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Abstract: Organic amendment is an effective method to reclaim salt-affected soil. However, in
coastal land with shallow saline groundwater, it is limited known about the mechanism of organic
amendment on soil desalinization. Thus, to examine the effect of topsoil organic matter content on
soil water/salt transport and distribution, two-year field observations in Bohai coastal land, North
China, and soil column experiments simulating salt accumulation and salt leaching were conducted,
respectively. There were different organic fertilizer amendment rates in 0–20 cm topsoil, 0% (CK),
50% (OA 0.5), and 100% (OA 1.0) (w/w) for soil column experiments. Field observation showed that
after organic amendment (OA), the soil’s physical structure was improved, and less of the increase
in topsoil salt content was observed, with more salt accumulated in deep soil layers during the dry
season. In addition, OA greatly promoted salt leaching during the rainy seasons. The results of
the soil column tests further indicated that OA treatments significantly inhibited soil evaporation,
with less salt accumulated in the topsoil. Although there was no difference in soil water distribution
between the CK and OA 0.5 treatment, the topsoil EC for the OA 0.5 treatment was significantly
lower than that for CK. During soil water infiltration, the OA 0.5 and OA 1.0 treatments significantly
increased the infiltration rates, enhanced the wetting front, and promoted salt leaching to deeper
soil layers, compared with CK. The improvement of soil organic amounts could make the soil more
self-resistant to the coastal salinization. The findings of this study provide some insights into soil
water/salt regulation in heterogeneous soil masses and on the permanent management of coastal
saline farmland.

Keywords: coastal land; organic amendment; salt leaching soil salinization; soil water/salt transport

1. Introduction

Soil salinization causing land degradation has become one of the most serious obstruc-
tions for agricultural production [1–3]. There is about 831 million ha of salt-affected land in
the world, which accounts for approximately 25% of agricultural land area [4,5]. To fight
against the food crisis, it is urgent to utilize salt-affected land resources to overcome the
gaps between increasing population and limited farmland resources [6]. Although there
have been various approaches to controlling soil salinity in the short term, it is difficult to
prevent soil salinization sustainably in both arid inland and coastal areas [7,8].

In coastal land, soil salinization occurs naturally due to seawater intrusion and up-
ward salt accumulation [9]. Along with soil capillary water rise, soluble salts continually
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accumulate in surface soil from the salts stored in shallow saline groundwater or deep soil
layers [10,11]. Driven by soil evaporation, this water transport determines soil salinization
in coastal land. On the contrary, natural rainfall and artificial irrigation result in water
infiltration and draining, which contribute to soil salt leaching [12,13]. In coastal agroe-
cosystems, soil evaporation induces salinization and phenological rainfall induces soil
desalinization, together dominates the dynamics of soil water and salt distribution [14,15].

Organic matter is an important soil component, which plays an irreplaceable role in
soil structure formation, fertilizer retention capacity, and buffering performance, as well
as the prevention of soil degradation [16,17]. Previous studies suggested that soil salinity
is generally negatively related to soil organic matter content (SOM) [18–20]. Generally,
SOM is low in salt-affected land, and poor soil structure and deteriorating soil properties of
saline soil have been observed [21,22]. To reclaim salt-affected land, an alternative approach
is using exogenous organic amendments to improve SOM [23,24]. It was reported that
various organic amendments, such as cattle dung, vermicompost, sludge, leaf manure, crop
straw, sugarcane pith, and biochar have shown significant effectiveness in improving soil
quality and decreasing soil salinity [25–29]. However, there is still limited known about
how the alteration of SOM impacts soil salt content, especially in coastal land.

In coastal land near Bohai bay, North China, there is 1196.3 ha area of land with
high potential for agricultural production, while greatly affected by soil salinization [30].
Determined by the semi-humid continental monsoon climate, which is characterized by a
short rainy summer and a long dry spring, autumn, and winter, there are basic seasonal
dynamics that influence soil salt content [15,31]. In these conditions, there is an obvious
dynamic of topsoil salt content, which increases sharply during the dry season because
of the high evaporation/precipitation ratio and decreases during the rainy season owing
to rainwater infiltration and salt leaching [5,15,32]. To examine the effects of soil organic
matter content changes on soil salt distribution, a two-year field experiment on this land was
conducted after organic fertilizer input, and the changes of soil properties were measured.
In addition, to enhance the regulation mechanism of soil water and salt transport, soil
column experiments were conducted to simulate (1) soil evaporation-induced salinization
with shallow saline groundwater and (2) freshwater infiltration-induced salt leaching. Soil
hydrodynamics characteristics and salt distributions in the soil profile were examined and
analyzed. The findings of this study can provide some insights into soil salinization in
coastal land and provide effective approaches to reclaiming coastal salt-affected land.

2. Materials and Methods
2.1. Experimental Site

The study site was located in Bohai coastal salt marsh, Haixing county, Hebei province,
North China (117◦32′–117◦58′ E, 38◦19′–38◦29′ N), where the groundwater level ranges
from 0.8 to 2.0 m with salt content of 10 to 40 g/L [33] (Figure 1). The soil has the texture
of silty clay loam, and is classified as an inceptisol, according to the Natural Resources
Conservation Service (NRCS) soil classification system. There is a semi-humid continental
monsoon climate with an annual average temperature of 15 ◦C, and annual precipitation of
580 mm, approximately 75% of which occurs in summer, from July to September [31].
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Figure 1. The location of the study site and the soil reclamation performance.

2.2. Field Observation

The field experiment was carried out from November 2019 to October 2021 at the study
site. The material for organic amendment was the “organic fertilizer” product from HuaYu
Agricultural Science and Technology CO., LTD. (Handan, China). It was composed of
maize and soybean meal material. The main composition for the organic fertilizer included
organic matter content ≥45%, N + P2O + K2O ≥ 5%. The organic fertilizer amendment
was applied in 3.0 tons (air-dried to 10% water content) per hectare, and after sprinkling,
the organic fertilizer was incorporated into 0–0.2 m depth topsoil by a small type of roto-
cultivator. After organic fertilizer amendment for 6 months, soil samples were collected to
measure the changes in soil properties, and collected continuously each month at intervals
of 0.2 m to a depth of 0.6 m with four replicates to measure the soil water and salt profile
dynamics.

2.3. Soil Column Experiments

Soil column experiments were conducted from October 2019 to June 2020 in the
laboratory of Nanpi Eco-Agricultural Experimental Station, Chinese Academy of Sciences.
Bulk surface soil samples (0–0.4 m depth) were collected from the study site and the
collected soil samples were air-dried (gravimetric water content of 2.9%), ground, and
passed through a 2 mm sieve and then stored for experiments. The total salt content of the
soil was 1.0% (calculated as grams of water-soluble salt in 100 g of an air-dried soil sample)
and the dominant cation and anion in the soil samples were Na+ and Cl−, respectively,
together accounting for about 81% of the total salt content. The organic amendment
fertilizer was the same as that used in the field experiment (as described in Section 2.2).
Before the experiments, the organic fertilizer was oven-dried until the gravimetric water
content dropped to 2.9% (the same as that of the soil). The properties of the soil and organic
amendment are provided in Table 1.

Table 1. Properties of soil, organic fertilizer, and groundwater.

Properties
Materials

Soil Sample Organic Fertilizer Groundwater

Organic matter (%) 0.60 ± 0.02 49.25 ± 0.45 –
pH 6.74 ± 0.10 5.83 ± 0.05 7.36 ± 0.09

EC (dS /m) 2.01 ± 0.03 9.82 ± 0.64 32.2 ± 1.37
Main ion content (g/kg)

HCO3
− 0.37 ± 0.09 1.29 ± 0.28 0.12 ± 0.02
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Table 1. Cont.

Properties
Materials

Soil Sample Organic Fertilizer Groundwater

Cl− 4.96 ± 0.60 3.90 ± 0.79 12.27 ± 1.20
SO4

2− 1.25 ± 0.72 9.59 ± 1.12 0.18 ± 0.47
Ca2+ 0.14 ± 0.03 1.64 ± 0.73 0.08 ± 0.01
Mg2+ 0.21 ± 0.09 2.14 ± 0.54 0.03 ± 0.01

Na+ and K+ 3.40 ± 0.21 0.53 ± 0.09 7.95 ± 0.29
Note: Values represent means ± S.D.

2.3.1. Salt Accumulation Experiment

Soil columns were made of PVC material cylinders that were 100 cm in height and
had an internal diameter of 10 cm. At 0–20 cm soil depth on the bottom of each soil
column, there were 16 uniform distribution holes (1 mm in diameter) along the wall, in
a layout with 4 columns and 4 rows. Filter paper (0.53 mm thickness) was tiled on the
inside of each hole and sealed the bottom of the column to prevent soil outflow (Figure 2).
A plastic bucket 50 cm in height with a 50 cm diameter was used to load saline water
(simulating groundwater). The soil column was vertically placed in the bucket through
a 10 cm diameter hole in the cap, and soil was packed in layers at 10 cm intervals, with a
homogeneous 1.4 g/cm3 bulk density in all soil layers. The subsoil layer (20–100 cm in
height) was entirely composed of coastal saline soil. The topsoil layer (0–20 cm in height)
was composed of coastal saline soil with different amounts of organic fertilizer amendment,
based on the following organic amendment/soil weight ratios: 0% (CK), 50% (OA 0.5), and
100% (OA 1.0).
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Figure 2. Photographs of soil column experiments: (a) salt accumulation experiment; (b) salt leaching ex-
periment, and their sketches (c) salt accumulation experiment; (d) salt leaching experiment, respectively.

Soil sensors (TEROS12, METER Group, Inc., Pullman, MA, USA) were inserted into
the topsoil for each treatment to examine the dynamics of soil moisture and EC, with an
data acquisition unit (EM50, METER Group, Inc., Pullman, MA, USA) collecting the data
once an hour. A total of 20 g/L saline water (sea salt dissolved with freshwater, properties
as shown in Table 1) was poured into the bucket until a 20 cm height water level was
reached, simulating an 80 cm depth groundwater level for the soil column experiment.
The saline water gradually intruded into the soil profile through the filter paper at the
bottom and the holes of the soil column. Sodium lamp lights with a power of 300 W (40 cm
over the surface soil) were used to drive soil evaporation. Throughout the experiment, the
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sodium lamp lights were kept on and the average temperature of the surface soil stayed at
about 25 ◦C. At 1, 10, 20, 30, 40, and 50 days after the test began, we replenished the saline
water in the bucket until the initial 20 cm height water level was reached, and recorded the
volume of the supplied water to calculate the groundwater consumption. At the end of
the experiment (50 days in total), 0–20, 20–40, 40–60, 60–80, and 80–100 cm depth soil layer
samples were collected with the digging method to measure the soil’s gravimetric water
content (SWC), electronic conductivity (EC), and main soil cation and anion content. Every
treatment was performed in three duplicates.

At the beginning and end of the experiment, we weighed the soil column and calcu-
lated the D-value to determine the weight of the solutes that were stored in the soil profile.

Soil evaporation (ET) was calculated using the following equation:

ET = (Q − Wi/r)/S (1)

where Q indicates the total groundwater consumption in the experiment, Wi indicates the
weight of the solute that was stored in the soil profile, r indicates the ratio of solute weight,
and S indicates the bottom area of the soil column.

2.3.2. Salt Leaching Experiment

The soil columns were 100 cm in height and had an internal diameter of 10 cm
(Figure 2). The bottoms of the cylinders were sealed with a circular Plexiglass sheet (with a
diameter of 13 cm). There were 12 holes (with a diameter of 0.2 mm) drilled at the bottoms
of the cylinders for drainage. In addition, holes (with a diameter of 1.5 cm) were drilled
along the walls of the cylinders at 5 cm intervals. During the salt leaching experiment,
holes were blocked with rubber stoppers to prevent the leakage of water (as shown in
Figure 2b). Additional details on the water infiltration equipment are presented in Guo
et al., 2019. The columns were loaded with soil samples at a 1.4 g/cm3 bulk density for all
soil layers. Treatments were the same as those in the salt accumulation experiment. A piece
of filter paper (0.53 mm thickness) was tiled on the surface of the soil for each soil column.
During the experiment, a 2 cm high water level above the surface soil was produced with
a Mariotte flask, in which freshwater was used to simulate rainwater. The data on the
wetting front and infiltration capacity were collected through the scale plate, respectively,
in the soil column and Mariotte flask. We recorded the data 10 times in each interval of 2, 5,
10, 30, and 60 min and 20 times in intervals of 120 min until the test ended (3000 min in
total). Throughout the experiment, the average temperature for the laboratory was about
25 ◦C. After the experiment, soil samples were collected to measure the soil gravimetric
water content (SWC), electronic conductivity (EC), and main soil cation and anion content
using an interval of 10 cm in depth. Each treatment was performed in three duplicates.

2.4. Measurement

After organic amendment in the field, soil samples were collected at intervals of 0.2 m
to 0.6 m in depth. Steel rings (100 cm3) were used to measure soil bulk density (BD),
saturated hydraulic conductivity (SHC), and porosity indicators. An undisturbed soil block
was used for soil aggregate analysis; disturbed soil was used to determine the soil organic
carbon content (SOC). In the laboratory, soil cores were saturated by capillarity for 24 h
and then weighed and subjected to matric suction of 30 and 100 KPa using a tension table,
and their volumetric water content was determined. Finally, the cores were oven-dried at
105 ◦C for 24 h to measure soil bulk density (BD). Soil total porosity (TP) was calculated
with Equation (2), assuming a soil particle density (ds) of 2.65 g/cm3 [34].

TP = (1–BD/ds) ∗ 100 (2)

Soil water storage capacity (SWSC) was calculated with Equation (3), where θFC is the
volumetric water content at full capacity, which is considered equal to θ30KPa [35].
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SWSC = θFC/TP (3)

Soil aggregate composition was determined using the standard wetting method de-
scribed by Kemper and Chepil [36]. Soil samples were air-dried and subjected to a vertical
oscillator apparatus that was equipped with a set of seven sieves with the following open-
ing sizes: 2.00, 1.00, 0.50, 0.25, 0.11, and 0.05 mm. The water-stable aggregate percentage in
different size classes was calculated using the relationship of the distributed aggregate mass
on the sieves and the total mass of the soil samples. Soil mean weight diameter (MWD)
was calculated using Equation (4):

MWD = ∑ Xi ∗ Wi (4)

where Xi indicates the mean diameter of each size fraction, and Wi indicates the proportion
of soil aggregate weights in the corresponding size.

For both field and indoor experiments, the gravimetric soil water content (WC) was
measured by weighing the fresh soil sample before and after oven-drying at 105 ◦C. Soil
electrical conductivity (EC) was analyzed in 1:5 soil water extracts with a conductivity
meter (B-173, Horiba. Ltd., kyoto, Japan), as described in Guo and Liu [37]. The main soil
cation (sum of Na+ and K+, Ca2+, Mg2+) and anion (Cl−, HCO−, SO4

2−) contents were
determined by titration by passing dry soil through the 1 mm sieve [38]. The soil organic
matter content was measured with the method of titration with potassium dichromate
described in Dong [39]. The values of topsoil field capacity were measured with different
soil samples artificially loaded in ring knives (5 cm in diameter, 100 cm3 in volume) using
the method of Cassel [40].

The data on air temperature and precipitation were obtained from a weather station
(INSENTEK, Beijing, China) at the study site (Figure 3).
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Figure 3. The precipitation and air temperature in each month at the study site.

2.5. Data Analysis

One-way ANOVA was performed to test the differences between the different treat-
ments. The term significant indicates differences for which p ≤ 0.05. The statistical proce-
dures were performed using SPSS 16.0 software (SPSS Inc., Chicago, IL, USA).

3. Results
3.1. Changes in Soil Properties in Field Experiment

The soil BD of the OA treatment was 1.24 g/cm3 in the 0–20 cm soil layer, significantly
lower than that of CK (1.40 g/cm3) (Table 2). Meanwhile, OA significantly increased TP
and MA, while it had little influence on ME and MI. The value of SWSC of OA was 0.67,
significantly lower than that of CK (0.73). In addition, OA significantly increased the soil
SHC from 1.84 cm/h (CK) to 5.43 cm/h.
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Table 2. Soil bulk density (BD), porosity indicators, total porosity (TP), soil water storage capacity
(SWSC), and saturated hydraulic conductivity (SHC).

Soil Depth
(cm) Treatments

BD
(g/cm3)

Porosity Indicator (m3/m3) TP
(%)

SWSC
(-)

SHC
(cm/h)Macro-(MA) Meso-(ME) Micro-(MI)

0–20 CK 1.40 ± 0.02 a 0.12 ± 0.01 b 0.05 ± 0.01 a 0.29 ± 0.02 a 47.16 ± 1.71 b 0.73 ± 0.04 a 1.84 ± 0.34 b
0–20 OA 1.24 ± 0.03 b 0.17 ± 0.01 a 0.07 ± 0.01 a 0.28 ± 0.01 a 53.21 ± 0.95 a 0.67 ± 0.02 b 5.43 ± 1.31 a
20–40 CK/OA 1.46 ± 0.06 0.06 ± 0.02 0.05 ± 0.01 0.34 ± 0.09 44.90 ± 2.03 0.89 ± 0.05 1.75 ± 0.14
40–60 CK/OA 1.49 ± 0.02 0.09 ± 0.03 0.04 ± 0.02 0.31 ± 0.07 43.77 ± 1.16 0.92 ± 0.02 1.69 ± 0.47

Note: Values represent means ± SE (n = 4). Different letters within columns indicate significant differences for
treatments (p < 0.05).

OA treatment significantly enhanced SOC from 5.49 g/kg (CK) to 6.69 g/kg, thereby
increasing LA + SA and reducing MI and CS (Table 3). Furthermore, the MWD of OA was
37.55 mm, significantly higher than that of CK (24.65 mm). For soil layers of 20–40 and
40–60 cm, there was no difference in the soil properties between OA and CK.

Table 3. Soil organic carbon (SOC), soil aggregate size percentages, and mean weight diameter
(WMD) under different straw treatments.

Soil Depth
(cm) Treatments

SOC
(g/kg)

Soil Aggregate Size Percentage (%) MWD
(mm)LA SA LA + SA MI CS

0–20 CK 5.49 ± 0.41 b 4.30 ± 1.53 b 31.46 ± 1.80 b 35.76 ± 1.72 b 30.22 ± 1.75 a 33.52 ± 3.97 a 24.65 ± 2.12 b
0–20 OA 6.69 ± 0.23 a 7.82 ± 1.60 a 49.09 ± 3.18 a 56.91 ± 3.93 a 21.40 ± 1.50 b 21.69 ± 4.88 b 37.55 ± 3.23 a

20–40 CK/OA 4.01 ± 0.62 1.68 ± 0.98 18.41 ± 2.32 20.09 ± 2.44 30.14 ± 2.01 49.78 ± 6.09 19.83 ± 2.42
40–60 CK/OA 3.64 ± 0.21 0.78 ± 0.43 40.65 ± 8.04 4.145 ± 2.57 35.97 ± 7.04 22.59 ± 3.40 21.53 ± 3.05

Note: LA, >2.0 mm; SA, 0.25–2.0 mm; LA + SA, >0.25 mm; MI, 0.053–0.25 mm; CS, <0.053 mm. Values represent
means ± SE (n = 4). Different letters within columns indicate significant differences for treatments (p < 0.05).

3.2. Soil Water and Salt Dynamics in Field Experiment

OA treatment did not change the soil water content (SWC) or its dynamics in different
soil layers, while it greatly changed the soil salt profile (Figures 4 and 5). With SWC being
reduced in the dry seasons, soil salt content (SAC) gradually increased. It was indicated
that in the 0–20 cm soil layer, the SAC of CK increased from 3.44 g/kg in November 2019
to 5.84 g/kg in June 2020 and increased from 2.21 g/kg in September 2020 to 6.13 g/kg
in June 2021. However, the SAC increase for OA was obviously lower than that for CK.
It increased by 1.27 g/kg from November 2019 to June 2020, and increased by 3.11 g/kg
from September 2019 to June 2021. On the contrary, higher SAC values in the 20–40 and
40–60 cm soil layers were observed under OA than under CK during the dry seasons, which
indicated that compared with CK, more soil salt was accumulated in the deep layers under
OA treatment. During the rainy seasons, the SAC under OA treatment in the 0–20 cm layer
was obviously lower than that under CK.

3.3. Soil Column Experiment: Salt Accumulation

As shown in Figure 6, no volumetric water content or EC changes in the topsoil were
observed for the OA 1.0 treatment throughout the experiment. For the CK treatment,
the topsoil volumetric water content sharply increased from 3% (the initial value) up to
45% (the stable value) from day 13; meanwhile, the soil EC gradually increased and then
stabilized at about 14 dS/m. For the OA 0.5 treatment, the moments of soil moisture and
EC changes were both about 5 days later than those for CK. The increase in the speed of
volumetric water content and EC changes for the OA 0.5 treatment was also slower than
that for CK. The final soil EC in the OA 0.5 treatment was 10 dS/m, much lower than that
in the CK treatment.
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After the salt accumulation experiment, the total value of soil evaporation for CK was
230 mm, significantly higher than that for OA 0.5 (85 mm) and OA 1.0 (50 mm) (Figure 7).
There was no significant difference in the soil gravimetric water content and EC between
different treatments in the 40–100 cm soil layers (Figure 7). At 0–10 cm, the gravimetric
water content of CK (26.7%) and OA 0.5 (25.5%) was significantly higher than that of OA
1.0 (8.7%). Although the gravimetric water content of OA 0.5 was similar to that of CK
at 0–20 cm, the topsoil EC of OA 0.5 (9.9 dS/m at 0–10 cm; 5.6 dS/m at 10–20 cm) was
significantly lower than that of CK (13.4 dS/m at 0–10 cm; 9.8 dS/m at 10–20 cm).
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3.4. Soil Column Experiment: Salt Leaching

At the beginning of water infiltration, there was no difference in terms of the wetting
front among the different treatments, while after a period of time, the wetting front for
OA 0.5 and OA 1.0 were obviously higher than that for CK. However, the OA treatments
significantly increased the initial infiltration rate from 2.95 mm/min (CK) to 3.01 mm/min
(OA 1.0) and 3.58 mm/min (OA 0.5). In addition, the stable infiltration rates OA 1.0
(0.31 mm/min) > OA 0.5 (0.21 mm/min) > CK (0.08 mm/min) (Table 4). At the end of
infiltration, the wetting fronts of CK, OA 0.5, and OA 1.0 were 21.7, 52.0, and 48.1 cm,
respectively (Figure 8).

Table 4. Infiltration rates in initial and stable stages for different treatments in salt leaching experiment.

Infiltration Rate
(mm/min) CK OA 0.5 OA 1.0

Initial stage 2.95 ±0.26 c 3.58 ± 0.44 a 3.01 ± 0.21 b
Stable stage 0.08 ±0.01 c 0.21 ± 0.05 b 0.31 ± 0.03 a

Note: Values represent means ± S.D. Values followed by different letters are significantly different according to
one-way ANOVA (p ≤ 0.05).
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Figure 8. Cumulative infiltration and wetting fronts for different treatments in salt leaching exper-
iment. Note: The bars without the same letter indicate the difference is significant (p ≤ 0.05). The
error bars indicate the standard deviations of the means.

After the salt leaching experiment, at depths above the wetting front, the soil gravi-
metric water content decreased with the increase in soil depth for all treatments (Figure 9).
For the topsoil layer, it was found that the soil gravimetric water content ranked as CK
(34.0%) < OA 0.5 (43.2%) < OA 1.0 (51.0%). In addition, the soil EC was unchanged at soil
layers below the wetting front in the soil profiles for all treatments. The soil EC values at
the 0–10 and 10–20 cm depth soil layers were lower than those in the deeper soil layers for
all treatments after the salt leaching experiment. For CK, the soil layer with the highest soil
EC value was at 20–30 cm, while for OA 0.5 and OA 1.0, the soil salts were accumulated in
the 30–40 and 40–50 cm soil layers, respectively.

3.5. Changes in Salt Accumulation and Leaching in Topsoil

Before the experiment, OA treatments increased the soil Ca2+, Mg2+, SO4
2−, and

HCO3
- content, while they decreased the total content of Na+ and K+, and the Cl− content

(Table 5). For the CK and OA 0.5 treatments, all cation and anion contents increased after
the salt accumulation experiment (EXP1). The soil Cl− content increased by 128.0% for CK
and 52.1% for OA 0.5 and the changes in the percentages of other ion contents in OA 0.5
were also less than those in CK. For the OA 1.0 treatment, the salt accumulation experiment
had little influence on the soil cation and anion content. After the salt leaching experiment
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(EXP2), the main cation and anion content decreased for all treatments. It changed from
4.96‰ to 4.05‰ without significance regarding the Cl− content in CK, but the Cl− content
in the OA 0.5 (from 4.26‰ to 2.55‰) and OA 1.0 treatment (from 4.12‰ to 2.91‰) was
significantly decreased. The decreases in the sum of Na+ and K+ were 0.72‰ in CK, 0.84‰
in OA 0.5, and 1.10‰ in OA 1.0 after the salt leaching experiment, respectively. Briefly, in
coastal land with shallow saline groundwater, there was a negative relationship between
soil salt accumulation with SOM in the topsoil and the active impact of salt leaching with
SOM (Figure 10).
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Table 5. Main cation and anion contents of topsoil (0–20 cm) for different treatments before and after
salt accumulation (EXP 1) and salt leaching experiments (EXP 2).

Treatment Stage
Cation (g kg−1) Anion (g kg−1)

Na+ and K+ Ca2+ Mg2+ Cl− SO42− HCO3−

CK
Before EXP 3.40 ± 0.21 b 0.14 ± 0.03 b 0.21 ± 0.09 b 4.96 ± 0.60 b 1.25 ± 0.72 b 0.37 ± 0.09 ab
After EXP 1 7.43 ± 0.24 a 0.20 ± 0.01 a 0.48 ± 0.08 a 11.31 ± 0.79 a 1.82 ± 0.29 a 0.42 ± 0.03 a
After EXP 2 2.68 ± 0.60 b 0.04 ± 0.00 c 0.01 ± 0.00 c 4.05 ± 0.51 b 0.14 ± 0.02 c 0.32 ± 0.02 b

OA 0.5
Before EXP 2.74 ± 0.23 b 0.80 ± 0.09 a 0.73 ± 0.11 a 4.26 ± 0.61 b 4.80 ± 0.35 a 0.55 ± 0.11 ab
After EXP 1 4.12 ± 0.67 a 1.09 ± 0.34 a 0.84 ± 0.14 a 6.48 ± 1.05 a 4.86 ± 0.48 a 0.67 ± 0.13 a
After EXP 2 1.90 ± 0.39 c 0.06 ± 0.00 b 0.04 ± 0.01 b 2.55 ± 0.34 c 0.17 ± 0.01 b 0.42 ± 0.03 b

OA 1.0
Before EXP 2.30 ± 0.15 a 1.08 ± 0.22 a 1.02 ± 0.16 a 4.12 ± 0.33 a 6.63 ± 1.06 a 0.67 ± 0.20 a
After EXP 1 2.44 ± 0.51 ab 1.18 ± 0.86 a 1.05 ± 0.12 a 4.02 ± 1.50 a 6.27 ± 0.67 a 0.81 ± 0.23 a
After EXP 2 1.20 ± 0.12 b 0.18 ± 0.01 b 0.10 ± 0.01 b 2.91 ± 0.28 b 0.48 ± 0.05 b 0.31 ± 0.01 b

Values represent means ± S.D. Values in each treatment group followed by different letters are significantly
different according to one-way ANOVA (p ≤ 0.05).
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Figure 10. The percentages of salt accumulation and leaching for different treatments. Note:
**, significance level at p ≤ 0.05.

4. Discussion

In recent years, salt-affected soils have received more and more attention because
of the global shortage of arable land and the increasing demand for soil restoration in
areas suffering from secondary salinization [41]. In saline land, the high soil salt content
in root zones is the main limiting factor for plant growth [42,43]. Moreover, it has been
acknowledged that the salt content of topsoil is dynamic and determined by soil water
transport [44–47]. In coastal regions, soil salinization mainly results from shallow saline
groundwater. The groundwater is like a stockroom which continuously exports the soluble
salts into soil profiles. In addition, soil salt is finally accumulated and stored in topsoil
during the process of soil evaporation and capillary water rise [46,48].

In the study site, the soil salinity of perennial bare land was extremely high and almost
no plants could survive in this land. After a long period of artificial tillage and fertilization,
local farmers successfully transformed some of the barren land into cultivated land and
were able to plant crops, such as oil sunflower, winter wheat, and corn (Figure 1). It is
suggested that compared with the adjacent bare soil, the soil from cultivated land had
significantly higher soil organic matter content and lower soil EC. It should be noted that
there was no freshwater source for irrigation in this region and the external environmental
factors for cultivated land were almost the same as those for bare soil. Therefore, we
hypothesized that soil organic matter content played an important role in regulating soil
salinity and caused the soil’s spatial heterogeneity, as there is a local agricultural saying
that “manure battles with soil salinity”.

The long-term field observation confirmed that the SOM played an important role
in coastal soil salt distribution (Figure 5). In addition, we took the changes in topsoil
organic matter content into account to estimate its impacts on soil hydrodynamics and salt
distribution in the soil column experiments. As capillary water rising capacity is related to
soil porosity, texture, and structure [48], the changes in topsoil structure induced by organic
amendment influence soil evaporation as well as salt accumulation. For example, capillary
water rise was prevented in the OA 1.0 treatment and there was no salinization observed in
the salt accumulation experiment (Figure 6), which indicates that with the increase in SOM,
it became hard for stored salts to move upward to the soil surface. Moreover, the lower
speed of the soil EC increase and less salt accumulation in the OA 0.5 treatment (Figure 6)
were mainly because there was less soil evaporation (Figure 7) compared with that in CK.
The results of this study support the view that moderate organic application can inhibit soil
water evaporation [48]. In the field, it was also observed that organic amendment reduced
soil evaporation, which was partly because this material changed the soil’s capacity for
heat conduction [49–52].
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After water infiltration and draining, salt stored in the topsoil was scoured into
the deep soil layer. The study by Mandana et al. [53] indicated that altering the pore
system by the addition of organic and inorganic amendments may improve salt leaching
as a reclamation strategy. The study by Zhang et al. [54] also demonstrated that biochar
and gypsum amendments greatly increased the soil’s saturated water content and field
water capacity, and the co-application of gypsum and biochar improved saline–alkali soil
hydraulic conductivity over a short period. This study indicated that increasing the organic
content in the topsoil significantly enhanced the infiltration rate (Table 4), cumulative
infiltration, and wetting front (Figure 8). Along with water drainage, the decrease in topsoil
EC was greater than that in the deep soil layers, and most salts were depleted from the
topsoil and accumulated in the soil near the wetting front (Figure 8). It should be noted
that there is unequal infiltration for different parcels of land during precipitation [55,56].
In coastal plains, the rainwater runoff in lands with spatial variability in soil hydraulic
properties results in more infiltration occurring in soil with a higher infiltration speed.
Thus, the same time as that of freshwater infiltration in this study was used for an accurate
simulation of precipitation-induced rainwater infiltration.

As reported in the study by Malak et al. [57], numerous amendments have been
employed to mitigate the effects of soil salinization. These amendments are all aimed
at strengthening the soil’s hydraulic characteristics and promoting the formation of soil
aggregates which play a critical role in soil water/salt transport [58]. Nevertheless, organic
amendments present the most potential for improving saline soils, both for soil structure
improvement and salt leaching. Although in this study there was a difference between
the field observation and column experiments, the soil structure improvement was not
presented in the indoor experiment, and the increase in SOM in topsoil also significantly
changed the salt profile, which suggested that there was a separate regulatory mechanism
for soil desalinization by SOM changes and physical structure improvement. With the
increasing ability to produce organic matter and the shortage of water resources in agricul-
ture, the establishment of a heterogeneous fertile and desalinized topsoil layer in coastal
farmland has been recognized as a new approach to restore coastal salt-affected farmland.
And it should be noted that regardless of the organic material types, crop straw, manure,
compost, or other organic fertilizer application could result in the similar effects on coastal
soil quality improvement and topsoil desalinization through the mechanism proposed in
this research.

In summary, this study provides new insight into the mechanism of organic amend-
ment for reclaiming soil in coastal agroecosystems. Soil resistance to salinization was
positively associated with the organic matter content in topsoil (Figure 10). Organic amend-
ment can alter soil water transport and decrease the salt content in topsoil during the
hydrological processes of soil evaporation and precipitation.

5. Conclusions

Organic amendment is an effective and sustainable method for reclaiming coastal
saline soil. It promoted the decrease in topsoil salinity mainly through its impacts on water
transport and salt distribution in soil profiles. With the increase in topsoil organic matter
content, soil salinization was inhibited due to there being less soil evaporation and less salt
accumulation from the saline groundwater. Furthermore, organic amendment enhanced
the water infiltration and drainage, promoting the leaching of salt out of the topsoil and
resulted in more salts accumulated in deep soil layers. We suggest that soil resistance to
salinization in coastal regions is largely associated with topsoil organic matter content.
This study supports that artificial cultivation of topsoil with high organic matter content is
feasible for reducing soil salinity, and it is recommended for the sustainable development
of agriculture in coastal salt-affected areas.
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