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Abstract: Alfalfa is one of the most widely cultivated perennial legume crops used as feedstock for
animals. Efficiently estimating alfalfa yield and quality traits before harvesting is critical for the
decision-making process regarding precision management activities and harvesting time to ensure
high profitability. Satellite-based radar is a powerful tool in remote sensing for crop monitoring
because it provides high-quality data regardless of weather conditions. Therefore, this study aims
to investigate the potential use of satellite radar features and environmental factors in estimating
alfalfa yield and quality. Alfalfa yield and quality traits, including dry matter yield (DMY), crude
protein (CP), neutral detergent fiber (NDF), NDF digestibility (NDFD), and acid detergent fiber (ADF),
were collected over 16 alfalfa fields from 2016 to 2021, leading to 126 samples in total. Sentinel-1
radar backscattering coefficients and environmental factors were collected for all the fields across
all growing seasons. Five commonly used machine learning models were established to estimate
each alfalfa trait separately. The results show that the Extreme Gradient Boosting model consistently
performed the best for all alfalfa traits. The accuracy of the DMY estimates is acceptable, with an
average R2 of 0.67 and an RMSE of 0.68 tons/ha. The best result for estimating CP was an average
R2 of 0.70 and an RMSE of 1.63% DM. In estimating alfalfa fiber indicators (i.e., ADF, NDF, and
NDFD), we achieved the highest average R2 values of 0.54, 0.62, and 0.56, respectively. Overall,
this study demonstrated the potential use of environmental factors for alfalfa yield and quality
estimation in-field before harvesting. However, the Sentinel-1 radar backscattering coefficients
did not make significant contributions to improving the estimation performance, compared to the
environmental factors.

Keywords: remote sensing; precision agriculture; forage quality; alfalfa yield; SAR

1. Introduction

Alfalfa, one of the most critical and stable legumes, is a valuable nutritious crop with
a comparatively high yield, which is considered the fourth most valuable field crop in
the United States behind corn, soybean, and wheat, and is a commercially grown source
of forage and feed around the world [1,2]. In 2021 and 2022, 15.2 and 14.9 million acres
were harvested, resulting in 49.2 and 47.9 million tons of alfalfa and alfalfa mixture for hay
production in the United States, respectively [3]. Alfalfa is one of the most nutritive forages
and is extensively applied as well-preserved forage in the diets of beef and dairy cattle [4–6].
The amount and quality of forage consumed by livestock are crucial to maintaining their
health and milk production. Forage quality is regulated by two important components,
including fiber (acid detergent fiber (ADF) and neutral detergent fiber (NDF)) and crude
protein (CP). High-fiber alfalfa, with high fiber contents (ADF and NDF) and slow fiber
digestibility (NDFD), results in rumen fill, which ultimately reduces energy intake and
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animal performance [5,7]. In addition, the concentration of protein, indicated by the CP, is
also important, since amino acids from proteins are the building blocks for muscle, milk,
and animal enzymes.

The proportions of fiber and CP in forage dry matter are dependent on the maturity
stages when the forage is harvested. When alfalfa gets close to its maturity, the proportion
of stems becomes greater relative to the leaves. As a result, the percentages of ADF and
NDF increase relative to CP. As alfalfa quality traits and yield change rapidly during the
short harvest window, the frequent and accurate estimation of alfalfa’s quality and yield
becomes a critical issue in managing the tradeoff between yield and quality to obtain the
highest total profits [8]. Alfalfa’s quantity and quality traits are traditionally determined
by laboratory chemical methods, which are time-consuming, costly, labor-intensive, and
can generate hazardous wastes [9]. Moreover, laboratory tests on a few samples are not
sufficient to represent spatial variations within entire fields or those across a state and
country. Recently, various remote sensing (RS) imaging platforms, such as unmanned aerial
vehicles (UAVs) and satellites, have provided solutions for monitoring such crop traits over
a variety of scales for different purposes [10–12].

UAV imagery has been widely used for crop monitoring due to its high spatial resolu-
tion as well as flexibility in temporal and spectral resolutions [13,14]. Its potential use in
estimating alfalfa yield and quality traits has been evaluated with various UAV imagery,
including hyperspectral images [8], digital image-based three-dimensional models [15],
and aerial multispectral and thermal infrared images [16]. While the results are promising,
UAV imagery has mainly been used to cover small-scale fields for applications in precision
agriculture and breeding due to its limited payload and short flight endurance. In the
previous studies, the covered area was limited to 0.2 [9] to 11 ha [15]. Therefore, UAV-based
imagery is not applicable for monitoring alfalfa fields across a country or a state/province.
Besides this, operating UAV platforms requires remote pilots with specific training and
expertise. Daily data acquisition over large and multiple fields will significantly increase
inputs of human labor and time, and thus the total costs. Plus, operating UAVs in moun-
tainous locations is risky due to blocked signals, unexpected obstacles, and weather [17].
Consequently, relying on UAV imagery is impractical for informing alfalfa traits over
large scales.

Satellite-based imagery has also been extensively investigated for use in agricultural
crop monitoring. Compared to UAV imagery, satellite imagery benefits from its autonomy,
accessibility, consistency, and scalability [18]. Satellites autonomously acquire data on large
scales and in inaccessible mountainous areas, lowering the costs and risks of collecting RS
data more than any other means. Moreover, satellite images, since launching, have been
collected consistently around the Earth and securely stored, guaranteeing access to historical
RS data over a region of interest. RS satellite-based optical and radar data are the two main
types used for agricultural applications [19,20]. Among various satellite platforms, data
from the optical platforms, e.g., Landsat-8, Sentinel-2, and Moderate Resolution Imaging
Spectroradiometer (MODIS), have been investigated for use in estimating alfalfa yield. The
Landsat-8 acquires multispectral data with a spatial resolution of 30 m in visible, near-
infrared (NIR), and thermal infrared bands of electromagnetic waves, providing valuable
observations for crop monitoring at the field and county levels. Kayad et al. investigated
the correlation between a few vegetation indices (VIs) derived from the Landsat-8 Level 1
GeoTIFF data products and alfalfa yield measured by a hay yield monitoring system on a
rectangular baler [11]. The highest corresponding correlations of determination (R2) of 0.54,
0.56, and 0.53 were obtained for the linear regressions between alfalfa yield and NIR, Soil
Adjusted VI (SAVI) and Normalized Difference VI (NDVI), respectively. Moving beyond
the investigation of linear correlations, Azadbakht et al. adopted machine learning methods
for estimating alfalfa yield using time-series image features from Landsat 8 and PROBA-
V. The best estimation performance was achieved by the Gaussian Process Regression
(GPR) model with an R2 of 0.92 and RMSE of 1.1 tons/ha with the selected time-series
features over three years [10]. Similarly, He et al. used features from both MODIS and
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Landsat imagery as inputs to the data-driven light use efficiency (LUE) model for estimating
county-level alfalfa yield, and achieved an R2 of 0.72 between the estimated and measured
values [21]. Interestingly, Sadenova et al. compared the performance in forecasting alfalfa
yield at the field level among satellite, UAV, and weather data. It was found that the best
result (R2 = 0.94 and RMSE = 0.25 t/ha) was given by the Random Forest (RF) model with a
combined input dataset of image features from both UAV and satellites (Sentinel-2, Landsat-
8, and MODIS) with climatic and weather data, showing the improvement achieved by
combining remote sensing data with environmental information [22].

Although demonstrated in previous studies to show promising performance, success
in crop monitoring on particular regions could be limited when solely relying on satellite
optical data because areas at high latitudes on Earth are severely affected by cloud, fog,
and evaporation, resulting in up to 80% being missing for those areas [23,24]. Instead,
RS radar-based satellites could be effectively applied in these areas as they function by
transmitting and receiving electromagnetic waves in microwave ranges, including Ku
(1.6–2.5 cm), X (2.5–3.75 cm), C (3.75–7.5 cm), L (15–30 cm), and P (30–130 cm) bands,
which are nearly unaffected by clouds due to their long wavelength [25]. Therefore, radar
data have received special attention for use in crop monitoring at high latitudes due
to their capacity to acquire data regardless of the weather and external energy sources,
such as the Sun or the energy radiation of the objects [19,20]. Synthetic aperture radar
(SAR) satellites, a form of radar satellites, collect data with a finer spatial resolution by
utilizing the synthetic aperture antenna for capturing data from the target. Sentinel-1 is a
combination of two satellites deployed by the European Space Agency in 2014 and 2015,
providing C-band SAR data with a spatial resolution of 5 m in range and 20 m azimuth
in Interferometric Wide Swath mode (IW mode) [26]. Sentinel-1 provides free and high-
resolution SAR backscattering coefficients, which have been recently used for a variety of
crop monitoring purposes, including aboveground biomass (AGB), height, and leaf area
index in large pasture fields [27]; quantity and quality of semi-natural grassland forage [28];
and biophysical parameters of wheat, soybeans, and canola [29]. However, there are no
studies reported on estimating alfalfa yield using satellite radar data, nor on estimating
alfalfa quality traits using any satellite features [30].

Beyond remote sensing data, numerous studies have also utilized environmental
data to estimate the yield and quality of alfalfa [31], especially regarding factors like light
duration [32], water [33], and temperature [34]. Besides directly using temperature data,
the application of Growing Degree Days (GDD) for evaluating yield and quality has seen
widespread use [1,35]. Given the diversity of experimental setups, the response of yield and
quality traits to environmental factors varies greatly across studies. For example, moisture
can significantly affect alfalfa yield [36], or it may show no clear trend [37]. Therefore,
analyzing a single factor is not comprehensive enough; the combined impact of different
environmental factors is an indispensable aspect that must be considered for an accurate
estimation. To date, studies solely utilizing environmental factors are rare; a multi-factor
combination, especially in conjunction with remote sensing data, can achieve higher preci-
sion [1]. The majority use optical remote sensing data, which, despite their susceptibility
to weather impacts, do not align well with the stable data acquisition capacities of envi-
ronmental data. Hence, combining environmental data with stably acquired SAR imagery
could further validate the potential for long-term stable monitoring.

Therefore, this study aims to investigate the potential of two types of stably acquired
data, satellite radar data (Sentinel-1) and environmental factors, in estimating alfalfa DMY
and quality traits. For this purpose, the objectives are itemized as follows: (1) evaluating
the significance of SAR data and environmental factors in explaining the variations of
alfalfa DMY and quality traits; (2) evaluating the performance in estimating alfalfa yield
and quality traits using Sentinel-1 SAR features and environmental factors; (3) comparing
the estimation accuracy for each of the alfalfa traits among machine learning models.
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2. Materials and Methods

The workflow of this study is illustrated in Figure 1. The first step involves collecting
samples from the experimental fields for yield and quality analysis, as well as acquiring
satellite and environmental data. The features calculated from these data are statistically
analyzed and used as input features for the machine learning (ML) models. Through
strategies such as cross-validation and feature combination, the evaluation accuracy of
different features is analyzed. Finally, the optimal model is used to generate alfalfa yield
and quality maps.
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2.1. Study Area and Ground Data Sampling

The study was conducted from 2013 to 2021 at the Arlington Agricultural Research
Station (AARS, latitude of 43◦16′ N to 43◦20′ N and longitude of 89◦19′ W to 89◦24′ W)
and Marshfield Agricultural Research Station (MARS, latitude of 44◦43′ N to 44◦48′ N
and longitude of 90◦04′ W to 90◦08′ W) at the University of Wisconsin-Madison. From
2016 to 2021, ground data (i.e., alfalfa DMY, CP, ADF, NDF, and NDFD) were collected
from seven sites at AARS and nine sites at MARS. The geographic locations of the research
stations and the distribution of the sampling sites are shown in Figure 2. Alfalfa in each site
was sampled three to four times in each growing season starting from the first year and
extending to three years after seeding. The detailed sampling times for all the sites are listed
in Table 1. The first cut (sampling) of individual sites in a year usually happened at the end
of May; there was a roughly one-month interval between two cuts. Therefore, the second,
third, and fourth cuts happened at the end of June, July, and August, respectively. In total,
126 samples were collected for measuring alfalfa DMY and quality traits, categorized by
the sites, years, and cutting orders. Due to the limited and uneven numbers of samples
for each alfalfa variety, we did not discuss them separately in the subsequent analysis, and
treated the variety as a random factor.
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Table 1. Sampling sites and times.

Site ID Year Seeded Alfalfa Variety Sampling Years

AARS-593 2013 Pioneer 55V50 2016 (4), 2017 (4)
AARS-348 2014 Mixed RR varieties 2016 (4), 2017 (4), 2018 (4)

AARS-217E 2015 Pioneer 55V50/Dairyland HF3400 2016 (4), 2017 (4), 2018 (4)
AARS-244N 2016 HVXRR 4.0 Brand 2017 (4), 2018 (4), 2019 (4)

AARS-Wendt 2017 Pioneer 55VR08 2018 (4), 2019 (4), 2020 (4)
AARS-110 2018 Jung 4R418 2019 (4), 2020 (4), 2021 (4)

AARS-Sutcliffe 2019 HybriForce 3431 2020 (4), 2021 (4)
MARS-109 2014 Dairyland Magnum 7/wet 2016 (3), 2017 (4)
MARS-JC1 2015 Dairyland Magnum 7/wet 2016 (3), 2017 (3)
MARS-404 2016 Dairyland Hybriforce 3405 2017 (3), 2018 (4)
MARS-504 2016 Dairyland 2420/wet 2017 (3), 2018 (4)

MARS-MF1 2017 Dairyland 3420/wet 2018 (4), 2019 (3)
MARS-202 2018 Dairyland 3420/wet 2019 (4), 2020 (4)
MARS-502 2018 Dairyland 3420/wet 2019 (4)
MARS-412 2016 Pioneer 55V50 2016 (1)
MARS-104 2019 Dairyland 3420/wet 2020 (3)

The total wet yield of each experimental site was obtained during the harvest by
weighing the empty and full trucks carrying the harvested forage with an on-farm drive-
over scale [38]. The total dry yield was then obtained by multiplying the total wet yield
by a dry/wet ratio obtained using two dried samples that were randomly selected from
each harvest. Then, the DMY of a field was taken as the total dry yield divided by its size.
The two selected samples were then sent to the UW Soil & Forage Analysis Laboratory
(https://uwlab.soils.wisc.edu/, accessed on 13 April 2024) for quality analysis of CP,
ADF, NDF, and NDFD). The CP and ADF were analyzed by Near Infrared Reflectance

https://uwlab.soils.wisc.edu/
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Spectroscopy (NIRS), while the NDF and NDFD were tested through wet chemistry analysis.
The results from the two forage samples were averaged for each harvest [38].

Major environmental factors (Figures A1 and A2 in Appendix A) during alfalfa re-
growth were collected from Daymet V4 [39], including the daylight duration (period of
days during which the sun is above a hypothetical flat horizon), precipitation, incident
shortwave radiation flux density or radiation for short (taken as an average over the day-
light period of the day), and vapor pressure (VP, daily average partial pressure of water
vapor). GDD was calculated to assess crop development over the regrowth period, us-
ing Equation (1). We used the cumulative values of each environmental factor over the
regrowth before each cut (around one month period) as input variables for further analysis.
For the first cut in a year, we calculated the cumulative values from 30 days prior to the cut
to the day before the cut, and for the second to fourth cut, we calculated the cumulative
values from the day after the previous cut to the day before the current cut.

GDD = (Tmax + Tmin)/2 − Tbase (1)

where Tmax and Tmin are the maximum and minimum air temperature in a day. Tbase was
set to 5 ◦C [40,41].

2.2. Satellite Image Acquisition and Processing

Sentinel-1 imagery over all the experimental sites from 2016 to 2021 was acquired
and processed for estimating alfalfa DMY and quality traits. Technically, the two polar-
orbiting satellites (Sentinel-1 A and B) provide imagery with a six-day temporal resolution.
However, the six-day resolution is mainly ensured over Europe, while 1–12-day revisit
circles are expected for other parts of the world. In this study, features at two acquisition
dates were processed for each sample, namely, the late features (from the closest imaging
day to the ground sampling date) and the early features (from the second-closest imaging
day to the ground sampling date). The SAR data were collected from the high-resolution
Ground Range Detected (GRD) products of Sentinel-1 in the IW mode.

As shown in Figure 1, the GRD images were downloaded using the Google Earth
Engine (GEE) cloud platform and preprocessed using the Sentinel-1 toolbox [36] provided
by the European Space Agency. These data have been preprocessed in five steps: (1) apply-
ing orbit file, (2) GRDH border noise removal, (3) thermal noise removal, (4) radiometric
calibration computing backscatter coefficients using sensor calibration parameters in the
GRD metadata, and (5) terrain correction. The SAR images were then reshaped to a 30 m
spatial resolution with the nearest approach. Backscattering coefficients VV (σo

VV) and VH
(σo

VH), along with the cross-polarization ratio or CR (σo
VV/σo

VH), modified Dual Polarization
SAR Vegetation Index or DPSVIm ((σo

VV ∗ σo
VV+σo

VH ∗ σo
VV)/

√
2) [42], normalized polariza-

tion or Pol (( σo
VH − σo

VV
)
/(σ o

VH + σo
VV)) [43], modified Radar Vegetation Index or RVIm

((4 ∗ σo
VH)/(σ

o
VH + σo

VV)) [44], and VH-VV (σo
VH − σo

VV), were calculated and used as input
features to estimate the alfalfa DMY and quality traits. Each sample was featured with a
Gap variable, indicating the day difference between when the sample was cut and when
it was imaged (the satellite acquisition dates). To increase the sample size for machine
learning modeling, we resampled the dataset by stacking samples with early features and
late features and removed those that were imaged too long ago from the sampling days
(i.e., Gap > 12 days), leading to a dataset with 216 samples for training and validating the
machine learning models.

2.3. Statistical Analysis and Machine Learning Modelling

Statistical analysis and machine learning modeling were performed in Python (Version
3.11.4). A two-way analysis of variance (ANOVA) was conducted to evaluate the effects
of cutting orders, environmental factors and SAR image features on alfalfa DMY and
quality traits and the explained variations in alfalfa traits by combining environmental
factors and SAR features. The ANOVA tests were conducted at a significance level of
5% using the “aov” function. In the first ANOVA test with only the cutting orders and
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environmental factors as variables, we assumed an interaction between the cutting orders
and each of the environmental factors (daylight duration, precipitation, radiation, GDD,
and VP), while in the second ANOVA test, the SAR image features and Gap were added
with the consideration of an interaction between the cutting orders and each of the image
features. The explained variation of each variable was calculated as the percentage of the
sum of squares regression (SSR) of the variable in the sum of squares total (SST) in the test.
A p-value indicating whether the variable has a significant effect on alfalfa traits has also
been reported.

To evaluate the performance of machine learning models in estimating alfalfa DMY
and quality traits, five models that have been widely used in estimating crop traits with
remote sensing data, namely, Linear Regression (LR), Support Vector Regression (SVR),
Multilayer Perceptron (MLP), Random Forest (RF), and Extreme Gradient Boosting (XGB),
were developed and validated using the dataset. Optimal hyperparameters in each non-
linear model were found for each alfalfa trait using a grid search algorithm. The search
range and steps for all the hyperparameters are listed in Table 2, as well as their optimized
values. The model performance was evaluated using ten-fold cross-validation (CV), which
was repeated for each alfalfa trait 20 times. In each of the repetitions, the coefficient of
determination (R2), root mean square error (RMSE) and mean absolute error (MAE) were
calculated between the estimated and measured values. Averages of the three metrics over
the 20 CV repetitions are reported.

Table 2. Grid search specifications for hyperparameters of the machine learning models.

Model Hyperparameter Searching Range

SVR
Squared L2 penalty 0.01, 0.1, 0.5, 1, 5, 10, 100

Gamma 0.01, 0.1, 0.5, 1, 5, 10, 100

MLP

Activation ‘identity’, ‘logistic’, ‘tanh’, ‘relu’
Solver ‘adam’, ‘sgd’

Hidden layers 10, 15, 20, 25, 30, 35, 40
Batch size 20, 24, 32, 40

Random state 0, 1, 2, 3

RF

Max features ‘sqrt’, ‘log2’, 0.3, 0.5, 1
Number of trees 30, 40, 50, 80, 100

The minimum samples at leaf 2, 4, 6, 8, 10
Random state 0, 1, 2, 3

XGB

Maximum depth 3, 4, 5, 6, 7, 8
Number of trees 30, 40, 50, 80, 100

Learning rate 0.01, 0.05, 0.1
Tree method ‘exact’, ‘approx’, ‘hist’

L1 regularization 0.4, 0.5, 0.8, 1
L2 regularization 0.6, 0.8, 1, 1.2

3. Results and Discussion
3.1. Ground Data Statistics

Distributions of DMY and quality traits for alfalfa harvested in each year from 2016 to
2021 are plotted against the cutting orders in Figure 3. The DMY decreased with increasing
cutting order in all years, with the first cut yielding significantly higher than each of the
others. This is because the growth duration for the first cut of alfalfa was significantly longer
than the others, from the end of the last season (September) to May of the next year, allowing
more biomass accumulation [4,45]. Besides this, when alfalfa plants were cut, they utilized
the stored energy reserves in their roots to regrow and produce new shoots. Multiple
cuts in a growing season led to a gradual decrease in these energy reserves, reducing the
plant’s ability to produce as much dry matter in subsequent cuts [46]. Moreover, changes
in environmental conditions, such as temperature, precipitation, and radiation duration,
could jointly impact the plant’s ability to produce dry matter in subsequent cuts. While the
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DMYs of the second cuts were relatively stable over the years, the third cuts had a trend
of DMY increase, with high variation. In some years (e.g., 2016, 2018, and 2020), the third
cuts yielded more than the second cuts, while in some years (e.g., 2017 and 2019), they
were much lower. These variations could have been caused by the weather changes in
the month.
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is represented by the box itself. The whiskers extend to the most extreme values that are not
considered outliers.

Increasing trends in the CP content with narrower ranges can be observed throughout
successive cuts in Figure 3. While the general trend in the previous studies suggests a
decline in alfalfa CP content with successive cuts, variabilities in alfalfa varieties and
growing environments in this dataset could contribute to the opposite pattern. Growth
patterns and responses to cutting varied among alfalfa varieties, with some producing
higher protein content during later regrowth stages and others lower. Besides this, the
ability to synthesize protein from outside nitrogen from the atmosphere and soil highly
depends on soil fertility, environmental conditions, management practices, and previous
cutting schedules [47,48]. Variations in these factors and their interactions introduced large
variabilities in estimating CP from this dataset.

The ADF, NDF, and NDFD remained around similar levels from the first to the last cut,
without a significant decrease or increase noticed. Low fiber contents represent better alfalfa
quality, as they ensure the sufficient nutritional intake of dairy cows and consequently
result in increased milk protein and production [4,5]. Alfalfa with high fiber contents
and a low concentration of protein does not support an adequate supply of metabolizable
protein, and reduces energy intake and animal performance as a result of faster rumen
fill, resulting in a reduction in milk production [49]. However, it is important to note
that there are a few factors interacting with each other and the cutting time, consequently
affecting the ADF and NDF content in alfalfa productions with temporal and geographic
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variations, including harvest timing, environmental factors, soil fertility and nutrient
availability, varietal differences, and stressors [50]. Thus, strategically taking these factors
into consideration plays an important role in estimating alfalfa fiber contents.

3.2. Variations in Alfalfa DMY and Quality Traits Explained by Environmental Factors and Image
Features

Variations among alfalfa DMY and quality traits explained by the cutting order and
weather data in the ANOVA are listed in Table 3. The variations could be explained by the
input variables of 48.33%, 66.48%, 45.83%, 42.96%, and 44.98% for the DMY, CP, ADF, NDF,
and NDFD, respectively. The cutting order has a significant effect on all the alfalfa traits.
Particularly, it explained over 30% of the variation in the alfalfa DMY, which confirms the
observations in Figure 3. Other than the cutting order, the VP also significantly relates to
the alfalfa DMY. No interaction effects were noticed between cutting order and weather
conditions on DMY, which implies that the effects of weather conditions on alfalfa DMY
remained unchanged among different cuttings. The CP was also significantly affected by
daylight duration, precipitation, GDD, and VP. Moreover, the interaction between cutting
order and weather conditions (except for the GDD) was also significant, indicating the
extent to which weather conditions affect alfalfa CP depending upon the regrowth stages
in a season. While the radiation had no significant effect on all three fiber contents, the
daylight duration had a significant effect on the NDF, the precipitation had a significant
effect on the ADF and NDF, VP had a significant effect on both ADF and NDFD, and
GDD only affected NDFD. It was also noted that the interaction between cutting order
and precipitation was also significant for all three fiber contents, implying that the fiber
formation relates to the water availability in summer during regrowth.

Table 3. Variations in alfalfa DMY and quality traits explained by only the weather data in two-way
ANOVA.

DMY CP ADF NDF NDFD

Cutting orders 30.78 *** 6.35 *** 14.93 *** 10.97 *** 11.67 ***
Daylight duration 0.27 NS 3.02 *** 2.04 NS 2.44 *** 1.01 NS

Precipitation 1.88 NS 18.14 *** 6.75 *** 7.38 *** 2.50 NS
Radiation 0.68 NS 0.98 NS 1.06 NS 0.39 NS 0.02 NS

GDD 3.86 NS 6.99 *** 1.15 NS 3.57 NS 6.73 ***
VP 2.35 *** 1.41 *** 2.94 *** 1.14 NS 3.56 ***

Cutting orders: daylight duration 1.88 NS 5.71 *** 2.62 NS 2.62 NS 3.39 NS
Cutting orders: precipitation 1.28 NS 1.45 *** 7.04 *** 2.73 *** 3.38 ***

Cutting orders: radiation 2.08 NS 9.59 *** 1.81 NS 5.73 *** 6.15 ***
Cutting orders: GDD 0.28 NS 1.16 NS 3.24 *** 1.19 NS 1.58 NS
Cutting orders: VP 2.97 NS 11.69 *** 2.25 NS 4.81 *** 4.98 ***

Error 51.67 33.52 54.17 57.04 55.02

Numbers in the table are presented in percentages. *** indicate the significance levels of p = 0.001, respectively.
NS stands for no significance.

Variations among alfalfa DMY and quality traits explained by the cutting order,
weather data, and SAR features are listed in Table 4. With the addition of SAR features, the
explained variations in DMY, ADF, NDF, and NDFD were improved to 66.68%, 51.05%,
53.73%, and 48.67%, respectively. For the DMY, VV, VH, and VH-VV had significant effects,
but their interaction with the cutting order did not. This implies that the effect on DMY
of these features remained consistent during the different regrowth stages. Among the
fiber contents, NDFD is the only one that has been significantly affected by the SAR feature
CR. Although the explained variations were increased in ADF and NDF, none of the SAR
features had significant effects. Comparing these results to those in Table 3, it can be seen
that the SAR features help with explaining some of the variations in alfalfa DMY and
fiber contents that were not explained by the weather data alone in the ANOVA analysis.
The remaining variations could have been caused by other factors that were considered
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random in this analysis, such as soil type, fertilizer application, and pest management, or
could be captured by the linear relationship. Therefore, in the following sections, we will
evaluate the performance of ML models in representing and estimating alfalfa DMY and
quality traits.

Table 4. Variations in alfalfa DMY and quality traits explained by weather data and SAR features in
two-way ANOVA.

DMY CP ADF NDF NDFD

Cutting orders 26.00 *** 10.31 *** 15.11 *** 17.22 *** 12.81 ***
Daylight 0.79 NS 1.96 * 0.98 NS 0.85 NS 1.05 NS

Precipitation 0.94 NS 2.12 * 0.78 NS 0.36 NS 0.04 NS
Radiation 2.18 * 0.54 NS 0.84 NS 0.39 NS 1.04 NS

GDD 1.91 * 1.70 NS 4.64 * 1.86 NS 3.18 ***
VP 0.83 NS 1.64 NS 2.51 NS 0.56 NS 2.27 NS

Cutting orders: daylight 2.89 NS 14.23 *** 4.67 NS 4.99 NS 2.46 NS
Cutting orders: precipitation 3.73 NS 5.21 * 1.36 NS 3.11 NS 5.07 NS

Cutting orders: radiation 2.91 NS 4.96 * 2.08 NS 3.08 NS 1.05 NS
Cutting orders: GDD 1.59 NS 6.79 ** 1.44 NS 3.97 NS 7.27 ***
Cutting orders: VP 2.53 NS 8.61 ** 1.42 NS 2.83 NS 4.50 NS

Gaps 0.04 NS 0.05 NS 0.15 NS 0.44 NS 0.50 NS
VV 3.43 *** 0.02 NS 0.28 NS 0.10 NS 0.02 NS
VH 3.44 *** 0.02 NS 0.28 NS 0.10 NS 0.02 NS
CR 1.20 NS 0.07 NS 1.20 NS 0.13 NS 3.40 ***

DPSVIm 0.22 NS 0.00 NS 0.04 NS 0.34 NS 0.11 NS
Pol 0.08 NS 0.53 NS 0.01 NS 0.25 NS 0.18 NS

RVIm 0.26 NS 0.00 NS 0.06 NS 0.30 NS 0.14 NS
VH-VV 3.44 *** 0.02 NS 0.28 NS 0.10 NS 0.02 NS

Cutting orders: VV 1.40 NS 1.45 NS 1.79 NS 1.80 NS 0.10 NS
Cutting orders: VH 1.39 NS 1.45 NS 1.80 NS 1.80 NS 0.10 NS
Cutting orders: CR 0.43 NS 0.42 NS 0.63 NS 1.57 NS 0.43 NS

Cutting orders: DPSVIm 0.28 NS 0.37 NS 3.20 NS 1.39 NS 0.57 NS
Cutting orders: Pol 3.06 NS 0.77 NS 0.49 NS 2.96 NS 1.69 NS

Cutting orders: RVIm 0.31 NS 0.37 NS 3.23 NS 1.43 NS 0.58 NS
Cutting orders: VH-VV 1.39 NS 1.45 NS 1.80 NS 1.80 NS 0.10 NS

Error 33.32 34.96 48.95 46.26 51.33

Numbers in the table are presented in percentages. *, **, *** indicate the significance levels of p = 0.05, 0.01 and
0.001, respectively. NS stands for no significance.

3.3. Performance for Alfalfa DMY and Quality Traits

Figure 4 shows scatterplots between the alfalfas’ measured and estimated values given
by the five trained models. The DMY estimates given by the XGB models closely agree
with the measured values, with an average R2 of 0.67 and RMSE of 0.68 tons/ha over
the 20 repeated CV. The models’ performances benefited from the relationships between
either DMY or backscattering coefficients and vegetation water content (VWC). DMY,
though measured as the weight of water-free substances in vegetation samples, has a high
correlation with the VWC. Zhou et al. and Bhattacharya showed a strong linear relationship
(r = 0.96) between DMY and VWC [51,52]. Logically, vegetation with more water has a
higher capacity to sustain water, supported by a larger volume of dry matter. On the
other hand, radar backscattering coefficients from vegetation are highly related to the
VWC because water absorbs more energy than other substances in vegetation [20,53,54].
Consequently, vegetations with higher VWC tend to reflect fewer radar signals than those
with lower VWC.

Our results are competitive compared to previous studies using satellite optical data.
Azadbakht et al. reported an R2 of 0.92, an RMSE of 1.1 tons/ha, and an MAE of 0.8 tons/ha
using the GPR model with the selected time-series Landsat 8 and PROBA-V features [10].
Using single-time satellite SAR data requires less data processing and computational effort,
while achieving lower average errors. The best results in estimating alfalfa DMY described
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in the published literature were an R2 = 0.94 and RMSE = 0.25 t/ha, reported by [22], which,
however, required high-resolution images from UAV as well as satellite imagery from three
platforms (i.e., Sentinel-2, Landsat-8, and MODIS). Overall, the performance of this study
suggests its practical use in estimating alfalfa DMY.
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For estimating CP, the best result, with an average R2 of 0.70 and RMSE of 1.63%,
was given by the XGB model (Figure 4). The CP concentration in alfalfa is related to
chlorophyll concentration, which is closely dependent on its water and nitrogen status [28].
Therefore, it could be reflected by the backscattering coefficients. The CP estimates agree
the most with the measured values in our studies, demonstrating its utility in practical
use [15,19,28]. The performances in estimating alfalfa fiber indicators (i.e., ADF, NDF, and
NDFD) are shown in Figure 4, with the highest average R2 values of 0.54, 0.62, and 0.56,
respectively. The best estimates for the three fiber indicators were all given by the XGB
models. The relationships between backscattering coefficients and plant density account
for the models’ performance. Plant density primarily affects the structure of the plant
population. Increasing plant density causes more competition among individuals for
nutrients, water, and light, and consequently lowers the quality by increasing fiber contents
in the plant. It was reported that the fiber contents (ADF and NDF) increased with higher
plant densities, thus resulting in decreasing quality [55–58]. In addition to VWC, radar
backscattering coefficients from vegetation are affected by geometric factors including plant
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density, pattern, and height. Dense and high objects increase both the duration and energy
of radar signals being reflected to the satellite receiver, accordingly resulting in higher
backscattering coefficients [25,59–61].

3.4. Impact of Environmental Factors and SAR Features on Estimates

To investigate the impact of environmental factors and SAR features on yield and
quality estimation, it is crucial to avoid the errors caused by repeated environmental factors
in the expanded dataset. Therefore, we conducted experiments with 117 samples from the
original dataset with a gap less than 12 days to demonstrate the contributions of these two
types of features. Table 5 shows a comparison of the performance between two groups
of inputs and their combination in different machine learning models. When using the
SAR image features only, the best performance in DMY estimation was obtained by the
MLP with an R2 of 0.43 and RMSE of 0.89 tons/ha. The average performance in the group
was competitive with previous studies. However, the results for the fiber indicators and
CP were not ideal when only using the SAR features, with the best R2 values all being
lower than 0.25. The performance was significantly better when the environmental factors
were used, especially for the quality traits. The significance of environmental changes in
estimating alfalfa traits in this study can also be inferred from the ANOVA tests, where
there were more environmental factors having significant effects than SAR image features.
When the two types of features were combined, only the accuracy of NDFD showed a slight
improvement, while the accuracy of other quality traits underwent a slight decline. This
indicates that in our study, the SAR image features did not make significant contributions
to improving the estimation performance, compared to the environmental factors.

Table 5. Performances of the five machine learning models in estimating alfalfa yield and quality
traits.

Input Traits
SVR MLP RF XGB LR

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

G
ro

up
1

DMY 0.51 0.82 0.64 0.46 0.84 0.69 0.41 0.89 0.72 0.28 0.99 0.77 0.34 0.94 0.77
CP 0.39 2.28 1.70 0.20 2.61 1.91 0.42 2.22 1.68 0.39 2.29 1.75 0.20 2.61 1.97

ADF 0.25 2.92 2.13 0.15 3.10 2.27 0.19 3.04 2.31 −0.01 3.38 2.53 0.19 3.03 2.25
NDF 0.35 4.48 3.14 0.21 4.91 3.51 0.32 4.57 3.23 0.20 4.94 3.51 0.13 5.16 3.75

NDFD 0.21 5.60 4.16 0.06 6.08 4.57 0.17 5.72 4.29 0.18 5.68 4.27 0.10 5.97 4.70

G
ro

up
2

DMY 0.40 0.89 0.72 0.43 0.89 0.72 0.42 0.89 0.72 0.33 0.94 0.74 0.37 0.91 0.77
CP 0.24 2.55 1.90 0.23 2.57 1.93 0.21 2.60 1.95 0.06 2.84 2.18 0.16 2.67 2.01

ADF 0.12 3.15 2.39 0.11 3.17 2.40 0.08 3.23 2.41 −0.08 3.49 2.63 0.02 3.33 2.54
NDF −0.01 5.58 3.90 −0.04 5.65 3.94 0.05 5.41 4.01 −0.27 6.23 4.52 −0.08 5.75 4.31

NDFD 0.07 6.06 4.53 0.11 5.95 4.52 0.17 5.73 4.21 0.10 5.98 4.41 0.02 6.22 4.70

G
ro

up
3

DMY 0.50 0.82 0.64 0.43 0.89 0.72 0.40 0.89 0.69 0.32 0.96 0.74 0.36 0.91 0.77
CP 0.29 2.46 1.73 0.28 2.48 1.85 0.40 2.26 1.71 0.27 2.49 1.90 0.21 2.59 2.00

ADF 0.19 3.02 2.16 0.20 3.00 2.22 0.19 3.02 2.24 0.08 3.23 2.36 0.18 3.05 2.31
NDF 0.21 4.92 3.47 0.17 5.04 3.60 0.33 4.52 3.25 0.27 4.73 3.44 −0.01 5.56 4.02

NDFD 0.15 5.79 4.16 0.24 5.48 4.16 0.18 5.71 4.15 0.16 5.76 4.25 0.18 5.69 4.41

Group 1: Cutting order + Environmental factors. Group 2: Cutting order + SAR feature. Group 3: Cutting order +
Environmental factors + SAR feature. The highest R2 for a trait in one group is in bold.

The weaker effects of the satellite data could have occurred because we did not account
for the separate impacts of alfalfa status and soil water content on the radar backscatter.
Radar signals interact with the vegetation and soil in alfalfa fields at the same time. Given
the same vegetation conditions, the radar signals experience less attenuation (weakening)
in dry soil and thus lead to higher backscatter values. And the backscatter values at earlier
alfalfa growth stages tended to be affected by soil conditions, as less ground was covered
when the alfalfas were short and thin. Neglecting to distinguish the effects of soil water
content from alfalfa traits in the radar backscatter data likely contributed to the errors in
our estimates. We recognize the importance of distinguishing these backscatter effects as a
crucial aspect of future research attempts.
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When comparing different models, we found that the SVR model achieved higher
accuracy in this set of experiments, even surpassing the previously optimal XGB model
(Figure 4). This is because the dataset used in these experiments was relatively small and
simpler, which plays to the strengths of the SVR model. SVR is particularly robust when
working with small, uncomplicated datasets. However, as the data complexity increases,
moving from group 1 to group 3, the accuracy of the SVR model noticeably declines,
whereas most other models either improve in accuracy or maintain their performance.

3.5. Visualization of the Estimated Alfalfa DMY and Quality Traits

The estimated maps of an example field are shown in Figure 5 to visualize in-field
variations in the alfalfa DMY and quality traits estimated by the XGB model with both
environmental factors and SAR features. Each column in Figure 5 shows maps before each
cut in the season of 2020. In general, the average values of each map correspond well with
their field-level ground data. The estimated maps also demonstrate the spatial variations
of each field. Given the complicated interactions of weather, in-field microenvironments,
and management activities, alfalfa growth status in fields could be affected as a whole or in
specific areas. Using the spatial variation maps, further investigations could be conducted,
and decisions could be made regarding field management practices, such as time, amount,
and location for precision irrigation, fertilization, and alfalfa cutting windows, so as to
maximize production potential, quality, and profitability.
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4. Conclusions

The potential to use Sentinel-1 radar features and environmental factors in estimating
alfalfa yield and quality was investigated in this study. Radar features and environmental
factors, as stably obtainable and low-labor data sources, hold significant applicative value
in estimating alfalfa yield and quality, particularly for data that are sparse both temporally
and spatially, providing a reference for the long-term stable monitoring of alfalfa. The
ANOVA tests show that environmental factors had significant effects on alfalfa traits, and
more variations in alfalfa DMY and fiber indicators can be explained when using SAR
data. The results from the machine learning modeling show that the Extreme Gradient
Boosting model consistently performed the best for all alfalfa traits. The precision of the
DMY predictions is deemed acceptable, featuring an average R2 of 0.67 and an RMSE
of 0.68 tons/ha. For CP content estimation, optimal outcomes were observed with an
average R2 value of 0.70 and an RMSE of 1.63% DM. In terms of estimating alfalfa’s fiber
metrics—namely, ADF, NDF, and NDFD—the best average R2 values recorded were 0.54,
0.62, and 0.56, respectively. In our studies, it was observed that solely relying on SAR
features for the estimation of alfalfa’s quality traits led to poor performance. The precision
achieved through environmental factors markedly surpassed that when using SAR features.
Furthermore, when combining the SAR features and environmental factors, the SAR
features did not make a noticeable positive contribution to improving the estimation
performance. Field maps were generated for alfalfa DMY and quality using the model
estimates depicting in-field variations, providing a valuable reference for decision-making
related to field management practices and alfalfa harvest time.
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growing degree days. Red dots represent the data points collected for each environmental factor, and
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