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Abstract: Utilizing Unmanned Aerial Vehicle (UAV) multispectral technology offers a non-destructive
and efficient approach to monitoring plant health and stress responses by analyzing reflectance
data across various wavelengths. This study integrates UAV-based multispectral imagery with
ground-measured sample data to evaluate the impact of atrazine (ATR) on chlorophyll a, chlorophyll
b, carotenoids, and anthocyanins in Red Cos lettuce. The results indicate a significant increase
(p < 0.05) in ATR concentration in lettuce with soil application, leading to notable reductions in
pigment concentrations. Heatmap analysis reveals that EVI shows the strongest negative correlations
with pigment classes (coefficients ranging between −0.75 to −0.85), while NDVI, GNDVI, and BNDVI
exhibit the strongest positive correlations with pigments (coefficients > 0.75). These findings highlight
the potential of this innovative technique in predicting pigment concentrations and emphasize its
importance in monitoring pesticide effects for sustainable agriculture.

Keywords: multispectral; vegetation indexes; information fusion; remote sensing metrics; vegetation
pigment modification; spatial pattern analysis

1. Introduction

Atrazine (ATR), chemically known as 2-chloro-4-ethylamino-6-isopropylamino-1,3,5-
triazine, is a synthetic selective systemic triazine herbicide used to control annual grami-
neous and broadleaf weeds, as well as certain perennial weeds in crops such as corn,
sugarcane, and grains, etc. [1–3]. It has become the second most widely used pesticide
globally, with annual consumption estimated between 7000 and 9000 tons [4,5]. Despite its
economic benefits, the extensive use of ATR raises concerns about its potential impacts on
public health and the environment [6]. Exposure to ATR has been associated with adverse
effects on human health, including decreased testosterone production, reduced sperm
motility, and increased sperm abnormality [7,8]. After entering the environment, ATR
can persist and accumulate over time, with a soil half-life ranging from 41 to 231 days [9].
Its toxicity (level III) and persistence have led to concerns. Despite ATR’s widespread
use in the US and the Asia-Pacific region, the European Union has banned its use [6,9].
However, ATR is still widely used in agricultural production in other countries, including
Thailand, where approximately 1900 tons were imported in 2022 [10]. Although numerous
studies have investigated the direct effects of ATR in soil and water, as well as its uptake
and metabolism in plants [11–14], none have explored how ATR uptake in plants indi-
rectly affects their nutritional value. Gaining a better understanding of this relationship
is crucial for elucidating the potential effects of ATR on the nutritional quality of crops.
Further research is needed to address this gap in knowledge. While chemical analysis
can provide valuable insights into the nutritional content of crops, it is often costly and
time-consuming. Therefore, exploring alternative, cost-effective methods for assessing the
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nutritional value of crops exposed to ATR is essential. This knowledge will not only guide
effective agricultural practices but also improve planting benefits and ensure food safety
and security.

Remote sensing is a rapid, non-destructive, and cost-effective method for acquiring
and evaluating surface properties from various distances. Spectral imaging techniques
enable the collection of spectral data from satellites, airplanes/UAVs, or land-based systems.
In recent years, Unmanned Aerial Vehicles (UAVs) have gained popularity as remote
sensing platforms, offering higher spatial and temporal resolution images compared to
traditional satellites [15]. Due to their flexibility, ease of use, and ability to operate at
low altitudes, UAVs are increasingly recognized as a powerful tool for crop monitoring,
providing convenient operation, high spatial and temporal resolution, and reasonable
spatial coverage. They have been used for crop plot detection [16], monitoring crop growth
status [17,18], predicting crop yield [19,20], and assessing plant water status [21]. These
UAV systems can provide data that, when processed, enable the formulation of vegetation
indices (VIs).

VIs are calculations that use two or more spectral bands to assess vegetation properties
at leaf or canopy levels. A wide range of VIs has been developed to estimate leaf pigment
contents, each tailored to different types of vegetation. These indices are valuable tools
in remote sensing, providing insights into plant health, stress, and growth [22–24]. They
are valued for their simplicity, intuitiveness, and effectiveness in modeling ground cover
reflectance [25]. Many VIs are widely proposed in pigment monitoring. For example,
Wu et al. [26] discovered that comprehensive indices like the Transformed Chlorophyll
Absorption Reflectance Index (TCARI), Modified Chlorophyll Absorption in Reflectance
Index (MCARI), and Optimized Soil-adjusted Vegetation Index (OSAVI) performed better
in estimating chlorophyll content compared to NDVI and Modified Simple Ratio (MSR),
taking into account various interference factors such as shadow and soil background. Fur-
thermore, Yu et al. [27] monitored barley chlorophyll content across multiple growth stages
using MCARI/OSAVI, TCARI/OSAVI, and other comprehensive vegetation indices, and
noted that differences in canopy structure influenced the monitoring results. Additionally,
He et al. [24] compared the performance of the Modified Soil Adjusted Vegetation Index
(MSAVI), NDVI, Chlorophyll Index with Green (CIgreen), and Enhanced Vegetation Index
(EVI) in detecting maize chlorophyll content. They observed that both MSAVI and NDVI
saturated when chlorophyll content reached 40 mg m2, whereas the model based on CI-
green demonstrated the highest accuracy. Kopačková-Strnadová et al. [28] demonstrated
that the two vegetation indices tested in this study, NDVI and NDVI red edge, have the
potential to semi-quantitatively assess photosynthetic pigments in Norway spruce forests.
However, the choice of VIs can significantly impact results, as VIs can vary depending
on indices, sensors, quality control measures, compositing algorithms, and atmospheric
and sun-target-sensor geometry corrections [15,29–31]. To overcome these limitations and
identify suitable VIs, a combination of approaches can be used. These include using multi-
ple indices to provide a more comprehensive assessment, integrating VI data with other
remote sensing data sources, calibrating and normalizing VI data, employing machine
learning algorithms to identify suitable VIs, and validating results with ground truth data.
Additionally, new methods are needed to integrate VIs effectively, capturing spatial and
temporal variations in vegetation dynamics [31].

Despite the progress in remote sensing technology, there is a need to continue enriching
the knowledge base on the use of UAV-based multispectral image data for monitoring the
impact of herbicide concentrations in plants and on crop quality. This gap in knowledge
not only limits our understanding of herbicide effects. It also restricts our ability to provide
crucial data support and practical guidance for site-specific management decisions and
the advancement of smart crop farming. To address this gap, our study aims to leverage
UAV-based multispectral imagery in conjunction with ground-measured sample data.
Specifically, we seek to explore the feasibility of using UAV-derived spectral parameters
to predict pigment concentrations in Red Cos lettuce resulting from ATR application.
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To achieve this, we utilized a heatmap analysis to identify the most effective vegetation
indices for evaluating pigment responses. This innovative approach not only enhances our
understanding of ATR’s effects on crop quality but also provides a valuable framework for
future research and agricultural practices.

2. Materials and Methods
2.1. Field Study Area and Soil Characteristics

To maintain research integrity and prevent potential cross-contamination of ATR to neigh-
boring experiments, the decision was made to reduce the size of the experimental plot. This
plot-scale experiment was conducted in a 300 m2 agricultural field located at 18◦38′19.49′′ N,
98◦50′9.88′′ E, with an elevation of 486.46 m, in Ban Mae, San Pa Tong District, Chiang Mai,
Thailand, from 20 March 2023 to 25 April 2023. The field, as shown in Figure 1, was chosen
for its suitability for cultivating Red Romaine lettuce or Red Cos lettuce (Lactuca sativa L.).
The total precipitation and mean temperature during the study were 13.33 mm and 32.36 ◦C,
respectively. The soil used in the plot is classified as clay loam, and the topsoil (0–20 cm) has
the following properties: pH (soil/water = 1:1) 7.2, nitrate nitrogen 35.28 mg kg−1, available
phosphorus 12.38 mg kg−1, and organic matter 10.69 g kg−1.

2.2. Field Experiment and Sample Collection

The study area was divided into 5 plots, each measuring 1 m in width and 8 m in
length, with a minimum separation of 0.5 m between plots. To mitigate the potential border
effect resulting from the narrow width, topsoil from the 0–20 cm layer was collected, air-
dried, and homogenized before the application of ATR. A solution of ATR (ICP Ladda Co.,
Ltd., Bangkok, Thailand) at varying concentrations was prepared and sprayed onto the soil.
Plot ATR0 received no ATR, while plots ATR1, ATR2, ATR3, and ATR4 received 1.87 g L−1,
3.75 g L−1, 5.63 g L−1, and 7.50 g L−1, respectively. Afterward, soil contaminated with
ATR was added to each plot. To ensure optimal plant establishment and growth, the soil
prepared for each plot remained undisturbed for 45 days after spraying. Soil samples,
approximately 100 g each, were then collected, sealed in re-closable zip-lock bags, and
accurately labeled for identification. These samples were promptly transported to the
laboratory and stored at room temperature for less than seven days before undergoing
subsequent analytical procedures. Prior to conducting the experiment, the soil in each plot
contained different concentrations of ATR: ATR1 (75 mg kg−1), ATR2 (150 mg kg−1), ATR3
(225 mg kg−1), and ATR4 (300 mg kg−1).

Seeds of the Red Cos lettuce cultivar Lactuca sativa var. longifolia ‘Red Romaine’ was
obtained from a local market in Mueang district, Chiang Mai, Thailand. To ensure sterility,
the seeds underwent surface sterilization using a 2% (v v−1) sodium hypochlorite solution,
followed by thorough washing and soaking in deionized water at room temperature for
1 h. The germination process took place in seed-starter trays, and only healthy, germinated
seeds were selected for transplantation into the plots, with each plot accommodating
30 seedlings. During planting, lettuce samples were strategically positioned within the
experimental area, and statistical analyses were conducted to address any potential residual
border effects. Daily watering was carefully administered to maintain soil moisture levels
at 60–70% (w w−1). No additional nutrients were introduced to the plot throughout the
experiment. Following 45 days post-transplantation, spectral data images were captured,
and Red Cos lettuce samples were randomly harvested from each plot. The samples were
promptly transported on ice in a cool box to the laboratory for pigment analyses.
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2.3. Quantification of Atrazine Uptake
2.3.1. Soil and Plant Extraction

Upon arrival, all lettuce samples were individually washed with water to remove dirt
and contaminants, and rinsed with deionized water. The edible portion of each set was pre-
pared and separately homogenized in a dark room at 25 ◦C. The extraction was performed
using the QuEChERS method. The QuEChERS Extraction Kit, containing magnesium
sulfate, sodium chloride, sodium citrate, and disodium citrate sesquihydrate, along with
2 mL of QuEChERS dispersive solid-phase extraction (SPE) with primary-secondary amine
(PSA), octadecylsilane end-capped, and magnesium sulfate, was procured from Agilent
(Santa Clara, CA, USA). For the extraction of ATR, approximately 1 g of homogenized
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leaf sample or 10 g of soil was accurately weighed and placed in a 50-mL centrifuge tube.
Subsequently, 10 mL of water was added to the tube, and the mixture was allowed to
stand for 30 min at room temperature. Afterward, 10 mL of acetonitrile was added to the
tube. The tube was sealed, vigorously shaken by hand for 1 min, and a buffer–salt mixture
was introduced to facilitate phase separation and pesticide partitioning. This buffer–salt
mixture consisted of 4 g of magnesium sulfate anhydrous (MgSO4), 1 g of sodium chloride,
and 0.5 g of disodium hydrogen citrate sesquihydrate. The tube was resealed, shaken vigor-
ously by hand for an additional minute, and then centrifuged at 4000 rpm for 5 min using
a Multi Centrifuge (VARISPIN 4, NOVAPRO Co., Ltd., Seoul, Republic of Korea). After
centrifugation, 1 mL of the acetonitrile phase was transferred into a separate centrifuge tube
containing 150 mg of MgSO4 and 25 mg of primary-secondary amine (PSA) to remove polar
organic acids, some sugars, and lipids. The tube was sealed, shaken vigorously by hand for
30 s, and centrifuged at 4000 rpm for 5 min using a Microliter and Hematocrit Centrifuge
(NF 480, NÜVE SANAYİ MALZEMELERİ İMALAT VE TİCARET A.Ş, Ankara, Turkey).
The residue was reconstituted with 0.5 mL of acetonitrile. Each final extract was then
filtered through a 0.2 µm membrane filter into a 2 mL amber glass vial. These vials were
stored at −20 ◦C until LC-MS/MS analysis.

2.3.2. LC-MS/MS Analysis

The LC–MS/MS system consisted of a 1290 vialsampler (G7129B, Agilent, Santa
Clara, CA, USA), a 1290 high-speed pump (G7129A, Agilent, Santa Clara, CA, USA),
and a 1290 MCT detector (G7166B, Agilent, Santa Clara, CA, USA). Separation was car-
ried out using a Phenomenex Luna C18(2) column (150 mm × 2.00 mm ID, particle size
5 µm). The eluents were water containing 0.1% formic acid and 5 mM ammonium acetate
(CH3CO2NH4) (A) and methanol containing 0.1% formic acid and 5 mM CH3CO2NH4
(B). The flow rate was set at 0.3 mL min−1. The autosampler and column temperatures
were maintained at 4 and 40 ◦C, respectively, with a 2 µL injection volume. Detection was
carried out using Agilent Jet Stream electrospray ionization (ESI) in positive mode. The
capillary voltage ranged from 3200 to 3800 V, nebulizer pressure was set at 45 psi, sheath
gas temperature at 400 ◦C with a sheath gas flow of 12 L min−1, and gas temperature at
300 ◦C with a gas flow of 3 L min−1. Collision gas pressure and tube lens offset voltages
were optimized using the automated optimization procedure. The mass spectrometry
scanning method used dynamic Multiple Reaction Monitoring (MRM), and the analysis
was performed in triplicate. Standard ATR for LC-MS/MS analysis (with a purity > 99%)
was acquired from CPAchem Ltd. (Bogomilovo, Bulgaria).

2.4. Quantification of Pigments

The washed leaf samples were dried in a shaded, well-ventilated room at a temperature
of 22–24 ◦C before conducting the pigment analysis.

2.4.1. Chlorophyll and Carotenoids

Chlorophyll content was measured calorimetrically according to Pérez-Patricio et al. [32]
and Song et al. [33] with slight modifications. Lettuce leaves were randomly selected, and
0.5 g of fresh sample was ground under low light conditions before being homogenized
with 10 mL of acetone for 1 min. The suspension was then incubated in the dark in a
refrigerator (7 ± 1 ◦C) for 30 min. After 30 min, the samples were filtered using Whatman
paper No. 4 under vacuum in a Büchner funnel (Glassco Laboratory Equipments Pvt.
Ltd., Haryana, India). Absorbance readings were taken at wavelengths of 663 nm (A663),
645 nm (A645), and 440 nm (A440) using a Cary 60 UV-Vis spectrophotometer (Agilent
Technologies, Santa Clara, CA, USA). The measurement was performed in triplicate and
the values obtained were used in Equations (1)–(4) to estimate photosynthetic pigments.

Chlorophyll a
(

mg g−1
)
= (((12.7 × A663)− (2.69 × A645) )× V

)
/W (1)



Agronomy 2024, 14, 814 6 of 21

Chlorophyll b
(

mg g−1
)
= (((22.9 × A645)− (4.86 × A663))× V)/W (2)

Total chlorophyll
(

mg g−1
)
= (((8.0 × A663) + (20.20 × A645))× V)/W (3)

Carotenoids
(

mg g−1
)
= (((4.70 × A440)− (0.27 × Total chlorophyll))× V)/W (4)

where V is the volume of extract solution (mL) and W is weight of sample (g).

2.4.2. Anthocyanin

The total anthocyanin content was determined following the method outlined by
Islam et al. [34] with slight modifications. Approximately 1 g of fresh sample was ground
under low light conditions and then extracted for 24 h at 4 ◦C in the dark. Two solvents
were used for extraction: a solution of 95% ethanol with 1.5 mol·L−1 HCl (85:15, v v−1)
and 95% ethanol alone. The suspension was left to stand in the dark at a refrigeration
temperature of 7 ± 1 ◦C for 24 h. After this period, the samples were filtered using
Whatman paper No. 4 under vacuum in a Buchner funnel (Glassco Laboratory Equipments
Pvt. Ltd., Haryana, India). Absorbance readings were taken at 530 nm (A530) using a Cary
60 UV-Vis spectrophotometer. The anthocyanin content was calculated using the following
Equation (5):

Anthocynain
(

mg g−1
)
= (A530 × V)/(W × 98.2) (5)

where V is the volume of extract solution (mL), W is weight of sample (g), and 98.2 is the
factor of molar absorption value for the acid-ethanol solvent.

2.5. Acquision of Spectral Data in the Field Using UAVs and Image Processing

The aerial survey for this research utilized a DJI Inspire 2 UAV (SZ DJI Technology,
Shenzhen, China) with a Micasense Altum multispectral sensor (AgEagle Aerial Systems
Inc., Wichita, KS, USA), specifically designed for capturing detailed vegetative indices
across a range of wavelengths. The sensor includes channels for blue (475 nm), green
(560 nm), red (668 nm), red edge (717 nm), and NIR (840 nm), along with an integrated
Downwelling Light Sensor (DLS 2) for real-time light calibration. The sensor was securely
mounted on the UAV to ensure accurate compensation for ambient light variations and to
minimize environmental noise in the captured imagery. To standardize lighting conditions
and maximize data consistency, data collection was meticulously scheduled around solar
noon (±1 h). Flight missions were automated and managed using Pix4DCapture software
Version 4.11.0 (Pix4D, Prilly, Switzerland), ensuring a controlled and repeatable flight path
from takeoff to landing. The specified flight parameters included a camera angle of 90◦,
forward and side image overlaps of 90% [35], and an operational altitude of 20 m, resulting
in a Ground Sample Distance (GSD) of 0.41 cm pixel−1. This high resolution is crucial for
detailed analysis and ortho-mosaic mapping of the surveyed area. Following the flight,
the collected image dataset underwent processing using Agisoft Metashape Version 2.1.1
(Agisoft LLC, St. Petersburg, Russia). This processing step converted the raw spectral data
into high-fidelity ortho-mosaics, forming the foundation for subsequent VI calculations.
Details of VIs used for remote assessment and monitoring of pigment changes in Red
Cos lettuce due to ATR are given in Table 1. In this study, the flight took place during a
day with approximately 12 h and 40 min of daylight, providing a significant window for
natural light. However, varying shadows and lighting intensities were expected due to
the sun’s position. Weather conditions were characterized by variability, with the region
experiencing a wide temperature range during the month (ranging from a high of 40.6 ◦C
to a low of 22.8 ◦C). On the specific day of the flight, clear skies were observed.
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Table 1. Spectral vegetation indices (VIs), equation, and resources.

Vegetation Indices Synonym Description Equation Reference

Anthocyanin Reflectance Index ARI
Measures the levels of anthocyanin content,
which can indicate stress responses or
senescence in plants.

ARI = 1
Green − 1

Red edge [36]

Anthocyanin Reflectance Index 2 ARI 2
Measures the levels of anthocyanin content,
which can indicate stress responses or
senescence in plants.

ARI 2 = NIR × ( 1
Green − 1

Red edge ) [36]

Carotenoid Reflectance Index CRI
Measures the concentration of carotenoids,
pigments that play a crucial role in plant health
and stress tolerance.

CRI = 1
Blue −

1
Green [36]

Blue Normalized Difference
Vegetation Index BNDVI

Assesses whether the target being observed
contains live green vegetation, indicating
biomass and health, but uses blue light for better
detection of vegetation in areas with high soil
background reflectance.

BNDVI = Nir−Blue
Nir+Blue [37]

Enhanced Vegetation Index EVI

Optimized to enhance the vegetation signal with
improved sensitivity in high biomass regions,
and to facilitate better vegetation monitoring by
de-coupling the canopy background signal and
reducing atmospheric influences.

EVI = 2.5 × (
Red edge−Red

Red edge+6×Red−7.5×Green+1 ) [38]

Green Normalized Difference
Vegetation Index GNDVI

Utilizes green wavelengths and is sensitive to
chlorophyll concentration, indicating plant
health and photosynthetic capacity.

GNDVI = Nir−Green
Nir+Green [39]

Leaf Chlorophyll Index LCI
Estimates the chlorophyll content of leaves,
which is an indicator of plant health and
nitrogen content.

LCI = Nir−Red edge
Red edge+Red

[40]

Modified Chlorophyll Absorption in
Reflectance Index MCARI

Designed to monitor subtle changes in
chlorophyll content, making it useful for
assessing vegetation health and stress.

MCARI = (Red edge − Red)
−0.2 × (Red edge
−Green)× (

Red edge
Red )

[41]



Agronomy 2024, 14, 814 8 of 21

Table 1. Cont.

Vegetation Indices Synonym Description Equation Reference

Normalized Difference Red Edge NDRE
Measures the chlorophyll content in plants,
especially useful in later stages of crop growth
when the NDVI becomes less sensitive.

NDRE =
Nir−Red edge
Nir+Red edge

[42]

Normalized Difference
Vegetation Index NDVI

Assesses whether the target being observed
contains live green vegetation or not, indicating
biomass and health.

NDVI = Nir−Red
Nir+Red [43]

Soil Adjusted Vegetation Index SAVI Corrects the NDVI for the influence of soil
brightness when vegetation cover is low. SAVI = (1 + L)× (Nir−Red)

(Nir+Red+L)
[44]
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2.6. Data Analysis

Statistical analysis was performed using the General Linear Model Program (GLM).
To discern significant differences among treatment means at a 5% probability level, Fisher’s
least significant difference (LSD) was applied through the SAS program (version 9.4, SAS,
2002). The dataset, sourced from an Excel file, underwent preliminary preprocessing to
rectify any missing values and validate the suitability of data types for subsequent statistical
examination. Pearson correlation coefficient analysis was complemented by descriptive
statistical analysis, including the calculation of mean, median, and standard deviation, us-
ing Minitab 18 software (Minitab LLC, State College, PA, USA). These descriptive statistics
provided a robust overview of the dataset’s central tendency and variability. They served
as foundational metrics to understand the distribution and spread of the multispectral
indices and associated environmental and biological variables collected via UAV-based
spectral imaging. The integration of these statistical analyses was critical for preprocessing
the data, ensuring accurate interpretation of the correlation coefficients.

The study utilized OpenAI’s ChatGPT-4 to visualize the correlation matrix, generating
informative heatmaps. Python, along with Pandas, NumPy, and Seaborn, was employed
for data manipulation and visualization. Preprocessing of the dataset ensured handling
of missing values and correct data types for correlation analysis. Pearson correlation
coefficients were computed to quantify linear associations between variables. Details of
the heatmap generation procedure are provided in Appendix A. While OpenAI did not
directly generate the heatmap, its capabilities were leveraged to enhance the analysis by
providing natural language descriptions, highlighting key correlations, and facilitating
further dataset exploration, including outlier identification. Each axis of the heatmap
corresponded to a different variable, including UVA-derived spectral indices and classes of
pigments. The color of each cell indicated the strength and direction of the correlation, with
red shades indicating positive correlations and blue shades indicating negative correlations.
Light-colored cells represented correlations close to zero, indicating little to no linear
relationship. The numerical values in each cell, ranging from −1 to +1, quantified the
strength of the correlation, with values closer to +1 or −1 indicating stronger positive or
negative correlations, respectively. The diagonal line from the top left to the bottom right of
the heatmap represented perfect positive correlation (a coefficient of 1), where each variable
perfectly correlated with itself.

3. Results
3.1. Atrazine Uptake in Red Cos Lettuce

During the 45-day period, the concentration of ATR in lettuce leaves correspondingly
increased with the initial ATR concentration applied to the soil before planting (Figure 2).
Plot ATR4 showed a significantly higher (p < 0.05) level of ATR uptake compared to other
plots, while the uptake levels between ATR2 and ATR3 were not significantly different.
Specifically, the ATR concentration in plot ATR4 surged by an impressive 9.38 times com-
pared to plot ATR0. Similarly, plot ATR3 experienced a significant 6.80-fold increase,
followed by plot ATR2 with a 6.24-fold increase, and plot ATR1 with a 4.51-fold increase
over plot ATR0.

3.2. Atrazine’s Impact on Leaf Pigment Levels

The impact of ATR application on the leaf pigments of Red Cos lettuce is depicted in
Figure 3a–d. It is evident that the pigment levels decreased significantly (p < 0.05) with
increasing ATR concentrations in the soils. Specifically, the chlorophyll a level in plot
ATR4 decreased significantly (p < 0.05) by 87.5% compared to plot ATR0 (Figure 3a). A
similar trend was observed for chlorophyll b (Figure 3b), carotenoids (Figure 3c), and
anthocyanins (Figure 3d) with reductions of 69.0%, 81.6%, and 61.1%, respectively. The
levels of chlorophyll a, chlorophyll b, and carotenoids in lettuce leaves in plot ATR4 were
not significantly different from those in plot ATR2 and plot ATR3, while no significant
difference was found between plot ATR3 and ATR4 for anthocyanin content. Regarding
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the correlation between pigment levels in lettuce and ATR uptake, as displayed in Figure 4
and Table 2, a linear correlation was observed with coefficients of determination (R2) > 0.84.
This suggests that ATR uptake by plants can directly influence pigment levels.
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Figure 2. Atrazine (ATR) concentration in Red Cos lettuce of each plot. a−d signify significant
differences according to the LSD test (p < 0.05). ATR0 = no ATR application; ATR1 = ATR 75 µg kg−1 in
soil, ATR2 = ATR 150 µg kg−1 in soil; ATR3 = ATR 225 µg kg−1 in soil; and ATR4 = ATR 300 µg kg−1

in soil.

Table 2. Correlation between level of atrazine (ATR) uptake and level of pigments in Red Cos lettuce.

Pigment Equation R2

Chlorophyll a [Chlorophyll a] = −0.0032 [ATR] + 0.1388 0.8713
Chlorophyll b [Chlorophyll b] = −0.0016 [ATR] + 0.0889 0.8817
Carotenoids [Carotenoids] = −0.0046 [ATR] + 0.2119 0.8457
Anthocyanins [Anthocyanins] = −0.0002 [ATR] + 0.0161 0.8833

3.3. Insights from Heatmap Analysis

The spectral reflectance of Red Cos lettuce captured by UAVs, ranging from
475 to 842 nm, in response to varying ATR concentrations is illustrated in Figure 5. The
data indicate distinct reflectance patterns corresponding to different ATR concentrations.
Lettuce samples subjected to higher ATR concentrations exhibited higher reflectance levels
between 475 and 668 nm compared to those with lower or no ATR application. Conversely,
in the range of 717 to 842 nm, lower reflectance was observed in samples with higher
ATR concentrations.

The impact of ATR application on pigments, as demonstrated by various vegetation
indices, is illustrated in Figure 6. Elevated orange levels in the ARI images suggest increased
anthocyanin concentrations in plant tissues. Likewise, heightened green levels in CRI,
purple in BNDVI, red in GNDVI, dark green in NDRE, and blue in NDVI indicate a higher
concentration of chlorophyll and other pigments in Red Cos lettuce.
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Figure 3. Content of chlorophyll a (a); chlorophyll b (b); carotenoids (c); and anthocyanins (d) in Red
Cos lettuce as a result of atrazine (ATR) application. a−c signify significant differences according to
the LSD test (p < 0.05). ATR0 = no ATR application; ATR1 = ATR 75 µg kg−1 in soil, ATR2 = ATR
150 µg kg−1 in soil; ATR3 = ATR 225 µg kg−1 in soil; and ATR4 = ATR 300 µg kg−1 in soil.

To identify UAV-derived multispectral indices that are strongly correlated with the
pigment classes of Red Cos lettuce affected by ATR application, we conducted a heatmap
analysis (Figure 7). The results revealed a significant negative correlation between ATR
and all pigment classes, with coefficients of −0.93 for chlorophyll a, −0.94 for chlorophyll
b, −0.92 for carotenoids, and −0.94 for anthocyanins. Among the indices, EVI showed
the strongest negative correlation with chlorophyll a and chlorophyll b, with coefficients
of −0.85 each. Conversely, NDVI, GNDVI, BNDVI, SAVI, ARI 2, MCARI, ARI, and LCI
demonstrated strong positive correlations with these pigments, with coefficients greater
than 0.75. A similar trend was observed for carotenoids. Interestingly, the carotenoid-
sensitive index CRI, often used for measuring stressed vegetation, showed a low positive
correlation (0.34) with carotenoids after ATR application. Regarding anthocyanins, EVI
exhibited the strongest negative correlation, but with a coefficient of −0.75, which was
lower than those for chlorophyll and carotenoids. Only BNDVI, NDVI, GNDVI, SAVI,
ARI 2, and LCI exhibited strong positive correlations with anthocyanins, with coefficients
greater than 0.75.
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4. Discussion
4.1. Atrazine Uptake Dynamics and Pigment Changes in Red Cos Lettuce under Soil Application

The high levels of ATR found in lettuce samples corresponded to a decrease in ATR
levels in soil samples (Figure 2), indicating a correlation between soil and plant uptake.
This behavior is primarily attributed to pesticide movement in soils through root uptake
mechanisms, as described by Miller et al. [45]. Phloem transport is crucial for distributing
pesticides within plant tissues, facilitating their movement from leaves to roots, fruits, and
buds, as highlighted by Liu et al. [46] and Chen et al. [47]. Briggs et al. [48] noted that the
translocation of organic compounds is influenced by their lipophilic properties, such as the
octanol–water partition coefficient (KOW). ATR, with a log KOW of 2.56 at 25 ◦C, follows
similar patterns. This finding aligns with Roeth and Lavy [49], who reported that ATR
uptake by corn and sorghum was directly proportional to soil concentration. The detection
of ATR in lettuce samples from plot ATR0 may be linked to previous ATR applications by
farmers, who occasionally used it for weed control in the soil. Despite allowing the soil
samples to remain undisturbed for 2–3 months before the experiment, trace amounts of
ATR residues were still detectable in the soil. It is worth noting that pesticide uptake by
plants can affect their metabolism, subsequently influencing the quantity and quality of the
plants [50,51], including pigments.

In this study, the decrease in chlorophyll a and chlorophyll b levels with increasing
ATR uptake in plants (Figures 3 and 4) is linked to ATR’s ability to induce the forma-
tion of reactive oxygen species (ROS). These ROS molecules degrade chlorophyll a and
b, crucial components for photosynthesis. ATR disrupts the electron transfer process in
photosynthesis by competitively blocking the electron acceptor protein, photosystem II
(PS II) [52,53]. This action inhibits the flow of electrons in chloroplasts, leading to reduced
adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate hydrogen
(NADPH) production, essential for carbon dioxide (CO2) fixation [54,55]. Consequently,
this disruption causes an accumulation of short-lived singlet chlorophyll, some of which
transforms into more reactive triplet chlorophylls. These excess triplet chlorophylls re-
act with oxygen, producing singlet oxygen. Both triplet chlorophylls and singlet oxygen
then extract hydrogen from unsaturated lipids, initiating lipid peroxidation [56–58]. The
rapid and prolonged production of ROS overwhelms the quenching capacity of photo-
protective components near PS II [59,60], such as carotenoids, xanthophylls, tocopherol,
and flavonoids. This imbalance leads to severe oxidative damage to proteins, lipids, and
pigments, ultimately resulting in cell membrane destruction and plant death [61]. Similar
observations were reported in studies by Bai et al. [52], Wang et al. [58], and Zhu et al. [55].
Changes in chlorophyll content are prominent indicators of plant health, reflecting stress
responses, nutrient deficiencies, and overall physiological condition [62,63]. Monitoring
chlorophyll levels aids in early issue identification and intervention to maintain or improve
plant health.

Similar to chlorophyll, herbicides such as ATR can indirectly impact carotenoids by
disrupting chloroplast electron transport, leading to the breakdown of a pre-existing photo-
protection mechanism. This disruption occurs through the inhibition of cyclic electron flow
around PS I, particularly affecting the functioning of the reaction center, P700. Carotenoids,
notably β-carotene, associated with PS I, play a crucial role in dissipating excess light energy,
thus essential for plant protection [64]. Ridley [65] demonstrated that herbicides inhibiting
cyclic electron flow around PS I can induce the photo-destruction of carotenoids. This
disruption not only affects carotenoid synthesis but also inhibits their protective function
indirectly, which is crucial for maintaining the photo-protection mechanism in plants.

In contrast to these findings, some studies suggest different outcomes regarding
anthocyanins. When plants are stressed by herbicide applications, they often undergo
metabolic and physiological changes, including alterations in shoot/root biomass, reduced
photosynthesis and nutrient uptake, and inhibited flowering and seed formation, ultimately
reducing plant growth and productivity [66]. Excessive ROS levels can disrupt cellular
redox homeostasis, leading to membrane instability, nucleic acid and protein damage,
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reduced photosynthetic efficiency, and potentially plant death [67]. In response to this stress,
plants have developed mechanisms to scavenge ROS, including upregulating anthocyanin-
related genes and inducing anthocyanin synthesis, which contribute to cellular homeostasis
and plant adaptation to stress [68–70]. The decrease in anthocyanin levels observed in
this study may be due to plants prioritizing other pathways over anthocyanin production
under stress conditions. This prioritization could result in a decrease in anthocyanin levels,
as resources are allocated to other stress response mechanisms. However, it is essential to
consider other factors such as direct inhibition of anthocyanin biosynthesis or changes in
resource allocation, as these could also contribute to the observed results.

4.2. Capabilities of Heatmap Analysis in Predicting Pigment Changes

When analyzing the spectral reflectance of Red Cos lettuce in response to varying ATR
concentrations, higher ATR levels were associated with increased reflectance levels between
475 and 668 nm, encompassing the visible light spectrum crucial for photosynthesis and
pigment absorption [71]. Conversely, lower reflectance was observed in the 717 to 842 nm
range, falling within the red edge and NIR region. NIR reflectance is influenced by leaf
structure, water content, and various photo pigments such as anthocyanins, xanthophylls,
carotenoids, and chlorophyll [72,73]. These changes in reflectance indicate that ATR appli-
cation affects the spectral reflectance of Red Cos lettuce, particularly in these wavelength
ranges, suggesting potential impacts on plant health and physiology. Hallik et al. [74] noted
that the spectral region most effective for predicting chlorophyll a and other pigments
is located at wavelengths much longer than the absorption of the PS I reaction center at
700 nm. This region is believed to be absorbed by specific pigment–protein complexes
known as “far-red chlorophylls” [75,76], which can transfer light energy to both PS II and
PS I [77,78]. While the presence of such pigments has been demonstrated and studied
in plant physiology, this knowledge has not yet been widely applied in remote sensing
and ecosystem-level research. In remote sensing studies of leaf optics, the NIR plateau
is traditionally regarded as a reference region unaffected by pigments. However, subtle
changes in leaf transmittance at 820 nm are commonly measured to assess PS I performance
in plant physiology studies [79]. PS I complexes have absorption and emission bands at
lower energies than the reaction center (700 nm) [80]. Some studies suggest that extremely
long-wavelength chlorophylls may also be present in the PS II antenna system [78,81].

Due to ATR application altering the spectral reflectance of lettuce samples, its impact
on pigments can be evaluated using various vegetation indices (Figure 6). The ARI is
particularly sensitive to anthocyanin pigments [36], responsible for red, purple, and blue
colors in plants. Higher orange levels in the ARI images may indicate increased anthocyanin
concentrations in plant tissues. Similarly, the CRI is influenced by carotenoid content [36],
with higher green levels in the CRI images indicating greater carotenoid concentrations.
Moreover, indices like the BNDVI, GNDVI, NDRE, and NDVI are mainly affected by
chlorophyll [37,42,43]. Elevated pink, red, dark green, and blue levels in the images of
these indices, respectively, could suggest a higher concentration of chlorophyll pigments.
This relationship is rooted in the fact that these indices are influenced by the total amount
of chlorophyll and other pigments present in plant leaves. Since different pigments absorb
light in distinct parts of the spectrum, an increase in color levels could indicate a higher
overall concentration of pigments.

When heatmap analysis was employed to elucidate the correlation between vegetation
indices and ATR or pigment classes (Figure 7), a notable negative correlation with ATR
was observed across all pigment classes. These strong negative correlations align with
previous findings, suggesting that higher levels of ATR corresponded to lower pigment
concentrations. Among the indices, EVI exhibited the most robust negative correlation
with all pigment classes. EVI is a critical indicator of vegetation health and stress, directly
linked to factors such as soil, water, environment, and management practices [82,83]. For
example, in a study by Parida and Kumari [84], EVI showed a strong association with
foliage pigments like leaf chlorophyll and nitrogen levels, suggesting its sensitivity to
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changes in plant pigment content. Other studies have also highlighted the effectiveness
of EVI in capturing variations in plant pigments, emphasizing its utility as a tool for
monitoring plant health and physiological status [82,85,86].

NDVI, GNDVI, BNDVI, SAVI, ARI 2, MCARI, ARI, and LCI demonstrated strong
positive correlations with chlorophyll a, chlorophyll b, and carotenoids. On the other hand,
only BNDVI, NDVI, GNDVI, SAVI, ARI 2, and LCI exhibited strong positive correlations
with anthocyanins. The robust relationship between pigments and NDVI, GNDVI, and
BNDVI can be attributed to the way plants absorb and reflect electromagnetic radiation.
These indices rely on the difference in reflectance between NIR and visible red, green,
or blue light, which is influenced by the presence of chlorophyll, α-carotene, β-carotene,
and water in plant tissues [87,88]. According to Haboudane et al. [41], indices compris-
ing red-edge and NIR bands outperformed others in predicting crop chlorophyll content.
Kopačková-Strnadová [28] reported a slightly higher correlation between NDVI and chloro-
phyll content, while NDVI red edge showed the highest correlation with carotenoid content.
However, NDVI is highly sensitive to changes in spatial heterogeneity within a field and
tends to saturate when the local biological coverage reaches medium-to-high levels [89].
A weak correlation between CRI and carotenoids could be explained by a discrepancy in
the wavelength ranges used in this study. While the study employed a center wavelength
range of 475 nm for blue and 560 nm for green, the actual CRI equation involves reciprocal
reflectance at 510 and 550 nm. Although the bandwidth was correct, this misalignment
could lead to distorted readings in that specific wavelength range, potentially affecting the
accuracy of CRI in assessing carotenoid levels in the Red Cos lettuce samples.

These findings suggest that different vegetation indices may be more adept at detecting
specific changes in pigment concentrations. This highlights the critical importance of
selecting the most suitable index for precise pigment analysis. Each index is like a unique
tool in a scientist’s toolbox, with its own strengths and weaknesses in detecting specific
pigment variations. Understanding these nuances allows researchers to choose the most
appropriate index for their specific study, ensuring accurate and meaningful results in
pigment analysis.

5. Conclusions

The study showed that increasing ATR application in soil led to higher uptake by
Red Cos lettuce, causing significant reductions in chlorophyll a, chlorophyll b, carotenoids,
and anthocyanins, especially in plots with higher ATR levels. A direct linear relationship
was found between ATR uptake and pigment levels, indicating the herbicide’s direct
impact on pigment concentrations. From heatmap analysis, UAV-derived multispectral
indices demonstrated strong correlations with the affected pigment classes, suggesting
their potential for predicting pigment concentrations in lettuce. For future research, an
innovative approach could involve integrating hyperspectral imaging techniques with
UAV technology to conduct a more detailed analysis of pigment changes in Red Cos
lettuce. This integration would help identify specific wavelengths associated with different
pigments, enabling more precise monitoring and assessment of plant health and stress
responses. Additionally, applying machine learning algorithms could enhance the analysis
of hyperspectral data, providing valuable insights into the interactions between ATR uptake
and pigment concentrations. Collaborative efforts among researchers, agronomists, and
technology developers will be crucial for advancing these innovative approaches to enhance
crop management practices and promote healthy agricultural products.
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Appendix A. Procedure for Heatmap Generation

In this study, an extensive correlation analysis was conducted to explore the rela-
tionships among various environmental variables, including atrazine concentration, plant
pigments (chlorophyll a, chlorophyll b, carotenoids, and anthocyanins), and multiple mul-
tispectral indices. The dataset, sourced from an Excel file, underwent initial preprocessing
to address missing values and validate data types for subsequent statistical examination.
Pearson correlation coefficients were calculated to quantify linear associations between
each pair of variables, and the results were organized into a correlation matrix.

To visually represent the strength and polarity of these correlations, a heatmap was
utilized. The color intensities in the heatmap directly reflected the magnitudes of the
correlations, with a legend providing interpretative accuracy. A diverging color scheme
was used to clearly differentiate positive from negative correlations, with particularly
notable correlations being accentuated. The finalized correlation matrix was saved as a CSV
file, and the heatmap was rendered into a high-resolution JPEG image, ensuring clarity
for analysis and suitability for publication. Python libraries such as Pandas, NumPy, and
Seaborn were essential for data processing, statistical computation, and generating visual
aids, ensuring the analysis was both rigorous and replicable.

1. Data Preparation:

• Load the dataset from the Excel file, including variables like atrazine concentra-
tion, plant pigments, and multispectral indices;

• Perform necessary preprocessing steps, such as handling missing values and
confirming appropriate data types for correlation analysis.

2. Correlation Analysis:

• Calculate Pearson correlation coefficients between all pairs of variables;
• Organize correlation coefficients into a matrix format, with rows and columns

corresponding to variables.

3. Heatmap Visualization:

• Use a heatmap to visualize the correlation matrix, with color intensity indicating
the strength and direction of correlations;

• Include clear labels for variables along each axis;
• Apply a diverging colormap to distinguish positive from negative correlations,

and highlight significant correlations as needed.
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28. Kopačková-Strnadová, V.; Koucká, L.; Jelének, J.; Lhotáková, Z.; Oulehle, F. Canopy top, height and photosynthetic pigment
estimation using parrot sequoia multispectral imagery and the unmanned aerial vehicle (UAV). Remote Sens. 2021, 13, 705.
[CrossRef]

29. Cao, R.; Chen, Y.; Shen, M.; Chen, J.; Zhou, J.; Wang, C.; Yang, W. A simple method to improve the quality of NDVI time-series
data by integrating spatiotemporal information with the Savitzky-Golay filter. Remote Sens. Environ. 2018, 217, 244–257. [CrossRef]

30. Liu, Y.; Liu, S.; Li, J.; Guo, X.; Wang, S.; Lu, J. Estimating biomass of winter oilseed rape using vegetation indices and texture
metrics derived from UAV multispectral images. Comput. Electron. Agric. 2019, 166, 81–91. [CrossRef]

31. Zeng, Y.; Hao, D.; Huete, A.; Dechant, B.; Berry, J.; Chen, J.M.; Joiner, J.; Frankenberg, C.; Bond-Lamberty, B.; Ryu, Y.; et al. Optical
vegetation indices for monitoring terrestrial ecosystems globally. Nat. Rev. Earth Environ. 2022, 3, 477–493. [CrossRef]

32. Pérez-Patricio, M.; Camas-Anzueto, J.L.; Sanchez-Alegría, A.; Aguilar-González, A.; Gutiérrez-Miceli, F.; Escobar-Gómez, E.;
Voisin, Y.; Rios Rojas, C.; Grajales-Coutiño, R. Optical method for estimating the chlorophyll contents in plant leaves. Sensors
2018, 18, 650. [CrossRef]

33. Song, J.; Huang, H.; Song, S.; Zhang, Y.; Su, W.; Liu, H. Nutritional quality, mineral and antioxidant content in lettuce affected by
interaction of light intensity and nutrient solution concentration. Sci. Rep. 2020, 10, 2796. [CrossRef]

34. Islam, M.Z.; Lee, Y.-T.; Mele, M.A.; Choi, I.-L.; Kang, H.-M. The effect of phosphorus and root zone temperature on anthocyanin
of red romaine lettuce. Agronomy 2019, 9, 47. [CrossRef]

35. Elhadary, A.; Rabah, M.; Ghanim, E.; Mohie, R.; Taha, A. The influence of flight height and overlap on UAV imagery over
featureless surfaces and constructing formulas predicting the geometrical accuracy. NRIAG J. Astron. Geophys. 2022, 11, 210–223.
[CrossRef]

36. Gitelson, A.; Merzlyak, M.; Chivkunova, O.B. Optical properties and nondestructive estimation of anthocyanin content in plant
leaves. Photochem. Photobiol. 2001, 71, 38–45. [CrossRef]

37. Banerjee, B.P.; Sharma, V.; Spangenberg, G.; Kant, S. Machine learning regression analysis for estimation of crop emergence using
multispectral UAV imagery. Remote Sens. 2021, 13, 2918. [CrossRef]

38. Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance
of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [CrossRef]

39. Gitelson, A.A.; Merzlyak, M.N. Remote sensing of chlorophyll concentration in higher plant leaves. Adv. Space Res. 1998, 22,
689–692. [CrossRef]

40. Datt, B. Remote sensing of water content in eucalyptus leaves. Aust. J. Bot. 1999, 47, 909–923. [CrossRef]
41. Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for

predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ.
2004, 90, 337–352. [CrossRef]

42. Thompson, C.N.; Guo, W.; Sharma, B.; Ritchie, G.L. Using normalized difference red edge index to assess maturity in cotton. Crop
Sci. 2019, 59, 2167–2177. [CrossRef]

43. Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ.
1997, 62, 241–252. [CrossRef]

44. Huete, A. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [CrossRef]
45. Miller, E.L.; Nason, S.L.; Karthikeyan, K.G.; Pedersen, J.A. Root uptake of pharmaceuticals and personal care product ingredients.

Environ. Sci. Technol. 2016, 50, 525–541. [CrossRef] [PubMed]
46. Liu, J.; Zhou, B.; Zhang, H.; Ma, J.; Mu, B.; Zhang, W. A novel biochar modified by chitosan-Fe/S for tetracycline adsorption and

studies on site energy distribution. Bioresour. Technol. 2019, 294, 122152. [CrossRef] [PubMed]
47. Chen, X.; Duan, M.; Zhou, B.; Cui, L. Effects of biochar nanoparticles as a soil amendment on the structure and hydraulic

characteristics of a sandy loam soil. Soil Use Manag. 2021, 38, 836–849. [CrossRef]
48. Briggs, G.G.; Bromilow, R.H.; Evans, A.A. Relationship between lipophilicity and root uptake and translocation of non-ionised

chemicals by barley. Pestic. Sci. 1982, 13, 495–504. [CrossRef]
49. Roeth, F.W.; Lavy, T.L. Atrazine uptake by Sudangrass, sorghum, and corn. Weed Sci. 1971, 19, 93–97. [CrossRef]
50. Kaur, H.; Kaur, R.; Singh, S.; Jagota, N.; Sharma, A. Chapter 4—Pesticide biology in plants: Plant uptake, translocation, and

accumulation. In Pesticides in the Environment; Sharma, A., Kumar, V., Zheng, B., Eds.; Elsevier: Amsterdam, The Netherlands,
2024; pp. 67–86. [CrossRef]

51. Sandanayake, S.; Hettithanthri, O.; Buddhinie, P.K.C.; Vithanage, M. Plant uptake of pesticide residues from agricultural soils. In
The Handbook of Environmental Chemistry; Rodríguez-Cruz, M.S., Sánchez-Martín, M.J., Eds.; Springer: Cham, Switerzerland, 2021;
Volume 113. [CrossRef]

52. Bai, X.; Sun, C.; Xie, J.; Song, H.; Zhu, Q.; Su, Y.; Qian, H.; Fu, Z. Effects of atrazine on photosynthesis and defense response and
the underlying mechanisms in Phaeodactylum tricornutum. Environ. Sci. Pollut. Res. 2015, 22, 17499–17507. [CrossRef]

53. Yang, L.; Zhang, Y. Effects of atrazine and its two major derivatives on the photosynthetic physiology and carbon sequestration
potential of a marine diatom. Ecotoxicol. Environ. Saf. 2020, 205, 111359. [CrossRef]

54. Qian, H.F.; Sheng, G.D.; Liu, W.P.; Lu, Y.; Fu, Z.W. Inhibitory effects of atrazine on Chlorella vulgaris as assessed by real-time
polymerase chain reaction. Environ. Toxicol. Chem. 2008, 27, 182–187. [CrossRef]

55. Zhu, J.; PATRoldt, W.L.; Radwan, O.; Tranel, P.J.; Clough, S.J. Effects of photosystem-II interfering herbicides atrazine and
bentazon on the soybean transcriptome. Plant Genome 2009, 2, 191–205. [CrossRef]

https://doi.org/10.3390/rs13040705
https://doi.org/10.1016/j.rse.2018.08.022
https://doi.org/10.1016/j.compag.2019.105026
https://doi.org/10.1038/s43017-022-00298-5
https://doi.org/10.3390/s18020650
https://doi.org/10.1038/s41598-020-59574-3
https://doi.org/10.3390/agronomy9020047
https://doi.org/10.1080/20909977.2022.2057148
https://doi.org/10.1562/0031-8655(2001)074%3C0038:OPANEO%3E2.0.CO;2
https://doi.org/10.3390/rs13152918
https://doi.org/10.1016/S0034-4257(02)00096-2
https://doi.org/10.1016/S0273-1177(97)01133-2
https://doi.org/10.1071/BT98042
https://doi.org/10.1016/j.rse.2003.12.013
https://doi.org/10.2135/cropsci2019.04.0227
https://doi.org/10.1016/S0034-4257(97)00104-1
https://doi.org/10.1016/0034-4257(88)90106-X
https://doi.org/10.1021/acs.est.5b01546
https://www.ncbi.nlm.nih.gov/pubmed/26619126
https://doi.org/10.1016/j.biortech.2019.122152
https://www.ncbi.nlm.nih.gov/pubmed/31557651
https://doi.org/10.1111/sum.12740
https://doi.org/10.1002/ps.2780130506
https://doi.org/10.1017/S0043174500048372
https://doi.org/10.1016/B978-0-323-99427-9.00004-5
https://doi.org/10.1007/698_2021_806
https://doi.org/10.1007/s11356-015-4923-7
https://doi.org/10.1016/j.ecoenv.2020.111359
https://doi.org/10.1897/07-163.1
https://doi.org/10.3835/plantgenome2009.02.0010


Agronomy 2024, 14, 814 20 of 21

56. Krieger-Liszkay, A.; Fufezan, C.; Trebst, A. Singlet oxygen production in photosystem II and related protection mechanism.
Photosynth. Res. 2008, 98, 551–564. [CrossRef] [PubMed]

57. Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism
in plants under stressful conditions. J. Bot. 2012, 2012, 217037. [CrossRef]

58. Wang, Y.; Yu, J.; Zhou, B.; Sapkota, S.; Wei, F.; Wang, Z. Atrazine and mesotrione-induced oxidative stress and impact on
antioxidant enzymes and chlorophyll content in Bermudagrass. Planta Daninha 2018, 36, e018172227. [CrossRef]

59. Loll, B.; Kern, J.; Saenger, W.; Zouni, A.; Biesiadka, J. Towards complete cofactor arrangement in the 3.0 Å resolution structure of
photosystem II. Nature 2005, 438, 1040–1044. [CrossRef] [PubMed]

60. Trebst, A. Function of beta-carotene and tocopherol in photosystem II. J. Biosci. 2003, 58, 609–620. [CrossRef]
61. Xu, Z.; Mahmood, K.; Rothstein, S.J. ROS induces anthocyanin production via late biosynthetic genes and anthocyanin deficiency

confers the hypersensitivity to ROS-generating stresses in Arabidopsis. Plant Cell Physiol. 2017, 58, 1364–1377. [CrossRef]
[PubMed]

62. Li, Y.; He, N.; Hou, J.; Xu, L.; Liu, C.; Zhang, J.; Wang, Q.; Zhang, X.; Wu, X. Factors influencing leaf chlorophyll content in natural
forests at the Biome scale. Front. Ecol. Evol. 2018, 6, 64. [CrossRef]

63. Pavlovic, D.; Nikolic, B.; Durovic, S.; Waisi, H.; Andelkovic, A.; Marisavljevic, D. Chlorophyll as a measure of plant health:
Agroecological aspects. Pestic. Phytomedicine 2014, 29, 21–34. [CrossRef]

64. Sandmann, G. Bleaching herbicides: Action mechanism in carotenoid biosynthesis, structural requirements and engineering of
resistance. In Herbicide Classes in Development; Böger, P., Wakabayashi, K., Hirai, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2002.
[CrossRef]

65. Ridley, S.M. Carotenoids and herbicide action. In Carotenoid Chemistry and Biochemistry; Britton, G., Goodwin, T.W., Eds.; Elsevier:
Pergamon, UK, 1982; pp. 353–369. [CrossRef]

66. Kaur, S.; Tiwari, V.; Kumari, A.; Chaudhary, E.; Sharma, A.; Ali, U.; Garg, M. Protective and defensive role of anthocyanins under
plant abiotic and biotic stresses: An emerging application in sustainable agriculture. J. Biotechnol. 2023, 361, 12–29. [CrossRef]

67. Li, Z.; Ahammed, G.J. Plant stress response and adaptation via anthocyanins: A review. Plant Stress 2023, 10, 100230. [CrossRef]
68. Kaur, S.; Kumari, A.; Sharma, N.; Pandey, A.K.; Garg, M. Physiological and molecular response of colored wheat seedlings against

phosphate deficiency is linked to accumulation of distinct anthocyanins. Plant Physiol. Biochem. 2022, 170, 338–349. [CrossRef]
[PubMed]

69. Naing, A.H.; Kim, C.K. Abiotic stress-induced anthocyanins in plants: Their role in tolerance to abiotic stresses. Physiol. Plant.
2021, 172, 1711–1723. [CrossRef] [PubMed]

70. Khan, A.; Jalil, S.; Cao, H.; Tsago, Y.; Sunusi, M.; Chen, Z.; Shi, C.; Jin, X. The purple leaf (pl6) mutation regulates leaf color by
altering the anthocyanin and chlorophyll contents in rice. Plants 2020, 9, 1477. [CrossRef]

71. Liu, J.; van Iersel, M.W. Photosynthetic physiology of blue, green, and red light: Light intensity effects and underlying mechanisms.
Front. Plant Sci. 2021, 12, 619987. [CrossRef] [PubMed]

72. Kuska, M.T.; Behmann, J.; Mahlein, A.K. Potential of hyperspectral imaging to detect and identify the impact of chemical welfare
compounds on plant tissue. Pure Appl. Chem. 2018, 90, 1615–1624. [CrossRef]

73. Slaton, M.R.; Hunt, E.R., Jr.; Smith, W.K. Estimating near-infrared leaf reflectance from leaf structural characteristics. Am. J. Bot.
2001, 88, 278–284. [CrossRef] [PubMed]

74. Hallik, L.; Kazantsev, T.; Kuusk, A.; Galmes, J.; Tomas, M.; Niinemets, U. Generality of relationships between leaf pigment
contents and spectral vegetation indices in Mallorca (Spain). Reg. Environ. Change 2017, 17, 2097–2109. [CrossRef]

75. Melkozernov, A.N. Excitation energy transfer in photosystem I from oxygenic organisms. Photosynth. Res. 2001, 70, 129–153.
[CrossRef]

76. Gibasiewicz, K.; Szrajner, A.; Ihalainen, J.A.; Germano, M.; Dekker, J.P.; van Grondelle, R. Characterization of low-energy
chlorophylls in the PSI-LHCI supercomplex from Chlamydomonas reinhardtii. A site-selective fluorescence study. J. Phys. Chem. B
2005, 109, 21180–21186. [CrossRef]

77. Oja, V.; Bichele, I.; Hüve, K.; Rasulov, B.; Laisk, A. Reductive titration of photosystem I and differential extinction coefficient of
P700+ at 810–950 nm in leaves. Biochim. Biophys. Acta Bioenerg. 2004, 1658, 225–234. [CrossRef]

78. Pettai, H.; Oja, V.; Freiberg, A.; Laisk, A. The long-wavelength limit of plant photosynthesis. FEBS Lett. 2005, 579, 4017–4019.
[CrossRef] [PubMed]

79. Oja, V.; Eichelmann, H.; Peterson, R.B.; Rasulov, B.; Laisk, A. Deciphering the 820 nm signal: Redox state of donor side and
quantum yield of photosystem I in leaves. Photosynth. Res. 2003, 78, 1–15. [CrossRef] [PubMed]

80. Ihalainen, J.A.; Jensen, P.E.; Haldrup, A.; van Stokkum, I.H.M.; van Grondelle, R.; Scheller, H.V.; Dekker, J.P. Pigment organization
and energy transfer dynamics in isolated, photosystem I (PSI) complexes from Arabidopsis thaliana depleted of the PSI-G, PSI-K,
PSI-L, or PSI-N subunit. Biophys. J. 2002, 83, 2190–2201. [CrossRef] [PubMed]

81. Thapper, A.; Mamedov, F.; Mokvist, F.; Hammarström, L.; Styring, S. Defining the far-red limit of photosystem II in spinach. Plant
Cell 2009, 21, 2391–2401. [CrossRef] [PubMed]

82. Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms
for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [CrossRef] [PubMed]

83. Singh, N.; Parida, B.R. Environmental factors associated with seasonal variations of night-time plant canopy and soil respiration
fluxes in deciduous conifer forest, Western Himalaya, India. Trees 2019, 33, 599–613. [CrossRef]

https://doi.org/10.1007/s11120-008-9349-3
https://www.ncbi.nlm.nih.gov/pubmed/18780159
https://doi.org/10.1155/2012/217037
https://doi.org/10.1590/s0100-83582018360100146
https://doi.org/10.1038/nature04224
https://www.ncbi.nlm.nih.gov/pubmed/16355230
https://doi.org/10.1515/znc-2003-9-1001
https://doi.org/10.1093/pcp/pcx073
https://www.ncbi.nlm.nih.gov/pubmed/28586465
https://doi.org/10.3389/fevo.2018.00064
https://doi.org/10.2298/PIF1401021P
https://doi.org/10.1007/978-3-642-59416-8_2
https://doi.org/10.1016/B978-0-08-026224-6.50029-2
https://doi.org/10.1016/j.jbiotec.2022.11.009
https://doi.org/10.1016/j.stress.2023.100230
https://doi.org/10.1016/j.plaphy.2021.12.017
https://www.ncbi.nlm.nih.gov/pubmed/34959054
https://doi.org/10.1111/ppl.13373
https://www.ncbi.nlm.nih.gov/pubmed/33605458
https://doi.org/10.3390/plants9111477
https://doi.org/10.3389/fpls.2021.619987
https://www.ncbi.nlm.nih.gov/pubmed/33747002
https://doi.org/10.1515/pac-2018-0102
https://doi.org/10.2307/2657019
https://www.ncbi.nlm.nih.gov/pubmed/11222250
https://doi.org/10.1007/s10113-017-1202-9
https://doi.org/10.1023/A:1017909325669
https://doi.org/10.1021/jp0530909
https://doi.org/10.1016/j.bbabio.2004.06.006
https://doi.org/10.1016/j.febslet.2005.04.088
https://www.ncbi.nlm.nih.gov/pubmed/16004989
https://doi.org/10.1023/A:1026070612022
https://www.ncbi.nlm.nih.gov/pubmed/16245060
https://doi.org/10.1016/S0006-3495(02)73979-9
https://www.ncbi.nlm.nih.gov/pubmed/12324436
https://doi.org/10.1105/tpc.108.064154
https://www.ncbi.nlm.nih.gov/pubmed/19700631
https://doi.org/10.1078/0176-1617-00887
https://www.ncbi.nlm.nih.gov/pubmed/12749084
https://doi.org/10.1007/s00468-018-1804-y


Agronomy 2024, 14, 814 21 of 21

84. Parida, B.R.; Kumari, A. Mapping and modeling mangrove biophysical and biochemical parameters using Sentinel-2A satellite
data in Bhitarkanika National Park, Odisha. Model. Earth Syst. Environ. 2021, 7, 2463–2474. [CrossRef]

85. Cheng, Q.; Wu, X. Correlation analysis of simulated MODIS vegetation indices and the red edge and rice agricultural parameter.
In Remote Sensing for Agriculture, Ecosystems, and Hydrology IX; Neale, C.M.U., Owe, M., D’Urso, G., Eds.; SPIE: Florence, Italy,
2007; p. 67420U.

86. Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the capabilities of Sentinel-2 for quantitative estimation of
biophysical variables in vegetation. ISPRS J. Photogramm. Remote Sens. 2013, 82, 83–92. [CrossRef]

87. da Silva, E.E.; Baio, F.H.R.; Teodoro, L.P.R.; da Silva Junior, C.A.; Borges, R.S.; Teodoro, P.E. UAV-multispectral and vegetation
indices in soybean grain yield prediction based on in situ observation. Remote Sens. Appl. Soc. Environ. 2020, 18, 100318. [CrossRef]

88. Silva Junior, C.A.; Nanni, M.R.; Shakir, M.; Teodoro, P.E.; de Oliveira-Júnior, J.F.; Cezar, E.; Shiratsuchi, L.S. Soybean varieties
discrimination using non imaging hyperspectral sensor. Infrared Phys. Technol. 2018, 89, 338–350. [CrossRef]

89. Duan, B.; Liu, Y.; Ging, Y.; Peng, Y.; Wu, X.; Zhu, R.; Fang, S. Remote estimation of rice LAI based on Fourier spectrum texture
from UAV image. Plant Methods 2019, 15, 124. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s40808-020-01005-3
https://doi.org/10.1016/j.isprsjprs.2013.04.007
https://doi.org/10.1016/j.rsase.2020.100318
https://doi.org/10.1016/j.infrared.2018.01.027
https://doi.org/10.1186/s13007-019-0507-8
https://www.ncbi.nlm.nih.gov/pubmed/31695729

	Introduction 
	Materials and Methods 
	Field Study Area and Soil Characteristics 
	Field Experiment and Sample Collection 
	Quantification of Atrazine Uptake 
	Soil and Plant Extraction 
	LC-MS/MS Analysis 

	Quantification of Pigments 
	Chlorophyll and Carotenoids 
	Anthocyanin 

	Acquision of Spectral Data in the Field Using UAVs and Image Processing 
	Data Analysis 

	Results 
	Atrazine Uptake in Red Cos Lettuce 
	Atrazine’s Impact on Leaf Pigment Levels 
	Insights from Heatmap Analysis 

	Discussion 
	Atrazine Uptake Dynamics and Pigment Changes in Red Cos Lettuce under Soil Application 
	Capabilities of Heatmap Analysis in Predicting Pigment Changes 

	Conclusions 
	Appendix A
	References

