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Abstract: Information technology and statistical modeling have made significant contributions to
smart agriculture. Machine vision and hyperspectral technologies, with their non-destructive and
real-time capabilities, have been extensively utilized in the non-destructive diagnosis and quality
monitoring of crops and seeds, becoming essential tools in traditional agriculture. This work applies
these techniques to address the color classification of rapeseed, which is of great significance in
the field of rapeseed growth diagnosis research. To bridge the gap between machine vision and
hyperspectral technology, a framework is developed that includes seed color calibration, spectral
feature extraction and fusion, and the recognition modeling of three seed colors using four machine
learning methods. Three categories of rapeseed coat colors are calibrated based on visual perception
and vector-square distance methods. A fast-weighted visibility graph method is employed to map the
spectral reflectance sequences to complex networks, and five global network attributes are extracted
to fuse the full-band reflectance as model input. The experimental results demonstrate that the
classification recognition rate of the fused feature reaches 0.943 under the XGBoost model, confirming
the effectiveness of the network features as a complement to the spectral reflectance. The high
recognition accuracy and simple operation process of the framework support the further application
of hyperspectral technology to analyze the quality of rapeseed.

Keywords: hyperspectral reflectance; visibility graph algorithm; vector-square distance; color
classification; machine learning

1. Introduction

Rape (Brassica napus L.) is a significant and widely grown oilseed crop whose seeds,
known as rapeseed, are rich in fatty acids and proteins and serve as the raw material not
only of edible vegetable oils but also of premium-grade proteins for animal feed. In general,
yellow rapeseed has a thinner seed coat, a lower percentage of hulls, and a larger embryo
compared to other colors. Research indicates that rapeseeds with a more yellowish and
lighter color tend to have higher oil content, as well as higher levels of oleic and linoleic
acids, while also exhibiting higher protein content and lower fiber content [1,2]. Since
the color of the rapeseed coat is controlled by its corresponding gene, it has become an
important trait for breeding. Yellow-seeded Brassica napus is a hybridization of other
varieties [3,4]. Therefore, it is of great value economically and very meaningful for breeding
to identify rapeseed coat color and screen lighter yellow seeds.
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Some researchers have explored various methods for the color recognition of rapeseed
seeds. Usually, there are several types: (1) Artificial visual recognition. The classification of
rapeseed seed coat color through manual observation or a magnifying glass. (2) The use
of instruments, including colorimeters, color analyzers, and other instruments to measure
and analyze colors [1]. (3) Spectral analysis methods. Using equipment such as spec-
trophotometers, near-infrared spectroscopy, and Fourier transform infrared photoacoustic
spectroscopy to obtain spectral reflectance information, based on the principle of color
formation and the relationship between spectra, spectral data are used to analyze or identify
colors [5–7]. (4) Digital image analysis methods. Obtain images using a digital camera
or scanner, and use computer image processing software or other specialized software
for recognition [8,9]. In addition, yellow seeds are identified with the help of chemical
solutions [10]. Among them, visual methods are simple and convenient but rely on experi-
ence, lack unified standards, and have significant differences. The objective results with a
certain degree of accuracy using optical and spectral analysis techniques have low accuracy
in color segmentation due to resolution reasons. The popularity of digital devices has
made the digital image analysis of rapeseed color an efficient and non-destructive method.
Hyperspectral imaging technology can simultaneously obtain spectral information from
multiple bands, providing richer spectral information (including images and data) and char-
acterizing the inherent features of substances. Due to its high resolution and comprehensive
spectrum, it has achieved successful applications in many fields such as agriculture, geol-
ogy, and environment [11,12], for example, the identification of rapeseed varieties and the
prediction of oleic acid, protein, and other components by hyperspectral [13,14].

Different species have specific reflectance absorption characteristics at different wave-
lengths. In traditional hyperspectral analysis techniques, spectral indices derived from
the combination of spectral values in one or more bands are often used as research vari-
ables. In studying plant traits, some spectral vegetation indices have been proposed, such
as NDVI, RVI, and DVI, and have been widely applied in remote sensing fields such as
soil and water [15]. At the same time, some scholars have constructed spectral indices
related to color, including the anthocyanin index (ARI) [16], carotenoid reflectance index
(CRI) [17,18], red to green ratio index (RGRI) [19], chlorophyll absorption index (CARI) [20],
photochemical vegetation index (PRI) [21,22], and improved chlorophyll absorption ratio
index (MCARI) [23,24]. Although these studies have achieved certain results, extracting
single or multiple spectral indices as parameter variables can result in the loss of some
information from hyperspectral data, thereby limiting their effectiveness in identifying or
inverting species varieties or traits. High-dimensional spectra can be viewed as sequences
or curves, whose features will be hidden in their topological structures [25]. A complex
network is a powerful tool for studying sequence topology relationships, by mining the
inherent properties between objects and the entire system. Given the advantages of this
technology in mining spectral reflectance sequences, in this work, we attempt to explore
the topological feature of hyperspectral reflectance from the network angle and build a
bridge between RGB-based machine vision systems and hyperspectral signals to challenge
the rapeseed coat classification, which is a difficult task in traditional rapeseed growth
diagnose, as mentioned above.

In practice, our goal is to achieve the following objectives:

• Using vector and angular distance formulations for color difference calculations in the
RGB color space to achieve color calibration.

• Constructing complex networks of spectral reflectance by fast-weighted visibility
graph algorithm.

• Establishing an intelligent model for rapeseed seed coat color classification by combin-
ing hyperspectral technology and machine vision systems.

By utilizing complex networks and machine learning methods, the precise automatic
recognition of rapeseed seed coat color can be achieved, which provides a scientific basis
for further exploring the close relationship between rapeseed color and other physical
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properties, as well as oil content, fatty acid composition, breeding research, and industrial
quality optimization.

The rest of the paper is structured as follows: in Section 2, we describe the material
preparation, data acquisition, and methodology. Section 3 presents the experimental results.
We give discussions and conclusions in Sections 4 and 5, respectively.

2. Materials and Methods
2.1. Data Acquisition and Preprocessing

Two original varieties of Brassica napus seeds are employed in our study, namely,
Xiangyou 708 and Xiangyou 710, of high oleic acid rapeseed. They were cultivated in the
paddy fields of Yunyuan Experimental Base (28°23′ N, 112°93′ E) at Hunan Agricultural
University, Changsha City, Hunan Province in September 2020 and harvested in April
2021. The two varieties, having been cultivated for numerous years, which are widely
promoted in the Hunan province of China, serve as representative examples in our study.
The SOC710 portable hyperspectral imager (Spectral range: 380∼1091 nm; Resolution:
4.9458 nm; Spectral channels: 128; Sensor material: CCD; Spatial pixels: 520; Spatial
resolution (Avg. RMS spot radius): <40 microns; Manufacturer: Surface Optics Corporation
of the United States) and its darkroom system are used to collect the rapeseed hyperspectral
data. The sample collection process strictly follows the spectral collection specifications.
Rapeseeds are placed flat (see Figure 1) in a transparent petri dish in a dark room with
a light source. The hyperspectral imager is placed in a small task box 370 mm vertically
above the rapeseed samples. On each seed’s surface, the SOC710 hyperspectral imager is
used to measure the spectral reflectance five times randomly in some regions of interest
(ROIs) and followed by an arithmetic averaging operation, which is as the reflectance of the
sample. Meanwhile, the image color information of the three primary colors (red, green,
and blue) of the samples is collected in the same ROIs. We finally obtained 282 samples in
all, including 282 hyperspectral reflectance data and the corresponding RGB values.

Since the noise is always hidden at the end of bands, we remove the two ends of bands
to obtain the reflectance from 400 nm to 1000 nm. Then, we perform linear interpolation
with a resampling interval of 1 nm, and thus 601 reflectance values are obtained for each
sample. The reflectance values characterized the physical (e.g., seed coat color) and chemical
(e.g., content of components such as fatty acids, proteins) traits of the different samples of
rapeseeds. The spectral curves are smoothed and filtered using the convolutional (Savitzky–
Golay) smoothing method with noise reduction. Finally, the spectral data are normalized.

Figure 1. Rapeseed samples.

2.2. Framework of the Classification Model

The traits of rapeseed offspring are often reflected in their seed coat color; therefore,
identifying and classifying seed coat color will help screen high-quality offspring for
breeding and cultivation. For example, the genetic improvement of yellow-seeded rapeseed
has garnered more attention than other color variations within the spectrum of rapeseed
due to its favorable characteristics such as reduced lignin content, elevated oil content,
and increased protein content.

As stated above, in traditional agriculture, relying on human eye recognition is ineffi-
cient and has a high error rate, which motivates us to develop an intelligent approach to
fulfill this task. In this work, modern tools, machine vision technology, and hyperspectral
technology are employed for our consideration. We aim to establish a bridge between
them. Our model framework is shown in Figure 2. In the following, we present the color
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calibration process by machine vision system (Section 2.3). Then, we introduce a tool that
prevails in the field of time series analysis, the visibility graph algorithm, which is used to
extract hyperspectral intrinsic features (Section 2.4). Next, the four classifiers are introduced
briefly in Section 2.5, which will be used to execute the classification task. Finally, four
indicators are given in the Section 2.6 to evaluate the performance of the models.

Figure 2. Framework of recognition model based on the hyperspectral technology and complex
network analysis. The abbreviation “VG” means visible graph algorithm, and “W3C” refers to World
Wide Web Consortium.

2.3. Color Calibration

Color calibration is necessary for the task of seed color separation. It is often performed
by colorimeters, color cards, artificial vision, and machine vision systems. Ensuring definite
standards and processes is key to accurately comparing the color of rapeseed from different
batches. The RGB color space (which refers to red, green, and blue, respectively) is the
most commonly used color system in machine vision. In what follows, we introduce
vector-angular distance to fulfill the task of color calibration.

2.3.1. Vector-Angular Distance (VAD)

The Vector-Angular Distance (VAD) color difference equation is a method used to
quantify the difference between two colors in the RGB color space [26–28]. The VAD
equation [29] takes into account both the magnitude and the angular information of the
color vectors, as defined by

dist =

√
S2

r · wr · (r1 − r2)2 + S2
g · wg · (g1 − g2)2 + S2

b · wb · (b1 − b2)2

(wr + wg + wb) · 2552 + θ2 · Sθ · Sratio, (1)

where wr, wg, and wb are the weights of the human eye’s sensitivity to changes in the red,
green, and blue components, respectively, with the range [0,1] (in this work, we took the
equality weight for them). Si, i = r, g, b denotes the importance of the R, G, and B color
channels, respectively, determined by

Si = min
(

3(i1 + i2)
r1 + r2 + g1 + g2 + b1 + b2

, 1
)

, i = r, g, b. (2)
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Subscripts 1 and 2 denote two different colors. θ is the normalized angle between two
color vectors in RGB space, given by

θ =
2
π

· arccos

 r1 · r2 + g1 · g2 + b1 · b2√
(r2

1 + g2
1 + b2

1) · (r2
2 + g2

2 + b2
2)

. (3)

Sθ is the contribution of the three colors’ difference to the vector angle of two colors to
be compared, which is adjusted by θ under the importance of each channel

Sθ = Sθr + Sθg + Sθb , (4)

and

Sθi =

|i1−i2|
i1+i2

|r1−r2|
r1+r2

+ |g1−g2|
g1+g2

+ |b1−b2|
b1+b2

· S2
i , i = r, g, b. (5)

and

Sratio =
max(r1, r2, g1, g2, b1, b2)

255
(6)

According to Equations (1)–(6), the RGB values are dynamically adjusted to compen-
sate for the inhomogeneity of the RGB system. Thus, the distance between each pair of
colors composed of RGB is obtained.

2.3.2. Rapeseed Seed Color Calibration

Comparing the rapeseed seed colors involved in our experimental as shown in Figure 1
with the standard and extended colors in the W3C (https://www.w3.org/wiki/CSS3
/Color/Extended_color_keywords, accessed on 19 October 2023), referring to the world
wide web consortium, an international organization tasked with developing web technol-
ogy standards, 14 colors in the families of yellow, orange, and brown, namely, dark gray,
red, brown, dark brown, tan, maroon, orange, dark orange, coral orange-red, green yellow,
yellow, light yellow, and golden, are selected as benchmarks for the calibration of seed color,
as shown in Figure 3. According to the VAD method presented in Section 2.3.1, the distance
between the RGB values of the 14 colors and those of our 282 samples is calculated. The cat-
egory with the closest distance is taken as the color category of the samples. It shows that
the 282 samples are categorized into three color categories of coral (75 samples, denoted as
Class 0), brown (20 samples, denoted as Class 1), and dark brown (187 samples, denoted as
Class 2), whose corresponding HSV systems are (0.0448, 0.6863, 1), (0.0000, 0.7455, 0.6471),
(0.0833, 0.6733, 0.3961), respectively. The HSV color model is a color space, also known as
the hexane model, where H stands for Hue, which describes the position of color in the
color spectrum; S stands for saturation, which describes the vividness of color; and V stands
for Value, which is the luminance value of the color, with higher values indicating lighter
colors and lower values referring to darker colors. From the corresponding HSV values, it
can be concluded that the coral category of rapeseed is the lightest in color, followed by
the brown category, and the darkest in color is the dark brown category of rapeseed; thus,
the coral category of rapeseed owns a higher oil content and is a target for breeding and
industrial screening. In this respect, the identification of seed color plays an important role
in predicting oil content and breeding. Because the different methods of light absorption
and scattering will lead to different colors on the seed’s surface, spectral reflectance is
an ideal measure used to characterize the color of the seed. To verify this visually, we
lay the above three categories of samples into a three-dimensional space constructed by
the top three principal components with the highest contribution of spectral reflectance,
as shown in Figure 4. The samples of the three categories are separated basically, which
prompts us to further study the identification model of the seed color separation by using
the hyperspectral feature. We also extract nine color indices, as listed in Table 1, which are
highly related to the visual inspection of the seed coat color.

https://www.w3.org/wiki/CSS3/Color/Extended_color_keywords
https://www.w3.org/wiki/CSS3/Color/Extended_color_keywords
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Figure 3. Color card with RGB values. Tips: * according to the rule of W3C css-system (https:
//www.w3.org/TR/css-color-3/#css-system, accessed on 19 October 2023), authors can customize
the color values according to the environmental needs, we add a new color card, namely, darkbrown,
RGB (101, 67, 33), with reference to color-hex (https://www.color-hex.com/color/654321, accessed
on 19 October 2023), that is closer to the real rapeseed seed coat color to the color card family.
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Figure 4. Main panel is the average spectral reflectance of rapeseed samples of the three categories;
insert is the scatter plot in a 3-dimensional space constructed by the three principal components of
the spectral reflectance.

Table 1. Nine selected color indices.

Name Abbreviation Formula Source

1 chlorophyll absorption ratio index CARI (R750 − R705)/(R750 + R705) Ref. [17]
2 photochemical reflectance index PRI (R531 − R570)/(R531 + R570) Ref. [22]
3 red ratio spectral index RRSI R705/R910 Ref. [30]
4 green ratio spectral index GRSI R582/R910 Ref. [30]
5 red difference spectral index RDSI R418 − R610 Ref. [30]
6 green difference spectral index GDSI R421 − R536 Ref. [30]
7 red normalized difference spectral index RNDSI (R646 − R995)/(R646 + R995) Ref. [30]
8 green normalized difference spectral index GNDSI (R568 − R988)/(R568 + R988) Ref. [30]
9 blue normalized difference spectral index RNDSI (R531 − R571)/(R531 + R571) Ref. [30]

https://www.w3.org/TR/css-color-3/#css-system
https://www.w3.org/TR/css-color-3/#css-system
https://www.color-hex.com/color/654321
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2.4. Visibility Graph Algorithm

Spectral reflectance is the ratio of the reflected flux of a ground object in a certain wave-
length band to the incident flux in that band, which contains two aspects of information,
namely, the data value and the order of bands. The spectral data value is of importance
for characterizing the characteristics of ground objects. However, it only represents the
absolute reflection of light from different wavebands on an object, but cannot reflect the
difference in their reflectance at different bands. We need a tool to effectively capture the
difference in the reflectance among every band associated with their order. Here, we use an
idea of the visibility graph (VG) algorithm [31] to transform each spectral reflectance series
into a network firstly, where the network nodes are the bands and the link among them
refers to the relationship of the reflectance according to visibility rules. It has the advantage
of retaining the information on the reflectance values and the order of bands. Then, five
network global attributes are extracted to be used for the complements to the full-band
reflectance data value. Finally, the full-band reflectance and the net attributes are fused to
be used as features and input into the intelligent models for seed color identification.

2.4.1. Introduction of Visibility Graph Algorithm

The VG algorithm was proposed to analyze time series from a higher dimensional view.
With the merit of operability without any assumptions, the algorithm was widely applied
in various fields [32–36]. The process of VG consists of two parts: firstly, the reflectance
values are arranged on the axes as a bar chart in sequential order; then, a line is drawn
at the top of the bar chart according to the visibility criterion. The visibility criterion is
defined below:

xk < xj + (xi − xj) ·
tk − tj

ti − tj
, ∀k ∈ (i, j), (7)

where t and x denote the horizontal and vertical coordinates, respectively. (ti, xi) and (tj, xj)
are two points, and (tk, xk) is a arbitrary point between them. According to this criterion, it
determines whether there is a link between two given bands and thus yields a so-called VG
network. Using this criterion on the hyperspectral data can reflect the relative values of the
spectral reflectance between any two bands. To capture more accurate information on the
relative changes in reflectance between two bands, in this work, we consider a weight edge
connection based on the original criterion. The edge weight is defined as the angle between
the line connecting the reflectance of two visible bands and the horizontal direction,

wij =
1
2

arctan(
xi − xj

ti − tj
), (8)

where xi and xj are the two points that satisfy Equation (7). Accordingly, the weighted VG
networks can be constructed by using the weighted links.

The idea of VG is simple, and the corresponding VG network possesses the proprieties
of connectivity, anisotropy, and affine invariance, which makes it inherit the intrinsic
structural characteristics of the original series. However, when examining the visibility
between every pair of points, it is necessary to judge the value of each point between them
by Equation (7), which leads to high time complexity. Therefore, in this work, we use a
fast conversion algorithm based on the partition strategy introduced by [37]. The main
idea is: firstly, divide the original bands into left and right segments at maximum value;
then, starting from the maximum point, examine the visibility by comparing the angle
between adjacent two bands (given by Equation (7)) and traverse each point of the left
and right bands, respectively, meanwhile, the weight is calculated by Equation (8); and
lastly, continue the above connection process recursively until the band on both sides is no
longer divisible. Accordingly, by mapping every band into network nodes and using the
fast-weighted VG algorithm, 282 spectral-weighted VG networks can be obtained.
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2.4.2. Network Global Attributes

Complex networks are characterized by simplicity intuition, and structural
robustness [38,39]. For each hyperspectral reflectance signal, its VG network G = (N, L, W),
N is the node set of all nodes with the number n; L is the set of all links with the number l;
and W is the set of weight values of all links, with the element wij given by Equation (8).
(i, j) is a link between nodes i and j with the weight wij, (i, j ∈ N). The interpretation of
the spectral data can be achieved by extracting its corresponding VG network topological
properties. To this end, five global network attributes are employed for our consideration.

(1) Clustering coefficient
The clustering coefficient characterizes the connectivity of the neighboring nodes of

a node. The global clustering coefficient can be defined as the average of the clustering
coefficients of all nodes, or it can be expressed as the ratio of three times the number of
all triangles in the network to the ratio of all connected triples in the network. The two
definitions are formally different and not exactly equivalent, and the second definition is
used in this study, given by

⟨CC⟩ = 1
n

n

∑
i=1

∑j ̸=k wij · wik · wjk

max
j

(wij)∑j ̸=k wij · wik
. (9)

(2) Assortativity coefficient
The assortativity coefficient measures the degree of similarity or interconnectedness of

nodes in a network and provides a quantitative way to analyze the network’s similarity
and connectivity patterns [38]. Positive assortativity coefficients indicate that nodes tend to
interconnect with other nodes with similar or the same strength, which means that nodes
with similar properties are more likely to form connections. The weighted assortativity
coefficient was developed by [40], calculated by

γ =
l−1 ∑(i,j)∈L wij · kw

i · kw
j − [l−1 ∑(i,j)∈L wij · (kw

i + kw
j )/2]2

l−1 ∑(i,j)∈L wij · (kw2
i + kw2

j )/2 − [l−1 ∑(i,j)∈L wij · (kw
i + kw

j )/2]2
, (10)

where kw
i is the weighted degree of node i, calculated as kw

i = ∑j∈N wij.
(3) Global efficiency
Global efficiency describes the speed and efficiency of information transfer between

any two nodes in a network. Global efficiency can be calculated by the following steps: for
each pair of nodes in the network, calculate its shortest path length (shortest path length).
The shortest path length is the sum of the minimum number of edges or weights required
for a connection between two nodes. The reciprocal of all the shortest path lengths is added
and divided by the total number of nodes in the network minus 1. Here, the reciprocal
indicates that the shorter the distance of the path, the more efficient it is. The final result
obtained is the global efficiency. The weighted efficiency (denoted by E f f ) is computed
using an auxiliary connection-length matrix related to the edge weight [38], determined by

E f f =
1

n(n − 1) ∑
i∈N

∑
j∈N,j ̸=i

(dw
ij )

−1, (11)

where dw
ij is the shortest weighted path length between nodes i and j computed by Dijk-

stra’s algorithm.
(4) Structural entropy
In information theory, entropy is used to measure the uncertainty of information.

Structural entropy, on the other hand, is used to measure the complexity of the structure
of a system. Network structural entropy is a measure of the structural complexity of
a network [41,42]. A higher structural entropy of a network indicates a more complex
structure, implying a more even or diverse distribution of node degree values within
the network. Conversely, a lower structural entropy suggests a simpler structure, with a
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more concentrated or uneven distribution of node degrees. Calculating network structural
entropy is a common method used to assess network complexity; it is based on the entropy
of node degree distribution [43,44], which is determined by

Ent = −
n

∑
i=1

Ii · lnIi,

where Ii is the importance of node i, defined by Ii = ki/ ∑i∈N ki, and ki is the degree of node
i. In calculating the structural entropy of the network, we excluded nodes with degree 0.

The two extreme values are Entmax = lnn when all nodes in the network have the
same degree, where Ii = 1/n while Entmin = [ln4(n − 1)]/2, when the network has a
highly skewed distribution of node degrees, with some nodes having very high degrees
and others having very low degrees, where I1 = 1/2 and Ij = 1/[2(n − 1)] for j > 1.
To mitigate the influence of the network size n on the Ent, we can normalize Ent using the
following approach to ensure that 0 ≤ NEnt ≤ 1:

NEnt =
Ent − Entmin

Entmax − Entmin
=

−2 ∑n
i=1 Ii · lnIi − ln4(n − 1)
2lnn − ln4(n − 1)

(12)

(5) Graph density
Graph density [38] is the ratio between the number of actual edges and the number of

possible edges in a network and measures how closely the nodes in the network interact
with each other and the connectivity of the graph. The graph density ranges from 0 to 1.
When the graph density is close to 1, it means that the nodes in the network are very tightly
connected and are close to being fully connected. When the graph density is close to 0,
it means that the nodes in the network are very sparsely connected, and the correlation
between the nodes is weak. The graph density only considers the number of edges and
does not consider the edge weights, which are calculated as follows:

ρ =
2l

n(n − 1)
. (13)

We briefly conclude how the VG network works for the hyperspectral feature extrac-
tion as follows: Firstly, each hyperspectral reflectance curve is mapped into the weighted
network according to the fast-weighted VG algorithm. Each network can be represented
by a weighted adjacency matrix. Then, the five network attributes are calculated by using
Equations (9)–(13) based on the weighted adjacency matrix, which is used to characterize
the topological structure of each reflectance curve. As mentioned above, the VG network
inherits the intrinsic structural features of the original sequence, reflecting the relationship
between the reflectance of different bands. It can be considered complementary to the
full-band reflectance values. It is important to note that the network attributes cannot
replace the reflectance in our model since the VG network properties reflect the relationship
between the reflectances (relative difference) among every band rather than the reflectance
information itself. Next, the five attributes are combined as the network feature. The fusion
feature of the full-band reflectance values and the network feature is input into the intelli-
gent models (see the next subsection) to implement the rapeseed color classification task,
which is expected to achieve higher accuracy.

2.5. Classifiers

As a central task in supervised learning, classification has received widespread atten-
tion in various scientific fields. Up to now, lots of excellent classification models have been
proposed. In this work, four classifiers, namely, Logistic Regression (Logit-R), Support
Vector Machines (SVM), Random Forests (RF), and Extreme Gradient Boosting (XGBoost,
we use xgboost with version number 1.7.6 in Python with version number 3.8.13), are em-
ployed for rapeseed color classification. Logit-R is a classical generalized linear regression
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analysis model, which was introduced in the early 20th century. SVM was generated in the
1960s, which performs well in high-dimensional spaces and is especially suitable for the
case of a few samples. RF was developed in 1995, contains multiple decision trees, and has
good immunity to outliers. As one of the most outstanding models in machine learning in
the past decade, XGBoost is a significant promotion of the gradient-boosting decision tree.
Next, we introduce them briefly.

2.5.1. Logit-R

Logit-R is a generalized linear regression model. It first estimates the probability of an
event occurring based on a given dataset of independent variables and then uses a step
function or sigmoid function to achieve the purpose of sample classification. With this
simple and easy-to-operate idea, Logit-R has become one of the frequently employed
techniques for classification in the field of machine learning. It was originally used for
binary classification tasks. Some meaningful extensions, such as multinomial Logit-R,
are used to handle multi-classification tasks. Meanwhile, regularized versions, like L1 or
L2 regularization, help to prevent overfitting by penalizing large coefficients. However,
Logit-R cannot solve linear inseparable problems and nonlinear problems since the essence
of this method is to classify by generating a straight line or a hyperplane.

2.5.2. SVM

SVM is a popular statistical theory-based learning method. The core idea is to find
a segmentation hyperplane so that the points on both sides are as far away as possible
from the hyperplane, i.e., the maximum spacing hyperplane. Mapping data to higher
dimensional spaces using kernel functions makes the samples easier to separate in a new
space; in the meantime, it avoids the computation of nonlinear surface segmentation in
the original input space. A linearly separable binary classification hyperplane can be
expressed as ω · x + b = 0 with a constraint of y(ω · x + b) ⩾ 1, whose optimal solution
can be obtained via the Lagrange function. Additionally, by introducing a regularization
parameter, it is easy to control the penalty for classification errors. In the method of SVM,
the penalty coefficient C is a critical parameter. The smaller values of C will allow some
sample classification errors but will produce larger intervals. Conversely, the larger C
will strictly penalize classification errors and may lead to more compact but complex
decision boundaries. SVM is an efficient method for representing complex functional
dependencies in high-dimensional spaces [45–47]. SVM can be used to process the data
with nonlinear features; however, its classification results mainly depend on the selection of
kernel functions. Therefore, parameter tuning is important when applying support vector
machine modeling for classification.

2.5.3. RF

RF is a parallel ensemble learning algorithm through random sampling and selecting
features, which is based on bootstrap aggregation. It constructs multiple decision trees and
integrates them to improve the model performance and generalization ability. With these
advantages, it has a good ability to process high-dimensional and large-scale datasets with
good immunity to noisy data. In addition, overfitting will not occur even without the need
for complex parameter tuning in real data modeling.

2.5.4. XGBoost

XGBoost is a class of integrated algorithms based on gradient-boosted trees proposed
by Chen [48]. Gradient boosting is an integrated learning method that iteratively adds
multiple base learners (decision trees) by learning on the residuals of the previous round of
base learners, thereby reducing the prediction error and improving the overall performance.
With the base learner of classification and regression tree (CART), XGBoost is a scalable
machine learning system that can be used to solve classification and regression problems. It
predicts the output by using the K additivity function consisting of multiple weak classifiers:
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ŷ = ∑K
k=1 fk(xi), fk ∈ F, where F is the ensemble space of CART. To learn the set of functions,

a regularization objective is typically included to minimize the objective function [49]:
L(ϕ) = ∑i τ(ŷi, yi) + ∑k Ω( fk), where Ω( f ) = γT + 1

2 λ|ω|2. By using gradient boosting
methods and iterative strategy, XGBoost adopts parallel and distributed computation.

Moreover, the XGBoost makes full use of hardware acceleration and multi-threaded
processing to accelerate the training process, which greatly improves computational ef-
ficiency; therefore, it can be used to solve large-scale problems. Moreover, XGBoost can
handle advanced, complex feature spaces and, through techniques such as weight ad-
justment and sampling strategies, can handle data that are highly unbalanced in class
distribution to make accurate predictions [48,50–54].

The XGBClassifier function of the XGBoost module in the scikit-learn extension li-
brary has three types of arguments: regular parameters, model parameters, and learning
parameters. n_estimators and learning_rate are some of the most important parameters in
the model parameters and learning parameters, respectively. Among them, n_estimators is
the number of decision trees used in constructing the gradient boosting model. A larger
value of n_estimators means that the model has more decision trees and therefore higher
complexity and learning capacity. Increasing n_estimators can improve model performance,
especially when working with complex problems or large datasets. However, if n_estimators
is set to be too large, the model may overfit the training data, resulting in a decrease in
generalization performance on new data and an increase in training time. learning_rate
is the step size that controls how much each base learner (decision tree) learns about the
residuals during an iteration. A smaller value of learning_rate means that the model weights
are updated less at each iteration, so training will be slower. The value is a floating point
number between 0 and 1, with a default value of 0.3. A smaller learning_rate improves
the stability and generalization of the model and reduces the risk of overfitting. However,
training time may increase with a smaller learning_rate. Optimization techniques can be
used to find the best combination of hyperparameters to obtain the best model performance.

2.6. Performance Evaluation

Accuracy indicates the proportion of samples correctly classified by the model for the
entire test dataset. The average accuracy (Acc) is the most widely employed performance
measure for classification models. For the unbalanced classification data, however, there is
a flaw in this metric that cannot truly reflect the classification level of the model. Naturally,
several metrics such as precision (Pre), recall (Rec), and F1 score are designed to supplement
the average accuracy rate. In this work, we focus on the 3-categorization rapeseed seed
color classification task. The above-evaluating indicators are calculated separately for
each category. The category of interest is regarded as the positive class, and all others
are negative classes. Four kinds of predictions are defined for a certain class on the test
set: (1) TP: refers to the number of samples in the positive class that the model accurately
predicts; (2) FN: refers to cases where the model misclassifies a sample that is a positive
class as a negative class; (3) FP: refers to the number of positive classes is mistakenly
predicted as the negative class; and (4) TN: represents the number of samples in the
negative class that the model correctly predicts. The confusion matrix is shown in Figure 5.
Accordingly, Acc, Pre, Rec, and F1 are given by Equation (14). The K-fold cross-validation
is used to evaluate the performance of models. The calculation process is then repeated
100 times to mitigate the influence of randomness.

Acc =
TP + TN

TP + FN + FP + TN
,

Pre =
TP

TP + FP
,

Rec =
TP

TP + FN
,

F1 =
2TP

TP + FP + FN
.

(14)
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Figure 5. Confusion matrix of 3-categorization (left), where a11, a22, and a33 denote the correct
categorization for each class, respectively. Taking class 1 as an example of interest, TP, TN, FP, and FN
are shown on the (right) panel.

3. Results

According to the framework shown in Figure 2, each sample in the hyperspectral
dataset is transferred into a network (graph) structure by using the VG algorithm. For each
network, the five network attributes are extracted, whose basic statistics are shown in
Table 2. The numerical differences in different categories help to classify them. Following
this, we enter the experimental process of the classification task. Three aspects of com-
parison experiments, namely, comparison among classifiers, comparison among features,
and impact of model parameters, are considered in this process. The results are reported in
each subsection.

Table 2. Statistical description of the global network attributes of the three categories samples.

Attribute Categories Mean Std Min 25% 50% 75% Max

⟨CC⟩
coral 3.60 ×10−3 8.18 × 10−4 2.11 × 10−3 3.08 × 10−3 3.50 × 10−3 4.19 × 10−3 5.66 × 10−3

brown 3.78 × 10−3 6.11 × 10−4 2.58 × 10−3 3.30 × 10−3 3.86 × 10−3 4.17 × 10−3 5.21 × 10−3

dark brown 3.71 × 10−3 8.35 × 10−4 2.12 × 10−3 3.18 × 10−3 3.54 × 10−3 4.06 × 10−3 6.71 × 10−3

NEnt
coral 0.89 0.01 0.86 0.88 0.89 0.89 0.93

brown 0.9 0.01 0.88 0.9 0.9 0.91 0.92
dark brown 0.93 0.03 0.87 0.91 0.93 0.95 0.98

γ
coral 0.19 0.11 −0.03 0.1 0.19 0.27 0.46

brown 0.19 0.13 −0.16 0.14 0.19 0.27 0.45
dark brown 0.09 0.15 −0.36 0.02 0.12 0.19 0.38

E f f
coral 2.71 × 10−3 7.75 × 10−4 1.40 × 10−3 2.25 × 10−3 2.61 × 10−3 3.02 × 10−3 4.75 × 10−3

brown 3.54 × 10−3 6.54 × 10−4 2.49 × 10−3 3.18 × 10−3 3.47 × 10−3 3.83 × 10−3 5.44 × 10−3

dark brown 4.32 × 10−3 1.27 × 10−3 2.00 × 10−3 3.43 × 10−3 4.31 × 10−3 5.00 × 10−3 9.01 × 10−3

ρ
coral 0.16 0.04 0.09 0.13 0.15 0.18 0.27

brown 0.25 0.03 0.19 0.24 0.25 0.27 0.31
dark brown 0.36 0.10 0.14 0.28 0.37 0.44 0.55

3.1. Performance Comparison among Four Classifiers

With the different working principles, the performance of the classifiers is influenced
by the features as well as the datasets. To comprehensively examine the validity of the
proposed framework of the rapeseed color classification, the four classifiers mentioned
in Section 2.5 are employed in our dataset. We input the fusion features composed of
the full-band reflectance and the five network attributes into the classifier of RF, SVM,
Logit-R, and XGBoost, respectively. The K-fold cross-validation with K = 2∼10 is executed
on the four models. The model performance presented by Acc is shown in Figure 6.
The standard deviation of the Acc calculated from 10 repetitions is also shown on each bar.
Clearly, although there is different model performance obtained from the four considered
classifiers, the fact of the Acc with more than 0.9 shows our model is workable. The best
performance comes from the XGBoost model, with its highest Acc reaching at 0.9315 under
9-fold cross-validation. This is not surprising since this popular method can adjust weights
on imbalanced samples adaptively, which applies to our data exactly (in our dataset,
the numbers of the three color categories are 75, 20, and 187). By contrast, the performance
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of the SVM classifier is the worst. One of the reasons is just the impact of imbalanced
samples in our dataset.
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Figure 6. Comparison of the average Acc among four classifiers of RF, SVM, Logit-R, and XGBoost
concerning K-fold cross-validation. The error bar represents the standard deviation calculated from
10 repetitions.

3.2. Performance Comparison among Features

In this subsection, we focus on the comparison of the model performance among
different types of hyperspectral features. Besides the network attributes and full-band
reflectance, we also investigate the model result from the fusion feature of nine color indices,
as listed in Table 1, which is the full-band reflectance. Therefore, we have six types of
features, namely, spectral reflectance, color index, network attributes, the fusion feature of
color index and reflectance, the fusion feature of network attributes and reflectance, and the
fusion feature of color index and network attributes. We perform the same experimental
process on them. At this time, only the XGBoost classifier is employed for this purpose
due to its best performance. The result is presented in Figure 7. As expected, the fusion
feature displays better model performance than the full-band reflectance with every K-fold
cross-validation. Although the only network attributes produce unsatisfactory results, they
help to upgrade the model performance via the feature fusion with the spectral reflectance,
demonstrating that the network feature is an important supplement for the original spectral
reflectance. We will discuss this detail in Section 4. After fusing the two types of features,
the Acc is improved obviously under all folds of cross-validation, with the highest upgrade
rate being 1.33%.
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Figure 7. Comparison of the average Acc between six types of features with K-fold cross-validation
by using XGBoost. The error bar represents the standard deviation calculated from 10 repetitions.
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3.3. Performance of Parameter Tuning

As is well as known, hyper-parameter selection is critical in machine learning, which
affects the model performance greatly. In this subsection, we try to achieve optimal model
performance by parameter tuning. Generally, grid search is a universal method for ex-
ploring model hyper-parameters; however, it has huge time complexity. To efficiently
address the hyperparameter tuning, the sparrow algorithm [55] was proposed, which is a
metaheuristic bio-inspired optimization algorithm inspired by the foraging and evasion
behaviors of sparrows. In the sparrow algorithm, individuals are divided into two cate-
gories: producers and foragers. Producers behave like resource seekers, actively searching
for potential solutions in the solution space, akin to foraging. Foragers are responsible for
collecting these solutions through interactions with producers, similar to how sparrows ob-
tain food from their peers. The sparrow algorithm utilizes random optimization techniques
to perform global and local searches in the solution space for model parameter optimiza-
tion. In what follows, we apply the sparrow algorithm to find the optimal parameter in
the XGBoost model. The two optimal parameters of n_estimators and learning_rate of the
XGBoost model are autonomously searched, as listed in Table 3 for K-fold cross-validation
(K = 2∼10), which is expected to bring better model performance. Figure 8 illustrates the
results obtained from the fusion feature of network and bands before and after parameter
tuning under 2∼10-fold cross-validation. It is seen that the Acc has improved slightly under
all folds cross-validation after tuning with the maximum upgrade rate of 1%, as shown
in the insert plot. Quantitatively, the average classification result under five-fold cross-
validation is listed in Table 4, where the three evaluative indicators defined by Equation (14)
are shown on the left side and the confusion matrix is shown on the right side.

Table 3. Optimal parameters of the XGBoost model for each fold of K-fold Cross-validation
(K = 2 to 10) Using the Sparrow Algorithm.

K 2 3 4 5 6 7 8 9 10

n_estimators 1500 1500 10 1500 620 77 1500 1500 1443
learning_rate 0.3 0.3 0.3 0.3 0.3 0.01 0.3 0.3 0.3
fitness value 0.397 0.159 0.162 0.144 0.106 0.102 0.095 0.063 0.073
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Figure 8. Comparison of the average Acc calculated from the fusion feature of network and spectral
reflectance before and after parameter tuning.
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Table 4. The average classification result under five-fold cross-validation. The left one shows the
results of precision, recall, and F1-score. The right one shows the corresponding confusion matrix.

Pre Rec F1-Score Support 0 1 2
0 0.92 0.95 0.93 75 0 71 2 2
1 0.75 0.70 0.67 20 1 2 12 6
2 0.96 0.97 0.96 187 2 4 2 181

Acc 0.94 282

3.4. Misclassification Sample Analysis

In this subsection, we focus on the misclassified samples, which may help us better
understand the rapeseed classification mechanism. According to the confusion matrix
shown on the right side of Table 4, we record the 18 misclassified samples in Table 5, where
‘Center label’ refers to the class label that has the shortest average Euclidean distance
between the misclassified sample under consideration and the classes in the training set,
and ‘Closest label’ refers to the class label of the nearest neighbor (denoted as Closest ID, see
the second column on the right of the table) of the misclassified sample being considered.
Three situations can be concluded: namely, the sample is misclassified to the class with the
center label (Case I), the sample is misclassified to the class with the closest label (Case II),
and the other case (case III).

Table 5. The three situations of the 18 misclassified samples.

Misclassified ID True Label Pred Label Center Label Closest ID Closest Label

Case I

30 0 1 1 37 2
41 0 1 1 121 2
66 0 2 2 136 2
73 0 2 2 81 2
71 1 2 2 77 1
77 1 2 2 179 2

153 1 2 2 168 2
121 2 1 1 41 0
122 2 1 1 109 2

Case II

84 1 2 1 124 2
93 1 2 1 77 2
98 1 2 1 102 2
37 2 0 1 30 0
54 2 0 2 47 0

131 2 0 1 94 0
134 2 0 2 55 0

Case III 86 1 0 1 99 1
100 1 0 1 36 1

For case I, there are nine misclassified samples (#66, #73, . . . , #121), whose predicted
label is the class with the center label, suggesting that they are closer to these classes. We
show the samples with index #73 and #77 as an example in Figure 9a. Both of them are
closest to class 2 from the spectral reflectance curve; thus they were misclassified to class 2.
For case II, there are seven misclassified samples (#84, #93, . . . , #134), whose predicted label
is the class with the closest label according to their nearest neighbor’s label. The sample with
index #84 is exactly this case, as shown in Figure 9b, whose nearest neighbor is #124 with
label 2; hence, it was misclassified to class 2. In both figures, Dis means Euclidean distance.
Now, let us pay attention to samples #100 and #86, which do not belong to the above two
cases. They are misclassified to Class 0; however, the closest sample to them is not in Class
0. This forces us to search for new potential evidence. According to the decision-making
process of the XGBoost model, which makes bifurcation decisions based on the importance
of features, say, the distribution of the reflectance may affect the classification. To this end,
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Jensen − Shannon divergence (denoted as DJ−S) is employed for our consideration, which
is always used to appraise the difference between two distributions. Figure 9c and 9d
illustrate the probability density function (PDF) of the reflectance of the samples #100 and
#86, respectively. We calculate the DJ−S between one of them and the average reflectance
distribution of training samples for each class, as also shown in the legend of the figures.
For sample #100, the value of DJ−S between its PDF and the PDF of the averaged reflectance
of class 0 is the smallest, indicating that the sample #100 may be classified as class 0. For the
sample #86, although the class with the smallest DJ−S still comes from its true label class
(Class 1), its nearest neighbor (in the sense of minimum divergence) is the training sample
#35, which belongs to Class 0. Therefore, sample #86 may be misclassified to Class 0.
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Figure 9. Three cases of misclassification. (a) is an example of misclassified samples #73 and #77,
which belongs to case I; (b) is an example of a misclassified sample #84, which belongs to case II;
(c) and (d) are examples of misclassified samples #100 and #86, respectively, which belong to
the case III. Dis in upper panels means Euclidean distance, and DJ−S in bottom panels indicates
Jensen − Shannon divergence.

4. Discussions

Hyperspectral technology, as a crucial near-earth remote sensing technique, boasts
advantages such as non-destructiveness and efficiency, making it suitable for various
crop growth monitoring tasks. Utilizing hyperspectral sensors enables the acquisition of
spectral images and data across hundreds of bands. Different objects or surface materials
exhibit distinct spectral reflectance in different bands, forming a unique spectral fingerprint.
Leveraging spectral fingerprints allows for the effective differentiation of species types
or prediction of surface properties and chemical compositions [13,56–58]. The complex
network is a powerful tool used to understand the topological and dynamic characteristics
of complex systems [34,38,41,59]. By applying complex network analysis methods, we
can delve into the structural characteristics of spectral fingerprints and unearth special
information embedded within them.

In this work, a visibility graph algorithm was adopted to extract global network fea-
tures of spectral reflectance, revealing non-linear structural relationships within spectral
fingerprints. Through integrating original spectral reflectance with the network features
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and employing a machine learning classification model for rapeseed seed coat color identi-
fication, we observed a significant performance improvement compared to methods using
only original reflectance. We also put the fusion features consisting of the original re-
flectance and spectral color index in the same model. The result shows that the recognition
accuracy is not better than using only the original spectral reflectance, which indicates that
the spectral color index cannot form a benign complementarity for the original spectral
reflectance, while the network features can do so [60]. One potential reason may lie in
the design of VG algorithms, i.e., the VG can capture the difference in the reflectance
among every band associated with their order, which compensates for the differential
information in variable bands of the original spectral reflectance. In addition, the fast-
weighted VG algorithm enhances this difference numerically and improves the efficiency
of network construction.

Machine learning, which has played an important role in the growth diagnosis of
modern smart agriculture, helps train intelligent models for our rapeseed color classification.
As a popular machine learning technology, XGBoost, renowned for its gradient boosting
framework, weighted learning strategies, and parallel processing, typically outperforms
traditional machine learning methods in terms of both performance and computational
efficiency [48,50]. In this work, the XGBoost model is also confirmed to bring the best
performance to the rapeseed color classification task.

Since this work involves two key issues in machine learning (feature extraction and
model parameter selection), we will now discuss the sensitivity of these two issues to
the results. On the one hand, the parameter tuning, as mentioned above, is critical to
the machine learning model. In Section 3.3, we utilize the sparrow algorithm to find
the optimal parameter combination of the XGBoost model for K-fold cross-validation
(K = 2 to 10). The optimal parameter combinations of {n_estimators, learning_rate} are quite
different from those obtained by the sparrow algorithm as listed in Table 3. Here, we
reconsider the parameter selection for the XGBoost model. At this time, we use a global
search strategy to search for the optimal parameters of n_estimators and learning_rate under
five-fold cross-validation. The n_estimators and learning_rate are set from 5 to 1630 and
from 0.005 to 0.4, respectively, with equidistant 26 and 25 values. The Acc concerning the
two parameters is shown in Figure 10. It is explained that the sparrow algorithm is a fast
optimization method that may fall into local optima. As seen from Figure 10, there are
five sets of parameter combinations (see the red triangles) that enable the Acc to reach its
maximum value of 0.9397; interestingly, the corresponding optimal learning_rate is at a very
small level, i.e., 0.005∼0.01, indicating that the trained model is relatively complex. By
contrast, the optimal n_estimators lacks an obvious pattern (the five optimal selections are
70, 265, 720,785, and 1110), suggesting that the contribution of n_estimators to the model is
not as significant as that of learning_rate

On the other hand, to investigate the performance of the five network attributes, a sen-
sitive analysis is conducted for them. We employ the concept of information gain [61] to
measure the importance of features. In practice, for every feature, calculate the information
gain (denoted by Gain), defined by

Gain = H(D)−
V

∑
v=1

NDv

ND
H(Dv), (15)

where Gain is the information gain of each feature, referring to the feature importance, ND
and NDV denote the number of samples in the dataset and feature subset, and H(D) is the
Shannon entropy, defined as

H(D) = −
c

∑
i=1

pilogpi,

where pi is the ratio of the class i in the dataset D produced by dividing the dataset
D into different subsets, and then we summarize these information gains. In general,
the greater the Gain, the greater the contribution of the studied feature to classification,
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and the higher the importance of the feature. We use this notion to calculate the importance
of the five network attributes, which are illustrated in Figure 11a according to the model
performance based on the fusion feature of the full-band reflectance and the network
features. It illustrates that the most important network attribute is the graph density ρ,
whose importance is higher than other attributes significantly. In addition, we calculate the
Acc of the model under the fusion feature of full-band reflectance and the different number
of the optimal network attributes (according to the importance sort shown in Figure 11a),
as shown in Figure 11b. The result is obtained under a five-fold cross-validation. It shows
that there are no significant differences between the five Acc, say, when we use only one
network attribute (i.e., the graph density ρ), the Acc reaches 0.9325, which is slightly lower
than 0.9397 in the case that we use all the five network attributes. The result is calculated
under the optimal parameter combination discussed above. In this regard, the graph
density is the only key feature, which can be suggested to execute the rapeseed coat color
classification task.
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Figure 10. Parameter sensitivity analysis of XGBoost model. The best Acc is 0.9397; there are five
corresponding optimal parameter combinations of {n_estimators, learning_rate}, as presented by the
red triangle.
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Figure 11. Network feature sensitivity analysis. (a) is the importance rate of the five network
attributes, which is according to the model performance based on the fusion feature of the full-band
reflectance and the network features. (b) is the Acc under the fusion feature of full-band reflectance
and the different number of optimal network attributes with five-fold cross-validation.

Misclassification sample analysis is necessary for the classification task, especially
when using machine learning models. By carefully analyzing the misclassification samples
based on the confusion matrix, we can conclude there are three cases of misclassification.
The mainstream cases are that the samples are misclassified to the class with the center
label and the closest label, both in the sense of minimum Euclidean distance. The other two
samples are exceptions, which are misclassified to the class with their closest class in the
sense of minimum divergence.
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One limitation of this study is the restricted sample size and color range analyzed.
The experimental data are derived from two Brassica napus varieties grown in a single
field trial season (2020–2021) in the Changsha City region. Due to the relatively small
sample size, only 14 main colors representing each color family from the W3C system were
selected as baseline color values. It is important to note that our integration of hyperspectral
technology and machine vision for rapeseed seed coat color identification represents an
initial effort in this field. This study contributes to a better understanding of the relationship
between hyperspectral signals and image color information of crops, which are two critical
technologies in smart agriculture. Furthermore, this work offers innovative insights into
hyperspectral data mining from the perspective of complex networks, providing a necessary
complement to the original reflectance data.

5. Conclusions

Machine vision technology has been widely applied in the growth monitoring and
diagnosis of agricultural informatization, serving as a crucial auxiliary tool in traditional
agriculture. Over the past decade, hyperspectral technology, as a novel information tech-
nology, has found extensive applications in both military and civilian sectors. In this work,
we have proposed a framework that combines machine vision and hyperspectral technol-
ogy with machine learning methods to achieve intelligent seed classification tasks. This
approach provides a non-destructive and highly effective alternative to traditional labor-
intensive and laboratory techniques for identifying the color of rapeseed seeds. With the
utilization of inherent rich spectral and image data from rapeseed samples, this technology
holds significant potential in the field of agriculture.

The proposed framework establishes a bridge between machine vision and hyper-
spectral technology. Specifically, our focus is on the color classification task of rapeseed
seeds. Initially, three color categories are calibrated using visual perception and the vector
angle distance method: 75 samples for coral color, 20 samples for brown, and 187 samples
for dark brown. Subsequently, the weighted VG algorithm is used to map each of the
hyperspectral samples into a network. Five network attributes are extracted and fused
with the full-band spectral reflectance, which is input into the XGBoost model to achieve
rapeseed color recognition. The experimental results show that the best Acc of the fused
feature reaches 0.932 (under 8-fold cross-validation), which is higher than the results from
the original full-band reflectance (Acc = 0.922) and other combination features significantly.
The average classification recognition rate can be up to 0.943 through tuning parameters by
the sparrow algorithm.

Theoretically, hyperspectral technology covers a wide range of bands, including visible
light and near-infrared, with the advantages of high resolution and spectral integration,
offering the potential for higher accuracy. However, due to the high time and cost associ-
ated with acquiring various sample data, the experimental sample data in this study are
relatively limited. When the sample size is sufficient and relatively balanced, theoretically,
a more accurate identification of a greater range of colors can be achieved by selecting more
calibrated colors. Hyperspectral analysis is a key technology and method for achieving
high-throughput analysis of crops [1,58,62–65].

This study proposes a novel framework that employs hyperspectral reflectance data
and computer vision techniques to classify the color of rapeseed coats. By establishing a
correlation between spectral characteristics and visual color perception, we introduce an
intelligent model that offers a remarkably efficient alternative to conventional empirical
and laboratory-based methods for determining the color of rapeseed seeds. Leveraging
the inherent spectral and image information contained within rapeseed samples, this
technology holds promising applications across various domains within the agricultural
sector. The use of hyperspectral technology for identifying rapeseed seed coat colors
has become part of research efforts, including identifying rapeseed varieties and quality,
predicting rapeseed yield, and analyzing oil content. We aim to extend this research to
address other agricultural challenges. One key objective is to establish a connection between
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rapeseed of different colors and their genetic information, enabling the classification of
rapeseed quality based on color. This approach would provide support for traditional
laboratories in identifying rapeseed quality through biological and chemical methods,
complementing their existing techniques. Ultimately, the researchers plan to leverage the
established connection between rapeseed color and genetic information to grade rapeseed
quality. This grading system would assist breeding scientists in cultivating high-quality
rapeseed varieties, contributing to the development of superior rapeseed cultivars.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/agronomy14050941/s1, Table S1: The hyperspectral reflectance
and the corresponding RGB data.
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