
Agronomy 2012, 2, 222-239; doi:10.3390/agronomy2030222 

 

agronomy 
ISSN 2073-4395 

www.mdpi.com/journal/agronomy 

Review 

Understanding Lolium rigidum Seeds: The Key to Managing a 
Problem Weed? 

Danica E. Goggin 1, Stephen B. Powles 1 and Kathryn J. Steadman 2,* 

1 Australian Herbicide Resistance Initiative, School of Plant Biology (M086),  

The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia;  

E-Mails: danica.goggin@uwa.edu.au (D.E.G.); stephen.powles@uwa.edu.au (S.B.P.) 
2 School of Pharmacy and Queensland Alliance for Agriculture and Food Innovation,  

The University of Queensland, Brisbane, Qld 4072, Australia 

* Author to whom correspondence should be addressed; E-Mail: k.steadman@uq.edu.au;  

Tel.: +61-7-3346-1886; Fax: +61-7-3346-1999. 

Received: 30 July 2012; in revised form: 31 August 2012 / Accepted: 14 September 2012 /  

Published: 24 September 2012  

 

Abstract: The 40 million hectare southern Australian winter cropping region suffers from 

widespread infestation by Lolium rigidum (commonly known as annual or rigid ryegrass), 

a Mediterranean species initially introduced as a pasture plant. Along with its high 

competitiveness within crops, rapid adaptability and widespread resistance to herbicides, 

the dormancy of its seeds means that L. rigidum is the primary weed in southern Australian 

agriculture. With the individuals within a L. rigidum population exhibiting varying levels 

of seed dormancy, germination can be staggered across the crop-growing season, making 

complete weed removal virtually impossible, and ensuring that the weed seed bank is 

constantly replenished. By understanding the processes involved in induction and release 

of dormancy in L. rigidum seeds, it may be possible to develop strategies to more 

effectively manage this pest without further stretching herbicide resources. This review 

examines L. rigidum seed dormancy and germination from a weed-management 

perspective and explains how the seed bank can be depleted by control strategies 

encompassing all stages in the lifecycle of a seed, from development to germination. 

Keywords: after-ripening; dormancy; emergence; Lolium; longevity; no-till farming; 
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1. Introduction 

The Australian wool industry was the country’s leading agricultural exporter in the mid- to late 19th 

century, had its last boom in 1950. Following this, wool prices dropped dramatically, and from the 

1960s onwards some Australian farmers tended to concentrate on intensive cropping (primarily  

wheat) [1]. By the 1990s, continuous cropping was standard on many farms. An unforseen problem 

with this development is what was left behind when the sheep were removed from the land. Originally, 

sheep were fed on the native grass understorey of Eucalyptus woodland, but the extensive grazing led 

to dramatic changes in the native vegetation, and pasture grasses and legumes were introduced to 

improve the pasture. This was especially true in Western Australia, where the native plants were far 

less palatable than those in the east and so pastures became almost exclusively composed of 

Mediterranean annuals [1]. Once the land was dedicated to cropping instead of used for pasture, these 

species were transformed instantly from valuable sources of sheep nutrition to problematic weeds. 

First among these was Lolium rigidum. 

2. The Problem with Lolium rigidum 

As the genus Lolium was originally introduced into Australia from southern Europe and northern 

Africa as a pasture plant, the past 200 years have seen the repeated selection of highly productive 

strains adapted to local conditions [2]. The three outcrossing species of Lolium, L. rigidum Gaud. 

(annual or rigid ryegrass), L. perenne L. (perennial ryegrass) and L. multiflorum Lam. (Italian ryegrass), 

are capable of producing fertile hybrid offspring, resulting in an essentially continuous gradient of 

forms that can be difficult to classify into species [2]. Lolium rigidum is now a major weed of cropping 

systems worldwide, particularly in regions with a Mediterranean climate, and the cost of infestation in 

Australian agriculture is estimated to be hundreds of millions of dollars annually. The highly 

competitive nature of L. rigidum for the nutrients applied to crop fields leads to decreases in the 

number of fertile tillers and spikelets of the crop, resulting in significantly lower yields [3–5]. The 

success of L. rigidum as a weed is due to its high genetic variability, adaptability and fecundity, with 

reports of 45,000 seeds m−2 being produced in infested wheat fields [6]. Modern Australian cropping 

conditions are particularly suitable for L. rigidum infestation: the Mediterranean-type climate matches 

its region of origin, and fields are usually continuously cropped allowing the weed seed bank to 

accumulate rapidly [6]. Thus, the occurrence of L. rigidum is almost ubiquitous in southern Australian 

agricultural regions. 

In 1968, less than 20% of the area sown to cereals in southern Australia was treated with herbicides 

(predominantly 2,4-D) to control dicotyledonous weeds, and the idea that chemical control of weeds 

within cereal crops would ever become more than a supplement to cultivation was not seriously 

considered [7]. By 2010, the southern Australian grain belt had grown considerably in size (e.g., from 

3.6 million to 14 million hectares in Western Australia alone) and the no-till cropping system, with its 

beneficial influence on soil erosion, water use efficiency and crop yields, predominated across the 

Australian dryland cropping region resulting in an almost exclusive reliance on herbicides to manage 

weeds [8]. Consequently, herbicide resistance in weeds has become one of the major challenges in 

modern Australian agriculture; in a survey of the Western Australian cropping region in 2003, over 
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60% of 441 tested L. rigidum populations were resistant to multiple herbicides [9]. Alternative 

strategies for weed removal are vital, and one approach with the potential to be very effective is to rid 

cropping fields of the weed seeds in the soil seedbank. 

3. Persistence and Dormancy of L. rigidum Seeds 

Although actively-growing and flowering plants are the visible manifestation of the weed problem, 

the hidden seed bank is equally, if not more, important in determining its severity. Depletion of the soil 

weed seed bank is therefore an excellent strategy to combat weeds, removing the infesting species 

before they can start to affect the young crop. However, seed dormancy and longevity add a degree of 

difficulty to this process. Many weed seeds, including those of L. rigidum, are dormant when shed. For 

example, the germination of freshly-collected seeds of L. rigidum populations collected from across 

the Western Australian grain belt ranged from 0% to 70%, depending upon location and year [10].  

For the purposes of this review, viable seeds with germination >80% will be referred to as  

“low-dormancy”, and those with a germination <20% will be considered as “high-dormancy”. In 

Mediterranean-type climates, dormancy is a mechanism that prevents germination during sporadic, 

unpredictable summer rainfall events, when conditions are too dry and hot to permit successful 

seedling establishment. Thus, the viable seeds remain in the soil to germinate at a later date, i.e., after 

the crop has been seeded. A greater understanding of seed dormancy in L. rigidum, how it develops 

and evolves, and how it can be manipulated, could contribute greatly to weed removal within an 

integrated weed management programme. 

3.1. Persistence of L. rigidum Seeds in the Soil Seed Bank 

In general, the persistence of Lolium spp. seeds in the soil is short compared to many other invasive 

species [11], which is favourable from a weed management perspective as the viable seed bank can be 

depleted relatively rapidly and with less effort. Lolium rigidum seeds have been reported to persist in 

pots of soil for no longer than 16 to 18 months, regardless of burial depth (5 cm or 10 cm), soil type 

(clay or sandy loam) or rainfall pattern (summer or winter) [12], whilst approximately 1.5% of 

endogenous L. rigidum seeds in Western Australian no-till cropping fields (in which new seed set was 

prevented for the duration of the experiment) persisted for up to four years [13]. Lolium perenne 

appears to behave similarly to L. rigidum: when placed on the soil surface or buried at a depth of 2 cm 

or 5 cm, only 1% of L. perenne seeds remained viable after one year under temperate climatic 

conditions [14]. Elsewhere, 4% of L. multiflorum seeds buried in moist, well-drained soil at depths of 

2–15 cm retained viability after three years, and 0.4% remained after seven years [15,16] (see Figures 

1–4 in [16] for curves showing the decline in seed viability in L. multiflorum and L. perenne seeds 

buried in both well- and poorly-drained soil). A period of survival in the soil even as short as  

16 months is still sufficient for considerable release of dormancy over summer and autumn, and 

ensures that the seed bank will be replenished every growing season unless seed set is prevented in the 

new generation of plants. 
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3.2. Development of Dormancy in Maturing L. rigidum Seeds 

There is a strong interaction between genetics and environment in the determination of primary 

dormancy (e.g., [17]), and the genetic component is likely to be mediated by several different  

genes [18,19]. The environmental component can be mediated by temperature, moisture levels and 

abiotic stress. Under controlled conditions, L. rigidum mother plants or detached culms that 

experienced warm temperatures during seed development produced less-dormant seeds than those 

subjected to cool conditions [10,20]. Larger-scale analyses of the possible link between seed dormancy 

level and climate demonstrated that higher temperatures during seed set in spring (September) were 

correlated with lower initial dormancy and/or a faster rate of dormancy release via dry after-ripening 

(in which mature seeds gradually lose dormancy under warm, dry conditions) in L. rigidum 

populations collected from across the Western Australian wheat belt [10,21]. Lower rainfall during the 

growing season (May–October) also resulted in lower dormancy [10], but high rainfall at the start  

of summer (December) was correlated to a slower subsequent rate of dormancy loss via dry  

after-ripening [21]. Overall, however, it is likely that dormancy level is determined by local 

environmental conditions during seed development rather than by long-term climatic factors [21]. 

Shading of seeds by a plant canopy (thus enriching the proportion of green and far-red light and 

decreasing the photon flux density [22]) during their development could influence dormancy level if 

this process is dependent upon the quality and quantity of light reaching the young seed. Development 

and maturation of L. rigidum seeds under different light qualities had a relatively small effect on their 

dormancy level, but seeds produced under white or green light were more dormant than those under 

red or, particularly, blue light (Figure 1). Seed production under blue light was also much lower than 

under red or white light (data not shown), and these results reflect those of Ellery et al. [11], in which 

plants grown under shaded conditions produced smaller, less-dormant seeds. The fact that a very low 

proportion of the phytochrome pool would be in its active state under blue light [23] therefore suggests 

that phytochrome signalling may be involved in the development of dormancy as well as in mediating 

germination [24]. 

Different conditions within a single spike inflorescence may also affect the dormancy level of 

individual seeds. Seeds collected from the inflorescence base were more dormant than those from the 

middle of the inflorescence, and this was explained by the fact that during development seeds in 

different positions may experience differences in temperature and/or water content, as well as in 

resource partitioning, which could influence their dormancy status [25]. 

Hydration at cold temperatures commonly induces seeds of winter annuals to enter secondary 

dormancy [26], and this has been observed in L. multiflorum seeds buried for 60 d in moist soil (30% 

moisture) experiencing temperatures around 0 °C [27]. However, induction of secondary dormancy in 

shallowly-buried L. rigidum seeds under Australian conditions is low and transient at best [28], as no 

evidence for dormancy induction has been observed during testing in our laboratory. 
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Figure 1. Dormancy level of seeds matured under different light qualities. Flowering  

L. rigidum plants (50 plants per treatment) were enclosed in neutral, red, blue or green 

cellophane filters throughout seed development and maturation and received filtered 

sunlight at a fluence rate of 50 μmol m−2·s−1. Seeds were harvested at maturity and 

germination (4 replicates of 50 seeds) was assessed 7 d after sowing seeds on 1% (w/v) 

agar under conditions of 25/15 °C with a 12 h photoperiod. Different letters above columns 

indicate significant differences (P < 0.05) between means. 
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3.3. Dormancy Release in Mature L. rigidum Seeds 

Freshly-harvested L. rigidum seeds, even if they exhibit only a low level of primary dormancy, have 

more stringent germination requirements than those that have lost dormancy via dry after-ripening. 

Populations of fresh seeds require light and alternating temperatures for maximum germination [29,30], 

and a diurnal temperature amplitude of 10 °C is most effective, provided the treatment temperatures 

are above 10 °C or below 35 °C [31] and references therein]. Absence or inhibition of germination  

of Lolium seeds at temperatures below 5 °C or above 35 °C has been observed in many studies,  

e.g., [32–36]. The optimal temperature for a rapid rate of L. rigidum seed germination is between 

20 °C and 26 °C [29]. 

When mature L. rigidum seeds (containing a relatively low amount of water, e.g., 5%–10%) are 

stored under warm, dry conditions, they gradually lose dormancy. The proportion of seeds germinating 

in a population increases with the time spent dry after-ripening following harvest, and higher 

temperatures result in a faster rate of dormancy release [34], although extended periods at high 

temperatures can be associated with seed ageing and loss of viability [29,34]. The progression of dry 

after-ripening causes the germination requirements of the seed to become more flexible: fully  

after-ripened L. rigidum seeds can germinate in the dark and/or under constant temperature, as long as 

it is above the base temperature of ~5 °C required for germination [34,36]. After-ripened L. rigidum 

seeds also become less sensitive to inhibition of germination by abscisic acid (Figure 2). 
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Figure 2. Differing abscisic acid (ABA) sensitivities of non-dormant L. rigidum seed 

populations. After-ripened and non-after-ripened seeds (4 replicates of 50 seeds) were 

incubated on agar containing 0–50 μM ABA at 25/15 °C with a 12 h photoperiod for 42 d, 

after which final germination percentage (A) and time to 50% germination (B) were 

calculated. As the final germination percentage of non-after-ripened seeds exposed to  

50 μM ABA did not reach 50%, the time to 50% germination could not be calculated, but 

was plotted as 42 d. Different letters above columns indicate significant differences  

(P < 0.05) between means. 
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A higher seed moisture content (up to 18%) leads to a faster rate of dormancy release via  

after-ripening, and it has been proposed that promotion of dormancy release at higher temperatures and 

moisture contents is linked to increases in membrane fluidity and the activity of the enzymes 

responsible for membrane modifications [34]. Under field conditions, however, the relatively small 

differences in L. rigidum seed moisture content (ranging between 6% and 12%) caused by fluctuations 

in air humidity during the summer drought did not affect the rate of dormancy release with respect to 

accumulation of thermal after-ripening time [37]. Intermittent, full hydration (i.e., wet-dry cycling) of 
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seeds does increase rate of dormancy release [38]. Even a single, partial-hydration event (over 10 d 

within a 12-week after-ripening period) can increase subsequent seed germinability, particularly if it 

occurs early during after-ripening [39]. A similar effect of transient hydration has been observed in 

other studies on L. rigidum [28,40,41], and hydration of already non-dormant seeds can reduce the lag 

period between imbibition and germination [38,42]. The decrease in dormancy in response to wet-dry 

cycling is likely to be due to alterations in seed abscisic acid and gibberellin concentrations, and/or the 

sensitivity of the seed to these hormones [43]. From a physiological point of view, germination of  

L. rigidum seeds after the first substantial rain in a year with a dry summer and autumn (i.e., where no 

transient seed hydration occurred), would be more staggered and reach lower levels compared to years 

that have experienced some summer rainfall, thus making weed eradication and subsequent seed bank 

depletion more difficult. Overall, the loss of dormancy via dry after-ripening over summer contributes 

to the relatively short persistence of L. rigidum seeds in the seed bank and shortens the period over 

which a population will germinate, making weed control somewhat easier. However, particularly in 

populations with a high level of initial dormancy, or in areas where conditions are less conducive to 

after-ripening, agronomic techniques that stimulate uniform germination (e.g., cultivation or chemical 

application: see Section 3.4) or prevent seed set are required to help deplete the weed seed bank. 

Release of primary dormancy also occurs in hydrated seeds (stratification) in the dark [44], which 

increases the sensitivity of the seeds to light [45] and gibberellins [46] and decreases sensitivity to 

abscisic acid [47], permitting a greater proportion of the population to germinate when transferred to 

conditions of alternating light and temperature. A major difference between seed populations that have 

lost dormancy via dry after-ripening and those that have experienced dark stratification is that the latter 

still have a light requirement for germination. Although seeds from some species can be stimulated to 

germinate by a single, brief flash of light (e.g., [24]), which could occur during soil cultivation,  

dark-stratified L. rigidum seeds require at least 8 h of continuous light before germination can 

commence [28,44]. This means that practical application of dark stratification as a means of 

stimulating germination and depleting the weed seed bank is likely to be challenging, although it is 

useful for research into mechanisms of dormancy maintenance and release and may be relevant in 

situations where seeds previously buried in moist soil are brought to the surface by tillage. 

3.4. Interaction of Lolium Seed Germination and Agronomic Practices 

Seed burial depth has a large impact on L. rigidum germination, with shallow-buried seeds showing 

higher germination than those either on the soil surface or buried deeply; this implies that the methods 

employed for soil cultivation and crop sowing are highly relevant to manipulation of the weed seed 

bank. Early laboratory studies on germination of non-dormant L. rigidum seeds demonstrated that 

whilst seeds buried at 2 cm or 5 cm germinated to 70%–80% after up to 8 weeks of burial, 40% of 

seeds buried below 8 cm suffered death and the remainder did not germinate [28,40]. In experiments 

performed in Mediterranean-type climates, L. rigidum seeds buried in soil at shallow depths of 1–5 cm, 

such as would result from an intermediate level of soil cultivation (65% of L. rigidum seeds were 

moved to this depth by cultivating the soil with 100 mm tines [48]), showed higher germination  

than seeds on the soil surface, presumably due to the greater availability of moisture below the  

surface [40,41,49,50]. For example, L. rigidum seed germination in South Australian soils subjected to 
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cultivation to depths of 8–10 cm was more than twice as high as that in soils with no tillage, and 

reached 50% of its final value at least a week earlier [48]. Seeds on the soil surface tend to suffer 

greater decay and predation than those buried through soil cultivation [14,41,50] and the seedlings 

emerging from surface seeds are less vigorous and thus less likely to set large numbers of viable  

seeds [50]. Therefore, in the widely practiced no-till farming system in Australia, where up to 85% of 

L. rigidum seeds remain in the top 0–1 cm of the soil [48], significant depletion of the seed bank could 

potentially be achieved by allowing shed seeds to remain on the soil surface and be removed naturally 

through decay and predation; this, in contrast to a system of shallow soil cultivation to stimulate 

uniform germination, also has the advantage of not requiring removal of the germinated weed 

seedlings before sowing the crop. 

Emergence of Lolium spp. seeds buried deeper than 5 cm below the soil surface is impeded, either 

through inhibition of germination due to the lack of temperature variation, loss of seed viability 

through ageing under the moist conditions, or because of an inability of the coleoptile to reach the soil 

surface before seed reserves are exhausted (e.g., [12,36,51,52]). Mouldboard ploughing, to depths of  

15–35 cm, reduced L. rigidum emergence by 50%–100% at multiple sites in both Spain [53] and 

Australia [54]. However, although germination of L. rigidum seeds is inhibited by deep burial, this 

inhibition is readily reversed by transferring the seeds close to the soil surface, where the diurnal 

fluctuation in temperature is much greater [28,40], and presumably oxygen is more readily available. 

Therefore, the potential advantages of soil cultivation to encourage early weed germination have to be 

weighed against the possibility that deeper-buried seeds may remain to germinate in the next season if 

cultivation is used again and they are brought to the surface. 

Studies on a possible link between Lolium seed traits and herbicide resistance have given  

varying results. There was a slight tendency for herbicide-susceptible L. rigidum plants to produce  

more seeds than glyphosate-resistant plants, but the resistant plants performed better under crop  

competition [55]. No strong correlation between seed dormancy and herbicide resistance was found by  

Recasens et al. [25] or Gill et al. [56] in L. rigidum, but Vila-Aiub et al. [36] and Ghersa et al. [57] 

reported that herbicide-resistant populations of L. rigidum and L. multiflorum, respectively, tended to 

germinate slightly later than their herbicide-susceptible counterparts. In the former case, this was due 

to a slower rate of dormancy release via dry after-ripening and a stricter requirement for alternating 

light and temperature in the resistant population [36]. It is likely that agronomic practices are 

responsible for the later germination of herbicide-resistant populations, rather than a genetic or 

biochemical link existing directly between dormancy level and herbicide resistance [58,59]. Lolium 

rigidum seeds that are more dormant do not germinate until after the crop has been sown, and thus 

avoid the pre-sowing application of non-selective herbicides. As a consequence, a higher level of seed 

dormancy is gradually selected in the population as the early-germinating cohort is removed. These 

later-emerging plants are exposed to the selective herbicides applied to the crop, which can result in 

the evolution of resistance within four generations [60]. The co-occurrence of higher dormancy and 

higher herbicide resistance is therefore rapidly achieved in a field that is constantly cropped, even in 

the absence of a direct link between dormancy and herbicide resistance [59]. 
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4. Depletion of the L. rigidum Seed Bank 

Although traditional soil cultivation is highly effective in depleting the weed seed bank through 

bringing seeds into the light and increasing the diurnal temperature fluctuation experienced by the 

seeds [61] (both of which are stimulants of L. rigidum germination [29]), no-till farming under dry 

Australian conditions has helped to increase crop establishment and yield by preventing soil moisture 

loss and preserving soil structure and organic matter [62]. Therefore, this section provides an overview 

of alternative methods of depleting the weed seed bank, which can be achieved by targeting various 

stages of the plant life cycle: preventing flowering and/or seed set, removal of flower spikes before 

seeds are shed, killing mature seeds or preventing them from entering the soil, or manipulating 

germination so it is either prevented or occurs synchronously at an appropriate time for efficient weed 

removal. These individual methods may not be as effective as soil cultivation, but could be 

incorporated into an integrated seed bank management system under no-till farming conditions. 

4.1. Prevention of Seed Set 

Preventing seed-set of L. rigidum can halve the number of plants emerging the following season 

(reviewed in [11]). Increased competition from the crop or from other weed plants (i.e., a higher plant 

density) can decrease the reproductive output of Lolium spp. by 50%–90% [63–69], largely due to the 

light deficiency caused by high plant densities. Application of herbicides can inhibit seed production 

and reduce, by as much as 80%, the viability and vigour of those seeds that are produced [70–72]. 

Narwal et al. [12] proposed that in order to completely deplete the L. rigidum seed bank, it is necessary 

to prevent further seed production for 18 to 24 months, which could involve including a pasture 

rotation in the affected field. A combination of imposing a legume pasture phase, strategic intensive 

grazing and application of glyphosate to the L. rigidum seed heads protruding above the legume 

pasture was also suggested to be effective at minimising replenishment of the weed seed bank [73]. 

4.2. Removal of Flower Spikes before Seed Shedding 

Removal of mature seeds by livestock grazing appears to be only partially effective, as not only are 

some seeds inaccessible to livestock (e.g., are lying on the soil surface), but 4%–12% of ingested  

L. rigidum seeds can pass unharmed through the digestive tract and germinate, possibly far from where 

they were originally shed unless the animals are not moved for several days following ingestion of 

seeds [74]. Sheep consume the seeds still held in the inflorescence spikes, so that grazing during spring, 

before the seeds have matured and started to shed, can remove up to 80% of seeds [75]. 

4.3. Killing or Removing Mature Seeds 

Practices such as mulching or cover cropping, which retain moisture near the soil surface but are 

inhibitory to germination due to lack of light, may help to deplete the seed bank more rapidly by 

encouraging faster rates of moisture-dependent deteriorative processes such as seed ageing and 

microbial attack. For example, 50%–90% of L. rigidum seeds kept at a moisture content of 33% lost 

viability over six weeks at moderate temperatures (15–20 °C), whilst seeds containing 10% moisture 

remained completely viable over the same time period [11]. Infection of non-dormant Lolium spp. 
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seeds with a range of pathogenic fungi isolated from seeds or soil resulted in germination levels of 

only 20%–50% [76,77], illustrating the potential effectiveness of higher moisture levels in decreasing 

seed viability. Similarly, irradiating the soil with microwaves for several minutes can reduce the 

viability of the L. rigidum and L. perenne seed bank to almost zero, particularly in moist sand, as long 

as the seeds are near the soil surface [78]. 

Catching and removing L. rigidum seeds during crop harvest can decrease the number of seeds 

entering the seed bank by 60% [66] or 75%–85% [79], provided that the harvest is carried out before 

the heads have started to shed their seeds. Destruction of the weed seeds by passing them through a 

mill during the harvesting process [80] eliminates the need for physical collection and removal of the 

chaff, which can then be left on the soil surface and return nutrients to the system without the seed 

bank becoming replenished. 

Seed predation by ants also has potential to be used as a means of L. rigidum control. Ants were 

responsible for removal of more weed seeds from a summer fallow field than were rodents, birds and 

large invertebrates combined, and they have a preference for L. rigidum seeds over those of other, 

larger-seeded species [81]. By using agronomic practices, such as minimising both insecticide use and 

soil cultivation, the contribution of ants to decreasing the L. rigidum seed bank could be enhanced [81].  

4.4. Manipulating Seed Germination 

Paraquat, used late season to prevent seed set in post-flowering Lolium spp. plants, can also inhibit 

germination of the mature seeds by 80%–100% [82–84]. Other, less toxic, allelochemicals that are 

derived from plants are inhibitory to germination and seedling growth of Lolium spp., and some of 

these compounds may have potential as alternatives to herbicides in systems where widespread 

resistance is a problem (e.g., [85–91]). Aqueous extracts from a wide variety of wheat cultivars 

inhibited germination of L. rigidum seeds, and root growth was inhibited to an even greater extent than 

seed germination [92]. Likely candidates contributing to wheat allelopathy were phenolic compounds 

and short-chain fatty acids. The fact that these chemicals accumulate in the upper layers of the soil, 

where the ryegrass seeds are also found, means that highly allelopathic wheat cultivars could offer an 

alternative means of weed control [92]. 

Synchronising L. rigidum seed germination for more efficient removal of the seedlings is another 

control option. Although the smoke-derived karrikinolide molecule [93] can stimulate the uniform 

germination of a wide range of weed and crop species, it is largely ineffective on L. rigidum 

germination [94], as is gibberellic acid [47]. However, fluridone, a widely-used bleaching herbicide in 

aquatic systems in the United States, can release dormancy in L. rigidum more effectively than can 

dark-stratification [47] and results in bleached seedlings which die before reaching the 3-leaf stage. 

This would avoid the necessity of spraying the germinated seedlings with another herbicide in order to 

effect weed removal, and add to the diversity of chemical options available for control of L. rigidum. 

The potential for fluridone to be used as a combination germination stimulant and herbicide is 

currently being investigated. 
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5. Modelling L. rigidum Seedling Emergence 

It is well-accepted that accurate prediction of the timing and extent of weed emergence would 

greatly improve weed management because it would allow informed decisions to be taken by farmers 

and agronomists [8,95]. For example, if it were known in advance that a particular seed bank had low 

dormancy and would be likely to maximally germinate with the first rains of the season, then a slight 

delay in crop seeding and a concerted effort to remove the weed seedlings would be worthwhile. 

Conversely, if it were known that emergence was likely to occur later in the season and have an 

adverse impact on crop yields, then the decision to move into a fallow or pasture year or to sow a green 

manure crop would become more attractive. 

Development of a prediction tool will require integration of the processes relating to development 

of dormancy, release of dormancy, and initiation of germination. Prediction of the status of the seed 

bank for one particular field over time is definitely attainable, but scaling it to the level of a farm or 

region is complex because of the wide variation in dormancy (e.g., Figure 3). This variation is largely 

due to the interaction of genetics and environment, but other factors such as management history (e.g., 

additional Lolium spp. still being sown as a pasture in some fields; selection for dormancy through 

non-selective or pre-emergent herbicide use) can also influence seed bank dormancy status across  

a region. 

Figure 3. Variations in initial seed dormancy and rate of after-ripening in L. rigidum 

populations collected from three different sites on the same farm in the Western Australian 

wheat belt (33°02'S, 116°87'E). Seeds were after-ripened over summer and early autumn in 

mesh bags on the soil surface (protected from rainfall and predation) at the farm.  

Sub-samples of each population were sown under conditions of 25/15 °C with a 12 h 

photoperiod at regular intervals over 97 d (4 replicates of 50 seeds) and germination was 

counted 21 d after sowing. 
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There are two broad approaches for modelling seed emergence, but both are inevitably  

population-based and are associated with some error. The first approach is to take observed emergence 

and climate data and use them to create a model (e.g., [96]); the second is to combine a number of 

models for each separate process that influences changes in dormancy status and germination 

requirements, such as temperature, moisture and light conditions (e.g., [61]). For optimum 

performance, the latter approach would then also need additional models to be incorporated: e.g., the 

number and dormancy status of seeds at the point that they join the seed bank; a longevity parameter to 

account for seeds that do not germinate within the first year of shedding; and a means of accounting 

for seed depth in the seed bank and the changes brought about by management practices such as 

cultivation. The Weed Seed Wizard model [97] was designed along these lines, and the prototype has 

shown that crop losses due to a theoretical L. rigidum population which is developing resistance to 

diclofop-methyl (thus making the plants progressively harder to remove) can be greatly reduced by 

employing management scenarios that prevent L. rigidum seed set and deplete the seed bank. Another 

purpose of the model is to enhance the sustainability of cropping systems by providing users with 

insights as to how weed seed bank levels are affected by the interaction of a variety of environmental 

and management factors [97]. 

6. Conclusions 

In the battle against the L. rigidum plants infesting cropping systems worldwide, the role of the seed 

bank, and particularly seed dormancy, is often overlooked. Removal of the current visible weed 

population does not mean that a field will be weed-free the next year. The fact that germination of  

L. rigidum seeds is so often staggered due to a continuum of the dormancy levels and specific 

germination requirements within a population means that some plants will always escape management 

practices such as cultivation and herbicide application, and survive to replenish the seed bank once 

more. Although traditional cultivation or ploughing is an effective tool for depleting the weed seed 

bank, under dry Australian conditions retention of soil moisture and preservation of soil structure and 

organic matter by minimising cultivation is important. Taking advantage of the relatively short term 

persistence by using a fallow period for a problem field provides the best opportunity to deplete the 

seed bank; the growing season following a cool spring, and a cool summer with little or no rainfall, is 

most likely to be associated with deeper seed dormancy and so greater in-crop weed growth (and 

consequently greater impact on crop yields) and so would be the best year to go fallow. Otherwise, 

integrating a number of management tactics directed at various stages of the lifecycle is key to dealing 

with weeds such as L. rigidum [98], and in a no-till farming system these should include:  

(1) preventing replenishment of the seed bank each year by preventing seed set and 

removing/destroying seeds before they are shed; (2) preventing seeds that do shed from entering the 

soil and encouraging their predation/decay; (3) promoting early, synchronous germination through 

shallow cultivation and/or chemical stimulants to allow efficient weed removal.  
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