shekwasha. A total of twenty seedlings of each cultivar were monitored with two levels 

of water stress having seven replicates each and six replicates of non-stressed control. After an initial 

week of watering every two days, “control” seedlings were watered every one to two days, “moderate” 

stressed plants were watered every three to four days, and “extreme” stressed plants were watered 

every one to two weeks. Each seedling received 200 mL of water applied to the soil directly below the 

leaves on the designated watering day. All seedlings were given 4.7% iron chelate and a fertilizer 

solution of nitrate, phosphate, and potash in a 7:2:7 ratio once a week. The seedlings were grown in 

controlled-environmental conditions of a greenhouse. 

3.2. Sensors and Data Collection  

The LIBS and VNIR reflectance data were collected using PORTA-LIBS-2000 system (StellarNet, 

Inc., Tampa, FL, USA) and Field Portable Spectroradiometer (SVC HR-1024, Spectra Vista Corp., 

Poughkeepsie, NY, USA). A total of five datasets were collected throughout the study with the first 



Agronomy 2013, 3 754 

 

 

four sets being collected every 1–2 weeks and a final dataset 8 weeks following the start of the 

experiment. Week 1 data were collected prior to water stress application in order to monitor the 

condition of the seedlings prior to the start of stress experiments. One Shekwasha seedling was 

excluded from the test following the first dataset collection due to presence of disease in the seedling.  

For data collection, leaves were removed from the seedlings in order to measure the stem water 

potential. These leaves were gently cleaned with water, and the LIBS and VNIR systems were used to 

collect the spectral data within four hours of initial removal from the plant. The sampling frequency 

and the number of LIBS and VNIR spectra collected are summarized in Table 3. Using the LIBS 

system, two replicate spectra from two different spots were collected from each leaf. Similarly, three 

replicates of reflectance spectra were recorded for every leaf using the VNIR system in the laboratory. 

Table 3. Sampling period and spectral data collected using the LIBS and VNIR systems. 

Dataset Sampling Date LIBS VNIR 

1 Week 1 142 185 

2 Week 2 117 177 

3 Week 4 116 180 

4 Week 5 118 177 

5 Week 8 120 180 

The stem water potential was determined using a Portable Plant Water Stress Console (Soil 

Moisture Equipment Corp., Santa Barbara, CA, USA). Thermal infrared images were collected to 

monitor changes in plant transpiration levels using a compact thermal camera (Tau 640, FLIR 

Systems, Goleta, CA, USA). Due to several challenges such as high ground and soil temperatures, 

variations in lighting and shadow effects, all the thermal images were not used for analysis. Therefore, 

Figure 3 represents three thermal images (one for each cultivar).  

Physical symptoms of stress were recorded every week in addition to the leaf count and plant height 

recorded during the start and end of the study. A nutrient analysis was completed following the 

conclusion of the experiment through Waters Agricultural Laboratories, Inc. (Camilla, GA, USA). 

3.3. Data Analysis  

Spectral data from LIBS and VNIR systems were processed and analyzed using MATLAB 

(MathWorks, Natick, MA, USA). Raw LIBS data were denoised using wavelets followed by data 

normalization prior to the use of principal component analysis to reduce redundancy. The number of 

principal components with a variance of 99.9% was used as input data. The dataset was randomized 

and separated to training (75%) and testing (25%) datasets for classification. LDA, NB and BDT 

algorithms were used for classification.  

Similarly, prior to principal component analysis and classification, VNIR spectral data were 

normalized and the wavelength data were averaged for every 10 nm. Principal components were used 

such that the variance was at least 90.0%. The data were divided into training and test datasets, similar 

to LIBS data. LDA, NB, and BDT algorithms were tested with the VNIR data.  
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4. Conclusions  

Overall, VNIR spectroscopy showed higher accuracy in the classification of stress levels. Despite 

this, there was variability in performance of algorithm for each cultivar, indicating the need for 

cultivar-specific classification methods. The LIBS classification accuracy for all cultivars reduced 

significantly after the appearance of physical water stress symptoms. Comparing the two spectroscopic 

methods with drought sensitive and resistant citrus cultivars could be an area of future research.  
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