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Abstract: The unmanned farm control platform is of great significance in promoting the supervision
of farm production with less manpower or autonomous operation of farm machinery and the
construction of farm informatization. Addressing the existing control platform for farm location
information acquisition is time-consuming, labor-intensive, and lacks the whole process control of
multiple types of farm machinery. In this paper, we propose an Internet of Things (IoT) control scheme
for intelligent farm machinery operation of unmanned farms and design the access standards for
multiple types of farm machinery, as well as realize the remote control of intelligent farm machinery
operation by constructing a remote control model. A high-precision map construction method is
designed to improve the DeepLabV3+ algorithm to identify fields and roads. The control models of
path planning, remote task, remote control, and safety system are built to achieve the remote control
of intelligent agricultural machinery operation. The proposed technology is implemented in the
platform integration and application tests are carried out. The error of the constructed high-precision
map is less than 3 cm, the completeness rate of the automatic boundary extraction rate is 96.71%, and
the correctness rate is 95.63%, which can be used to obtain the boundary instead of manual labeling
or on-site point picking. The use of the platform for the simultaneous control of three farm machinery
operations reduces the number of people in operation and production and reduces the professional
requirements of the personnel, which will promote the management of the entire farm by one person
or even by no one in the future.

Keywords: high-precision maps; remote management and control; IoT platform

1. Introduction

Industrialization and urbanization continue to accelerate. According to data from
the Seventh National Population Census, in 2020, the proportion of the elderly popula-
tion aged 60 and over, as well as 65 and over, in China’s rural areas relative to the total
rural population was 23.81% and 17.72%, respectively. China’s urbanization rate of the
resident population has risen from 17.92% in 1978 to 64.72% in 2021. Consequently, the
proportion of individuals employed in primary industries has declined from 70.53% to
22.87%. The decline in the rural labor force and the aging of the workforce have raised
concerns regarding “who will farm and how to farm” [1]. The development of smart agri-
culture provides technical support to alleviate labor shortages [2–7]. As a significant facet
of smart agriculture, unmanned farms achieve the integration of information perception,
quantitative decision-making, intelligent control, precise inputs, and personalized services
throughout the agricultural production process [8–15]. The remote control platform of
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unmanned farms realizes remote transmission, with cloud management and intelligent
analysis of online monitoring data, providing crucial data support for fault diagnosis and
real-time early warning, significantly improving the management efficiency of agricultural
machinery while reducing production costs [16].

Presently, several research efforts and practical applications are dedicated to devel-
oping an unmanned farm control platform for comprehensive monitoring and intelligent
scheduling of farm production activities. Kaloxylos et al. [17] proposed an architecture
comprising a cloud management system and a local management system. They found that
88% of respondents believed such a system could reduce their operational costs, and 90%
found it easy to use. Fountas et al. [18] examined farm management information systems
(FMIS) from academic and business perspectives, identifying common issues and solu-
tions. Feng Minkang et al. [19] established an unmanned farm control platform to facilitate
task allocation and remote supervision of farm machinery operations. Lu Bang et al. [20]
designed a platform for online path planning of high-precision maps, remote control of farm
machinery, and operation monitoring for tractor rapeseed sowing, achieving a maximum
map plane accuracy error of 3.23 cm. Chen Huailin et al. [21] developed an FMIS interaction
strategy by considering user, operational, environmental, and equipment contexts, and
aligning them with FMIS tasks. Li Han et al. [22] created a multi-machine navigation service
platform through WEBGIS, offering an efficient solution for multi-machine operation path
planning and task allocation. Liu Zhenyu et al. [23] devised a platform for scheduling and
operating agricultural machines, enabling intelligent scheduling according to supply and
demand, as well as monitoring the entire process. Wang Chunshan et al. [24] proposed a
layered management platform architecture to enhance system scalability. Lv Yacong [25]
crafted a highly cohesive and low-coupling intelligent agricultural vehicle monitoring
system using microservices architecture to improve scalability and responsiveness.

The aforementioned technology research primarily focuses on field data collection
and collation, as well as agricultural machinery geographic location and operation data
collection and collation, and furthermore agricultural machinery scheduling and informa-
tion sharing. However, manual collection of field and road boundary information is both
time-consuming and costly. Moreover, while certain aspects of operations such as plough-
ing, planting, management, and harvesting are often controlled, there is limited research
on unmanned farm control platforms encompassing the entire process of intelligent farm
machinery operation. Given the aforementioned status quo, the objectives of this study are
as follows: (1) To establish an Internet of Things (IoT) platform for the operation and control
of various types of intelligent farm machinery; (2) to employ machine learning algorithms
for comprehensive identification of farm roads and fields and to construct high-precision
maps; and (3) to facilitate real-time data interactions with farm machinery to achieve
remote supervision of the operational processes. The research contents and innovations
of this paper encompass the following: (1) Design of the control platform architecture
for intelligent farm machinery operation; (2) establishment of an efficient, high-precision,
and diversified information fusion digital map of the farm; and (3) development of a
remote control methodology for intelligent farm machinery throughout the entire process
of ploughing, planting, management, and harvesting.

2. Materials and Methods
2.1. Technical Routes

The research technology pathway outlined in Figure 1 encompasses platform design,
high-precision map construction, and remote control of intelligent farm machinery oper-
ations. By acquiring farm images, the construction of a high-precision map for the farm
entails identifying farmland and roads to derive layers and integrate diverse information
into the map. This completed high-precision farm map serves the purpose of information
collection and visualization concerning farm machinery operations. Moreover, access
standards for various types of farm machinery are established to enable remote control of
intelligent farm machinery operations through the development of a remote control model.
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Figure 1. Technical route.

2.2. Platform Infrastructure

In this paper, the design of the platform architecture begins with a focus on farm
machinery operation services. Based on the specific requirements of farm operations
and the intelligent control processes involved, the overall architecture of the platform
is delineated, as depicted in Figure 2. This architecture comprises the device layer, the
network layer, the interface protocol layer, the basic platform layer, and the business
application layer.

The equipment layer comprises intelligent farm machinery or equipment, serving as
the primary component throughout the entire agricultural production process in unmanned
farms. It constitutes the central element in production operations within unmanned farms,
encompassing monitoring and sensors as key components.

The network layer serves as the conduit for data transmission between intelligent
farm machinery, devices, and platforms, facilitating communication of data between the
equipment layer and higher-level data.

The interface protocol layer facilitates the structured storage of various types of intelli-
gent farm machinery and orchestrates the collection, control, and attribute binding of data
through the specification of integration protocols for intelligent farm machinery, devices,
and communication data. The use of the MQTT (Message Queuing Telemetry Transport)
protocol enables communication between integrated display and control terminals and
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the platform. This protocol is particularly suited for scenarios with constrained hardware
storage or limited network bandwidth, offering features such as long connections and
real-time capabilities, making it highly suitable for real-time control environments and
actuators [26,27].
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The basic platform layer constitutes an unmanned farm intelligent agricultural ma-
chinery operation control platform, which is structurally designed with considerations for
both management and technology aspects. The management aspect involves the design
of a “three-level” management mode for hierarchically overseeing multiple farms. On
the other hand, the technical design encompasses network architecture, map construction,
remote control, data collection and processing, and service management. The platform
adopts the B/S network architecture (Browser/Server) to integrate high-precision maps,
GIS (Geographic Information System) services, and recognition algorithms for farm map
construction. Remote control functionality is achieved through the implementation of
message components and event drivers for diverse command control and module pro-
cessing. Furthermore, the platform is configured with multiple services and facilitates
their discovery.

The business application layer involves the realization of business processes and core
functions as per practical requirements. These functions encompass farm information con-
struction, remote control, data management, and sharing. The focal point of the unmanned
farm intelligent machinery operation control platform is the intelligent farm machinery.
Map construction facilitates accurate visualization of areas and aids in location determina-
tion for the transfer and operation of farm machinery in the field. The electronic hangar
serves as a digital repository for intelligent farm machinery. Equipment management
provides requisite data support to ascertain the operational readiness of farm machinery
and the suitability of prevailing conditions. Remote control functionality enables the remote
execution of tasks, task assignment, safety, and operational monitoring, as well as collab-
orative management and control. Data management and sharing entail the classification
and management of various farm data segments and their sharing over the Internet.



Agronomy 2024, 14, 804 5 of 25

2.3. High-Precision Map Construction

Farmland maps utilized by drones require enhanced positioning accuracy and reliabil-
ity [28–30]. By employing high-precision maps, key farm information can be identified or
annotated, thereby facilitating efficient and precise marking and data collection for various
elements such as farm fields, roads, equipment positioning, obstacles, hangar areas, and
waypoints for intelligent farm machinery path planning.

2.3.1. Farm Image Acquisition and Original Map Construction

A small multi-rotor high-precision aerial survey UAV is employed for farm image
collection, involving the following steps: (1) Selection of the farm area and formulation of
the flight route; (2) configuration of flight parameters, including flight altitude, sampling
distance, flight speed, heading overlap rate, bypass overlap rate, and the time interval
for capturing images, aimed at enhancing image quality and model training efficacy;
(3) utilization of collected image data for 2D reconstruction; (4) verification of reconstruction
results and rectification of any anomalous outcomes or artifacts; and (5) acquisition of
reconstructed RGB and TIF map images.

Given the typically large size of the output map image files, which can lead to
slow upload speeds and laggy zoom-in and zoom-out displays, a map image raster
pyramid is constructed to enhance user experience. This construction involves loading
lower-resolution layer data from the pyramid when zooming out and higher-resolution
layer data when zooming in, ensuring uninterrupted performance regardless of the dis-
played area size and thereby accelerating map display speed. ArcGIS Server is utilized to
deploy online map service technology, generating image link addresses for cloud-based
retrieval, eliminating the need for direct image file uploads, and further enhancing upload
speeds. The process of map construction and publication entails: (1) Adding map image
files to ArcMap software, selecting the nearest pixel method as the resampling technique,
and constructing the raster pyramid; (2) sharing the completed map image files as an
online service, specifying the server address folder and assigning names to image files;
(3) selecting the WMS (Web Map Service) service and uploading image files to generate
map image link addresses for the WMS service; and (4) employing WEBAPI to call the
map image links for layer fitting and display with aerial imagery, thereby generating farm
maps and enabling online zoom-in operations to extract farm positioning, distance, and
area information.

2.3.2. Identification of Field and Road Boundaries

In the process of unmanned farm development, the accurate and rapid acquisition
of farmland boundary information and machine-tillage road locations is crucial for real-
izing the unmanned and precise operation of intelligent farm machinery, as well as for
accurate farmland management. Presently, handheld RTK (real-time kinematic) methods
are commonly employed to acquire farmland boundary and machine-tillage road informa-
tion. However, with the increase in the number of farm plots, the manual workload has
significantly escalated.

To address the need for accurate and swift acquisition of farm field and machine
track boundary information, this paper proposes an enhanced UAV remote sensing image
segmentation algorithm for field and machine track boundary segmentation utilizing
DeepLabV3+. DeepLabV3+ is a semantic segmentation model that combines Encoder and
Decoder components [31]. The Encoder utilizes the Xception backbone network and deep
features extracted by Atrous Spatial Pyramid Pooling (ASPP) [32]. These features are then
fed into the Decoder through upsampling, where they are fused with the original shallow
feature map. Subsequently, upsampling is employed to restore the fused feature map
to its original size [33]. The original structure of the DeepLabV3+ network is illustrated
in Figure 3.
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By enhancing the DeepLabV3+ algorithm, this study aims to mitigate the issues of
incomplete boundary segmentation, adhesion, and breakage commonly observed in the
traditional DeepLabV3+. The improvement of the DeepLabV3+ algorithm involves four
key aspects:

(1) Replacement of the backbone network

The ConvNeXt network is utilized in place of the conventional Res-Net (Residual
Network) backbone network. In the ConvNeXt network, the convolution kernel size is
increased from 3 × 3 to 7 × 7. It is observed that the learning capability of the network
is positively correlated with the size of the convolution kernel, with the 7 × 7 kernel
exhibiting the strongest learning ability. Additionally, the ReLU (Rectified Linear Unit)
activation function in the ConvNeXt network is replaced by the GELU (Gaussian Error
Linear Unit) activation function. This substitution leads to smoother gradients at 0, while
also introducing negative values to the value domain range, thereby accelerating the
convergence speed of the network.

(2) Introduction of the CBAM attention mechanism

The CBAM mechanism is incorporated to mitigate feature loss. This mechanism
involves spatial pooling and maximum pooling of the feature map to obtain two sets of 1 ×
1 × C channels. Subsequently, these channels undergo processing by an MLP (Multilayer
Perceptron) neural network. The results of this processing are then subjected to element-
wise addition operation and activation by the sigmoid function to obtain the output results.
The expression for channel attention processing is as follows:

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))) = σ(W1

(
W0

(
Fc

avg

))
+ W1(W0(Fc

max))). (1)

Following the channel attention processing of the feature maps, the results undergo
pooling once for maximum pooling and once for average pooling. Subsequently, these
results are concatenated by channel. The final weight coefficients are obtained after passing
through a 7 × 7 convolutional layer and activation using a sigmoid function. This process
can be expressed as follows:

Ms(F) = σ
(

f 7×7([AvgPool(F); MaxPool(F)])
)
= σ

(
f 7×7

([
Fs

avg; Fs
max

]))
(2)
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where σ represents the sigmoid operation, and 7× 7 denotes the size of the convolution kernel.

(3) Improvement of ASPP

The primary aim of this study is to enhance model performance by modifying the
parallel branch within the ASPP module. An additional branch with an expansion rate of 8
is introduced alongside the original ASPP module. Features extracted from each channel
are fused using cascade operations, allowing for better consideration of subtle small-scale
features and overall features through convolutions with varying expansion rates.

(4) Hybrid Loss Function

The loss function characterizes the degree of disparity between the network’s predicted
values and the actual values. In this paper, a hybrid loss function is proposed, which
combines the Dice Loss and cross-entropy loss functions. This approach aims to address
issues such as positive and negative category imbalance and gradient descent saturation
during training. The expression for the hybrid loss function is as follows:

Loss = Lossdice + λLoss f ocal = C − ∑C−1
C=0

TP(c)
TP(c) + αFN(c) + βFP(c)

− λ
1
N ∑C−1

C=0 ∑N
n=1 gn(c)(1− Pn(c))

2lnPn(c) (3)

where N is the total number of samples and C is the total number of labeling categories.
TP(c) =∑N

n=1 gn(c)Pn(c), FN(c) = ∑N
n=1 (1− Pn(c))gn(c), FP(c) = ∑N

n=1 Pn(c)(1− gn(c) .
Pn(c) denotes whether category c is predicted at pixel location n, and gn(c) denotes whether
the true category at pixel location n is category c. TP(c) represents the true positive rate of
category c, FN(c) is the false negative rate of category c, and FP(c) is the false positive rate
of category c. Parameters α and β in this model are both set to 1, and λ denotes the weight
between Loss f ocal and Lossdice. Different sizes are assigned based on the performance of
the validation set; in this paper, we set λ = 1. The network structure of the improved
DeepLabV3+ algorithm is depicted in Figure 4.
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After performing semantic segmentation using the enhanced DeepLabV3+ segmenta-
tion algorithm, the semantic segmentation results undergo optimization through threshold
segmentation and morphological processing via blob analysis. Subsequently, the Hough
transform is employed to extract the boundary lines of the farmland and the machinery
path. The obtained boundary lines are extended to fit any broken segments, and finally, the
generated boundary layer information is integrated with the high-precision farm map.
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2.3.3. Farm Information Map Integration

To create a clearer and more intuitive representation of farm information, various data
about the farm are integrated into a single map. The farm map information is categorized
into three basic elements: the farm itself, the equipment, and the farm machinery, as
illustrated in Figure 5. The basic element information is integrated with the platform
through layers, while equipment points are obtained online via high-precision maps and
data retrieval through third-party protocols. For intelligent farm machinery, standardized
communication protocols are utilized to access and display information such as machinery
location, online status, and operation trajectory on the map.
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2.4. Remote Management and Control
2.4.1. Standardized Access for Smart Farm Machinery

To enable the expandability, convenience, and practicality of accessing intelligent
agricultural machines across different platforms, standardized docking protocols for culti-
vation, planting, management, and harvesting are formulated. A “three-level” protocol
stack is devised for the intelligent farm machine, integrated display and control terminal,
and platform, facilitating standardized access to the platform for information data reporting
and command control of farm machine components and terminal modules. Based on the
structural composition of intelligent agricultural machines and the one-to-one relationship
between the integrated display and control terminal and the agricultural machine, the
standard access relationship is divided into three categories: agricultural machine end and
display/control terminal, agricultural machine end and platform end, and display/control
terminal and platform end. The access protocol is further categorized into communication
protocol and data protocol. The communication protocol determines the communication
mode between different relationships, while the data protocol establishes communica-
tion data integration specifications. The standardized access design of intelligent farm
machinery is depicted in Figure 6.

In Figure 6, concerning the relationship between the agricultural machine end and
the display/control terminal, the NEMA (National Electrical Manufacturers Association)
protocol is utilized to parse satellite signals for obtaining location information. The CAN
bus is employed to receive information from the underlying modules of the agricultural
machine as well as for command and control purposes. Additionally, the UVC (USB
Video Class) protocol facilitates access to video and image data from the vehicle-mounted
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camera. For the relationship between the agricultural machine terminal and the platform
terminal, a standardized integrated camera is directly connected to the platform. Regarding
the relationship between the display/control terminal and the platform terminal, the
HTTP protocol is utilized for file downloads and interface calls. The MQTT protocol is
employed for message subscription and release between the display/control terminal and
the platform terminal. Furthermore, the RTMP (Real-Time Messaging Protocol) is utilized
for accessing video streams. Among the aforementioned protocols, the CAN bus, HTTP
protocol, MQTT protocol, and broadcasting fall under communication protocols, while the
NEMA protocol, UVC protocol, entry rules, remote control command protocol, agricultural
machine data reporting protocol, and video streaming three-way protocol pertain to data
structure protocols.
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2.4.2. Remote Management and Control Model

(1) Path Planning

The path planning design encompasses map point collection, inputting agricultural
machine information, setting algorithm parameters, calling algorithms, visualizing the
correction of erroneous points, and storing path files. Map point collection is accomplished
through high-precision maps to gather data and establish data collections of boundary
points and transport points:

UP = {Pbc, Pmt}, lPbc > 0, lPmt ≥ 0 (4)

where Pbc represents the collection of field boundary points and Pmt represents the collection
of transport points; lPbc denotes the length of the collection of field boundary points; and
lPmt denotes the length of the collection of transport points. Constructing the input farm
object AM,

AM = {SN, typeOP, widOP, capOP, speedR, oilOP, oilUOP, turnT, OPT, locM, r, l} (5)

where SN denotes the terminal serial number to which the farm machine is bound, typeOP
denotes the operation type, widOP denotes the operation width, capOP denotes the op-
eration capability, speedR denotes the road speed, oilOP denotes the fuel consumption
during operation, oilUOP denotes the non-operation fuel consumption, turnT denotes the
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turnaround time, OPT denotes the day during which the farm machine operates, locM de-
notes the position of the farm machine, r denotes the turnaround radius, and l denotes the
distance from the control point of the farm machine to the end of the machine widOP, r, l,
which is utilized solely for path planning. The path planning algorithm parameter settings
include path type, turning mode, whether to close the loop, and whether to group.

(2) Remote Task

The remote task is devised to transmit the path file to the designated intelligent farm
machine. To ensure the uniqueness of the intelligent farm machine’s ID, the serial number of
the integrated display and control terminal is utilized as a variable to generate the message
subject. The task-sending process design comprises task creation, security confirmation,
path file transmission, downloading and activation of the intelligent farm machine path, and
message feedback. The task object is constructed following the requirements of agricultural
machine operation:

T = {tkID, f ar, f ld, tkTp, AM, route, ctTime, sta} and f ar → { f ld, AM, route}, f ld&tkTp→ route (6)

where tkID denotes the task sequence number, f ar denotes the farm, field denotes the
field, tkTp denotes the task type, AM denotes the farm machine object, route denotes the
path file, ctTime denotes the creation time, and sta denotes the task status. Constraints are
imposed on the field, farm machine, and path; the farm determines the selection of the field,
farm machine, and path; and the field and the type of operation determine the selection of
the path. The command message data object Msg and feedback message data object are
constructed according to the task object and farm machine object MsgAck,

Msg = {msgID, SN, tkID, cmdCd, link, ept}, SN ∈ AM, tkID ∈ T (7)

MsgAck = {msgID, resID, SN, tkID, cmdCd, resFlag, ept}, resID ∈ Msg, SN ∈ AM, tkID ∈ T, resFlag ∈ {1, 2} (8)

where msgID denotes a message sequence number, cmdCd denotes an instruction code,
link denotes a path link, ept denotes the content of the message description, resID denotes
a feedback message sequence number, and resFlag denotes the result of message execution,
with 1 indicating success and 2 indicating failure.

(3) Remote Control

Remote control is divided into the control of the intelligent agricultural machinery
navigation and the bottom, using the implementation of the control of different modules,
taking the value of the definition of the design of Table 1.

Table 1. Command code definition.

The Value of cmdCd Meaning

1 Self-inspection of operations
2 Execution
3 Emergency stop
4 Stopping the job
5 Setting initial master–slave job parameters
6 Job Delivery
7 Stop navigation
8 Start navigation
9 One-touch ignition

10 One-touch ignition off
11 Master notifies slave of arrival at the designated point
12 The slave notifies the master that it has arrived at the designated point
13 Master notifies slave to return
14 Apparatus start
15 Machine stop
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Table 1. Cont.

The Value of cmdCd Meaning

16 Emergency stop cancellation
17 Machine height adjustment

(4) Safety system

Intelligent farm machinery operation safety and operation quality monitoring is an
important part of remote control. The establishment of agricultural machinery reporting
data objects to monitor the status of agricultural machinery:

Sdata = {dataID, SN, cltTime, dvcSta, tkID, chs, GNSS, atc}, SN ∈ AM, tkID ∈ T (9)

where dataID denotes the packet sequence number, cltTime denotes the acquisition time,
dvcSta denotes the navigation status of farm machinery, chs denotes the underlying data,
GNSS denotes the GNSS position data, and atc denotes the navigation data. Integration of
farm multi-intelligent devices to monitor the environmental safety and operation quality of
smart farm machine operations and construction of environmental data objects Evt is

Evt = {mtr, AMMC, rdWn, otcScan} (10)

where mtr denotes farm monitoring data; AMMC denotes video data from the onboard
camera of the farm machine to view the forward direction environment, the cockpit envi-
ronment, and the effect of the operation of the farm machine; rdWn denotes turnoff blind
zone warning data, which provides early warning information for the smart farm machine
when it shifts on the road; and otcScan denotes obstacle scanning data of the smart farm
machine, which performs obstacle scanning for the smart farm machine’s forward direction,
at a distance that can be customized.

Through the data model design results of path planning, remote task, remote control,
and safety system, the three-part remote control model comprising the web end, transceiver
end, and intelligent farm machinery terminal is constructed, as illustrated in Figure 7.

Figure 7. Remote control model.

2.4.3. Multi-Agricultural Machinery Management and Control

There are various types of intelligent farm machines on the farm, and multiple types
of operation tasks occur simultaneously. Additionally, there are constraints on the order of
agricultural tasks and operational conditions between different operation types. Therefore,
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operation types are categorized based on agricultural tasks, and their sequence and interval
times are determined. The fulfillment of operation conditions is assessed using data from
farm sensing equipment. Online tasks are then established for different types of agricultural
tasks, with their starting times set accordingly. Concurrently, the safety and operation
processes are controlled by establishing a collaborative network of multiple farm machines
based on the logical model of remote control. During operations, to oversee various types
or multiple scenarios involving intelligent farm machinery, a multi-agricultural machinery
cooperative network is established based on the remote control logical model. This enables
simultaneous control of agricultural machinery operation safety and processes. Cooperative
control of multiple types of agricultural machines primarily achieves unified control of
operating agricultural machines. It also allows for the display of operation statuses and
distributions of all agricultural machines through a single interface, facilitating monitoring
of safety and operations.

The management and control process is designed as follows: (1) Create a plowing,
planting, management, and harvesting type operation task Ts = {T1, T2, . . . , Tn}. (2) Select
multiple tasks Tk(TkεTs) to join the collaborative group network, acquire task data, and
issue tasks. (3) According to the acquired task data, display the field area, planned path, and
location of farm machinery of all tasks in the high-precision map visualization. (4) Establish
unique farm machine message topics and use different values of cmdCd(cmdCd ∈ Msg)
to achieve remote control of farm machines in the network, and monitor safe operations
based on Sdata and Evt object data.

2.5. Experimental Area and Materials

The test site selected was the Zengcheng Teaching and Research Base of South China
Agricultural University (SCAU), comprising four high-standard farmlands, concrete mech-
anized plowing paths, and agricultural machinery storage facilities, covering an area of
approximately 80 acres, as depicted in Figure 8.
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(1) High-precision map construction test materials

The high-precision map construction process includes farm image acquisition and
original map construction, boundary recognition of fields and roads, and farm information
map integration. In the construction process, the materials used are shown in Table 2.
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Table 2. Map building materials.

Procedure Resource Requirement Parameters/Versions Function

Farm Image Acquisition and Original
Map Construction

DJI Elf 4-RTK drone
with remote control

Camera lens:
FOV 84◦ ; 8.8 mm/24 mm

image resolution:
4864 × 3648 (4:3)
5472 × 3648 (3:2)

Photo format: JPEG
Maximum flight speed:

50 km/h (positioning mode)
58 km/h (Attitude Mode)

position accuracy:
perpendicular1.5 cm + 1 pp (RMS);

level 1 cm + 1 pp (RMS)

Acquisition of farm image data

Mapping software and map servers DJI Terra (version: 3.6.6)
ArcGIS Server (version: 10.2) Image stitching and map services

Identification of field
and road boundaries

Farm Map Image Dataset Small image blocks of 512 × 512 pixels Provide samples for model training

Dirt, concrete, and road boundary
data sets

Label map generated with Labelme
annotation

Provide boundary datasets
for model training

Model Training Host

CPU: Intel i9-10980XE
GPU: NVIDIA RTX3090 AERO

RAM: 32 G
CUDA: 11.3

operating system: Ubuntu 20.04

Provide a test environment for model
training and running

Farm Information Map Integration

WEBGIS Service
OpenLayers (version:7.4.0)

Leaflet (version:1.9.4)
ArcGIS API for js (version:3.17)

Front-end maps, layers,
and function calls

Farm Elements Layer Vector layers in tif, shp,
and other formats

Providing visual annotation of
different types of geographic

information on farms

Note: 1 ppm indicates that the measurement error increases by 1 mm for every 1 km increase in distance between
the mobile station and the base station.

To verify the accuracy of the map, an accuracy comparison was conducted using RTK
field collection and map collection to validate the point information. For field collection,
the Huasi i70 intelligent RTK was selected, with its main parameters shown in Table 3.

Table 3. i70 Intelligent RTK Technical Parameter Table.

Designation Intelligent RTK i70

Data Update Rate 1 Hz, 2 Hz, 5 Hz, 10 Hz
Communication Interface UHF antenna interface/RS232/USB and other interfaces

Static Accuracy Horizontal accuracy: 2.5 mm + 1 ppm
High-range accuracy: 5.0 mm + 1 ppm

Dynamic Accuracy Horizontal accuracy: 8 mm + 1 ppm
High-range accuracy: 15 mm + 1 ppm

Note: 1 ppm indicates that the measurement error increases by 1 mm for every 1 km increase in distance between
the mobile station and the base station.

(2) Remote Control Test Materials

The rice directing machines comprised three sets of Seydal Star2BDXZ-10SCA
(20) self-propelled rice hole directing machines equipped with self-developed unmanned
systems, as depicted in Figure 9. These agricultural machines are equipped with GNSS
(Global Navigation Satellite System) antennas, electronically controlled steering wheels,
wheel angle sensors, electronically controlled chassis, obstacle avoidance systems, on-board
cameras, and integrated display and control terminals. They feature wire-controlled clutch,
implement, throttle, and gear systems, with the steering control equipped with electroni-
cally controlled steering wheels and wheel angle sensors. The unmanned system consists of
an integrated display control terminal and GNSS antenna. The display and control terminal
integrates a high-precision BeiDou positioning module, providing a positioning accuracy of
±1 cm, while the controller’s linear navigation control accuracy is ±2.5 cm. Additionally, it
integrates a 4G communication module. Each live broadcasting machine is equipped with
a millimeter-wave obstacle avoidance radar, with a dynamically adjustable scanning range.
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Moreover, it is installed with front and rear onboard cameras, enabling remote monitoring
of cockpit status and operational effects through the wireless network.
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To enable remote control, a computer, tablet, or mobile phone with network communi-
cation capability is utilized. The platform’s link address is accessed through a web browser,
and the unmanned farm in Zengcheng is selected to remotely control the operation of
agricultural machinery.

2.6. Experimental Design
2.6.1. High-Precision Map Construction Test

For the improved recognition algorithm, performance verification tests and application
tests were designed. The UAV was employed to partition the farm map in clear weather.
The flight parameter settings included a flight altitude set to 100 m, with a ground sampling
distance (GSD) capable of reaching 2.74 cm. The flight speed was set to 8 km/h, with a
heading overlap rate and bypass overlap rate of 70%, and a time interval for taking pictures
of 2 s. The images captured during the flight were imported into DJI Zhitu software to
establish a two-dimensional creation task. The output coordinate system used was the
WGS 84 geodetic coordinate system. The sampled data was spliced to obtain the farm
map, and the reconstructed farm map was employed to crop the remote sensing image
of the farm using OpenCV. Each small image block was set to a size of 512 × 512 pixels
to construct the dataset. The semantic segmentation model was trained with 4000 images
under the same parameters, and the model performance was tested with 1000 images.
Evaluation metrics such as mean intersection over union ratio (mIoU), mean pixel accuracy
(MPA), and training loss function were selected to assess the performance of the network.
mIoU represents the ratio of intersection and union of the standard image and the manually
annotated image computed by the network prediction. MPA denotes the number of pixels
correctly discriminated as class I but incorrectly discriminated as class II. The calculation
formulas are as follows:

mIoU =
1

k + 1

k

∑
n=0

Pnn

∑k
m=0 Pmn + ∑k

m=0 Pmn − Pmm
(11)

MPA =
1

k + 1

k

∑
i=0

Pii

∑k
j=0 Pij

(12)

where k denotes the number of categories. Pmn denotes the number of false-negative
examples. K + 1 denotes that the number of categories contains a class of background.
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Pnn denotes the number of pixels of true examples. Pnm denotes the number of pixels of
false-positive examples. Pii denotes the number of pixels that are accurately discriminated
as class i. Pij denotes the amount of pixels that are correctly discriminated as class i, but
are incorrectly discriminated as class j. Pji denotes the amount of pixels that are correctly
discriminated as class j, but are incorrectly discriminated as class i. In this study, a hybrid
loss function combining the cross-entropy loss function and the Dice Loss loss function
is chosen.

After verifying the improved recognition algorithm, image data are collected from the
test area according to the aforementioned dataset construction method, and the dataset
is generated. The improved semantic segmentation model is then applied to predict the
small image blocks after cropping. Finally, the small modules are spliced together, and
boundary lines are extracted to generate the farm road and field recognition layer. The
existing equipment and farm machinery in the farm are accessed and integrated on the map.
The accuracy of the completed map is verified by selecting the 5 points shown in Figure 10a.
The coordinate system used for GPS positioning in this paper is the WGS-84 geodetic
coordinate system, and the planar projection used is the “Gauss-Kruger” projection, which
transforms the collected point information into a spatial Cartesian coordinate system for
comparison. Fifteen feature points, such as the vertices of parcels 2–4 and the inflection
points of the ploughing road, were selected for accuracy verification, as shown in Figure 10b.
The manual point information was then compared with the extracted information, and the
extraction results of the experimental area were evaluated using the indicators of bound-
ary extraction completeness (COR) and accuracy (COM). The calculation formulas were
as follows:

COR =
TP

TP + FP
(13)

COM =
TP

TP + FN
(14)

where FP is the length of the correct linear region (number of pixel points) that was
extracted, FN is the length of the region that was not extracted, and TP is the length of the
correctly extracted road region.
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2.6.2. Remote Control Experiment

Verification tests and application tests were designed for the remote control method.
Communication tests were conducted using the integrated display and control terminal,
and the frequency of data interaction for standardized access to agricultural machinery
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information was verified and tested. The path planning accuracy test involved formulating
paths using a platform and testing the position display accuracy on the machine plowing
path using an unmanned live machine. Additionally, the real-time data interaction of
the remote control and safety system during the operation of agricultural machinery
was verified.

Upon verifying the feasibility of the remote control method, the platform was designed
to control the “3-machine simultaneous operation” application test in the test area. A
large field with an area of 50 acres in plot 1 was selected as the operation field, and
three unmanned broadcasting machines were used as the control objects. Path planning
requirements for three sets of agricultural machinery were established from the hangar
to the road transport to plot 1. The field operation was divided into three non-interfering
pieces with full-coverage paths. Path planning parameters were designed as outlined in
Table 4. Tasks were sent through the platform to achieve the simultaneous operation of the
three sets of agricultural machinery in the remote control test.

Table 4. Route planning data entry.

Categories Data

UP
Field boundary point Pbc = {A, B, C, D}

Road transport point lPmt = 6

AM
Operating width widOP = 2.5 m

Turning radius r = 1.4 m
Distance from the end of the machine l = 1.32 m

Algorithmic parameter

Path type: Full-coverage proctor work
Turning mode: Bulb-shaped

Whether to seal the circle: Yes
Whether grouping: Yes, 3 groups

3. Results
3.1. High-Precision Map Construction Results

The comparison with other mainstream recognition algorithms is depicted in Figure 11.
In Figure 11a, the algorithm proposed in this paper demonstrates a 4.64% higher mIoU
value compared to the PSPNet algorithm, a 3.28% higher mIoU value relative to the UNet
algorithm, and a 3.15% higher mIoU value compared to the original DeepLabV3+ algorithm.
The training loss curves are illustrated in Figure 11b, where the solid line graph represents
the training loss curve for the model’s training set described in this study, and the dashed
line represents the loss curve for the test set. From the loss function curve in Figure 11b, it can
be observed that during the pre-training period, the loss rate decreases rapidly and exhibits
a continuous oscillation phase. As the number of training iterations increases, the loss rate
gradually decreases and approaches convergence, indicating the stabilization of the model.

A comparison of the recognition results with the original DeepLabV3+ algorithm for
roads, concrete ridges, and earthen field plowing is shown in Table 5. The MPA is improved
by 3.8 percentage points compared to the original DeepLabV3+ model.

Table 5. MPA indices by category.

Algorithmic Model Roads Concrete Ridges Earth Ridges MPA

DeepLabV3+ 96.13 88.62 84.65 91.51
Improvements to DeepLabV3+ 98.36 93.71 90.45 95.31

The recognition results of farmland and the mechanic road are depicted in Figure 11,
with the splicing results presented in Figure 12b. For the segmentation outcomes, farmland
and road boundary line information is extracted using blob analysis and Hough transform.
Semantic segmentation results are further optimized through threshold segmentation and
morphological processing to eliminate noise patches caused by interfering field information,
with the optimization results showcased in Figure 12c.
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The verification of the accuracy of the acquired raw maps is shown in Table 6. The
maximum error of the five points is 3.2 cm, and the average error of the five points is 2.98 cm.
The error of the points of the high-precision map constructed by UAV is less than 3 cm.

Table 6. High-precision map accuracy verification.

Point RTK Coordinates/xy Title 3 High-Precision Map Coordinates/xy Tolerance/cm

1 2571374.215, 462724.598 2571374.192, 462724.618 3.05
2 2571269.245, 462938.651 2571269.221, 462938.668 2.94
3 2571381.101, 462990.638 2571381.081, 462990.656 2.69
4 2571489.807, 462785.193 2571489.785, 462785.214 3.04
5 2571450.663, 462886.902 2571450.638, 462886.922 3.20

The result of accuracy verification of the recognition results after recognition using
the 15 feature points selected above is shown in Figure 13. The error range of the 15 target
points selected for the concrete ridges and roads falls between 4–7 cm, with the maximum
deviation being 6.16 cm and the average absolute error being 5.15 cm.

The recognition results were analyzed using completeness and accuracy rates. The
completeness rate of the boundary line extraction for the concrete ridge and road is 96.71%,



Agronomy 2024, 14, 804 18 of 25

with a correct extraction rate of 95.63%. These findings indicate that the boundary recogni-
tion algorithm can achieve precise and complete extraction of the boundaries of the farm
machinist’s road and farmland with high accuracy.
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In conclusion, the accuracy of high-precision maps and the accuracy of recognition
meet the needs of unmanned agricultural machine operations. Utilizing the recognition
algorithm, the field and road area layers are generated, and obstacles are collected in the
high-precision map to generate the area layer for hangar boundary points. These layers
are then released as an online service and integrated into the farm map. Completion of
access for sensing equipment and intelligent farm machinery results in the generation of
the overall farm map. The construction of the platform map is depicted in Figure 14.
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3.2. Remote Management Test Results

Using the amount of data received by the platform to test the frequency of reporting
data from agricultural machines, the terminal connects to the MQTT server and sets the
message publishing level QoS to 0. It then pushes 100 pieces of data to the platform using
reporting frequencies of 0.5 Hz, 1 Hz, and 2 Hz, respectively, and evaluates them according
to the packet loss rate, data correctness rate, and real-time performance. The results are
shown in Table 7.

Table 7. Data reporting frequency test.

Reporting Frequency/Hz Receive Data Volume/Packet Packet Loss Rate/% Data Correctness/% Real-Time/s

0.5 100 0 100 2
1 100 0 100 1
2 95 5 96 0.5

As shown in Table 7, at reporting frequencies of 0.5 Hz and 1 Hz, the packet loss
rate and data correctness are optimal. However, at 1 Hz frequency, real-time performance
is higher, indicating more intensive data transmission over time. Conversely, using a
2 Hz reporting frequency resulted in packet loss and data correctness issues. The analysis
suggests that packet loss may stem from the QoS level settings. Increasing QoS levels
from low to high improves message reliability but also increases transmission complexity,
making it less suitable for high-frequency scenarios. Additionally, the decrease in data
correctness may be attributed to inconsistencies in terminal information acquisition and
data reporting at different frequencies, leading to inaccurate data readings. Based on this
analysis, it is concluded that a reporting frequency of 1 Hz for agricultural machinery aligns
better with the operational requirements of intelligent agricultural machinery.

The validation of the path planning results is shown in Table 8. The relative error of the
trajectory of agricultural machinery operation on the high-precision map is around 2 cm.

Table 8. Route planning validation.

Agricultural Machinery Navigation Average Tracking Error/cm Average Trajectory and Path Error/cm Relative Error/cm

Vehicle 1 3.3 5.5 2.2
Vehicle 2 4.0 6.1 2.1
Vehicle 3 3.1 4.3 2.2

For the update of farm machinery trajectories, control instructions, and real-time video
validation, the validation results are presented in Table 9. Trajectory updates occur at a
rate of 1 s per point, dependent on the frequency of data reported by the farm machine.
Sending control command messages and receiving feedback takes only 0.28 s.

Table 9. Real-time analysis.

Categories Data Protocols Communication Protocols Time/s

trajectory updates agricultural machine reporting data protocol MQTT 1
control commands remote control command protocol MQTT 0.28

car camera fluorite EZOPEN protocol HTTP 1.2

In summary, the communication, path error, and real-time verification of agricultural
machines meet the requirements of remote control of agricultural machines. According to
the platform architecture design, the platform integrates the corresponding functions. The
results of the field operation control test conducted on smart agricultural machines using
the platform are depicted in Figure 15. They are integrated into the platform as described
in the appeal. Following the remote control process, the steps of farm machine access, path
planning, remote task execution, and safety monitoring are carried out sequentially, and
records of completed operations are tallied.
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Figure 15. Application test process. Note: In the Remote operations monitoring page, the Chinese on
the top left indicates the path information, diagnosis and maintenance, speed and system settings of
the navigation interface of the integrated display and control terminal, the Chinese on the top is the
received GNSS signal, and the following is the area that has been operated. The Chinese buttons at
the bottom right indicate the control of the agricultural machine to start and stop operation.

For the completion of operations, path tracking, error calculation, filtering of traps,
and averaging of large data fluctuations, statistical analysis was performed on various
parameters, including the average speed of agricultural machinery during operation and
completion time. The statistical results are presented in Table 10.
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Table 10. Data statistics.

Categories Vehicle 1 Vehicle 2 Vehicle 3

Degree of completion of operations/% 100% 100% 100%
Average navigation error/cm 3.8 4.6 4.8

Average operation speed/m/s 0.65 0.58 0.63
Completion time/h 2.2 h 2.5 h 2.4 h

During the test, one person successfully conducted the control operation of three farm
machinery operations. The entire process, including path planning, remote task assignment,
remote control, and safety system monitoring of intelligent farm machinery operations, was
achieved with high real-time performance and visual supervision through remote access.

4. Discuss
4.1. Analysis of Results

The results of high-precision map construction are analyzed for comparison based
on recognition accuracy and acquisition efficiency. In the performance verification results,
the mean pixel accuracy (MPA) is 95.31% and the mean intersection over union (mIoU) is
88.96%. Additionally, the extraction completeness rate is 96.71%, and the extraction cor-
rectness rate is 95.63% in the application experiments. Currently, manual labeling methods
are primarily used for farmland identification, often relying on agricultural experts’ accu-
mulated experience and relevant theoretical knowledge. For instance, Wang Yuli et al. [33]
employed software tools like ArcGIS and ENVI to manually decode and analyze multispec-
tral images of cultivated land in the Xinjiang region, generating maps through layer overlay.
Although simpler to operate, manual annotation methods for farmland identification suffer
from lower accuracy and efficiency. Ming Dongping et al. [34] utilized spatial statistics
and threshold segmentation methods to extract farmland from remote sensing images,
achieving an overall accuracy of 84.15% and enhancing the efficiency and automation of
farmland extraction. However, simple machine vision approaches require high-quality
remote sensing images and lack generality and robustness. Ji Xusheng [35] accomplished
the rapid and accurate acquisition of small field boundaries through edge detection and
morphological processing of farmland, achieving a farmland-matching completion rate
of 85%. Meanwhile, Liu Dong et al. [36] proposed a farmland boundary identification
method based on the normalized vegetation index, utilizing threshold segmentation and
the Canny operator edge detection method to achieve effective segmentation of farmland
boundaries. Deng Hong et al. [37] introduced a deep learning-based semantic segmentation
algorithm for UAV water field images, enhancing the segmentation accuracy by improving
the DeepLabV3+ network. After testing, they obtained a mIoU of up to 85.90%. Compared
to existing research results, the method proposed in this paper demonstrates high efficiency
and accuracy in farmland and road recognition. It can potentially replace manual parcel
and road annotation methods, leading to reduced labor costs and investment.

In the process of conducting remote control application tests, the effectiveness of
remote control is analyzed based on labor cost considerations. Presently, traditional opera-
tions of intelligent farm machinery entail pre-operation preparations, on-site supervision
during operations, and post-operation data analysis. Pre-operation tasks involve collecting
point information on the farm for path planning and debugging machinery data. During
operations, technicians are required to operate integrated display and control terminals
on-site to issue tasks, initiate operations, and monitor machinery status. After completion,
data is then copied and analyzed. In the “Three rice seeders simultaneous operation” test
scenario, only one person is required to manage machinery operations. In contrast, tradi-
tional supervision methods for intelligent machinery operations require three individuals
to oversee three machines simultaneously, necessitating more personnel with advanced
skills such as field point collection and unmanned system operation. Traditional methods
of acquiring agricultural machinery operation information are limited and less comprehen-
sive, while the concentrated visualization of operation information enhances supervision
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quality and data acquisition efficiency compared to conventional methods. Consequently,
the approach presented in this paper reduces the need for multiple participants, lowers tech-
nical skill requirements for controllers, and enhances the quality of control over intelligent
agricultural machinery operations.

4.2. Platform Comparison

The unmanned farm intelligent farm machinery operation control platform proposed
in this paper aims to provide precise services for intelligent farm machinery operations,
offering three distinct advantages over existing control platforms. Firstly, it offers rapidly
constructed and highly available high-precision maps that facilitate online point collection
and diversified information visualization [19]. Compared to existing high-precision map
geographic information annotation methods, which often rely on manual map annotation
or on-site point collection, the approach presented in this paper leverages machine learn-
ing algorithms to efficiently identify fields and roads utilized in agricultural machinery
operations, generating boundary layers to achieve platform integration. The completeness
and correctness of the recognition results are verified through experiments, enhancing the
efficiency of data collection.

Secondly, it incorporates remote control technology for the entire chain of intelligent
agricultural machinery operations [38–40]. While current control platforms primarily focus
on specific types of farm machinery or segments of the machinery control process, this
paper establishes protocol unification across the entire machinery chain by developing
communication protocols for farm machinery, terminals, and platforms. This approach
provides users with convenient access to farm machinery and enhances the richness of
operation information supervision. Existing platforms typically offer limited services
for the entire process of intelligent farm machinery operation and lack comprehensive
supervision of operational information. In contrast, this paper comprehensively addresses
the operational services of farm machinery before, during, and after operations, not only
reducing labor costs but also significantly improving supervision quality.

Finally, the platform architecture proposed in this paper can better serve agricul-
tural machinery operations. From a software perspective, the platform presented herein
demonstrates superior performance, addressing the issue of slow uploading and loading
of traditional maps through optimized map uploading methods. The remote control vali-
dation test illustrates the platform’s high real-time communication capability. Moreover, it
exhibits robust security features, leveraging GateWay gateway, SpringSecurity, OAuth2,
and farm unique ID to generate tokens, ensuring data security. From the user’s standpoint,
the platform offers high usability. The construction of high-precision farm maps and remote
control tests verify the platform’s ability to visualize farm information and farm machinery
operations effectively. Additionally, it achieves functional division for the process of farm
machinery operations, thereby reducing users’ technical difficulties in utilization. Regard-
ing application services, the platform has been implemented in 30 unmanned farms since
its inception. Users’ evaluations of map construction and operation control are positive,
with a high level of acceptance for the control functionalities.

5. Conclusions

In this paper, we propose a control platform for intelligent farm machinery operations,
focusing on an unmanned farm as an implementation scenario. This platform enables
remote control of farm machinery equipped with unmanned systems. To simplify im-
plementation complexity and enhance platform scalability, we adopt a layered platform
architecture tailored to the needs and processes of farm machine operations. Our platform
utilizes UAV recognition integration to achieve high-precision and efficient construction of
farm maps. Field tests confirm map construction errors of less than 3 cm and field/road
recognition errors of 5.15 cm, validating the feasibility of the map application. We introduce
a remote control method for intelligent farm machinery operation, alongside a “three-level”
protocol stack for standardized access to multiple farm machinery types, facilitating remote
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control throughout the operational process. Field test results demonstrate that our method
reduces the number of personnel involved in production compared to traditional methods,
while also lowering technical requirements and simplifying operation procedures, thereby
enhancing control quality and positively contributing to unmanned farm realization.

The application of our intelligent farm machinery operation control platform offers
two key benefits to unmanned farms. Firstly, the high-precision map serves as the founda-
tion for smooth operation implementation. Users can leverage the platform to construct
detailed maps reflecting the farm’s actual conditions accurately, including fields, roads,
and integrated sensing information, thereby improving information acquisition efficiency.
Secondly, our platform considers the entire agricultural machinery operation process and
implements functional division, enabling one-button management of farm machinery
within the farm, streamlining operation procedures and reducing labor costs.

Our proposed control method, rooted in the study of agricultural machines equipped
with unmanned systems, offers modularity for access by intelligent robots and drones in
unmanned farms. By analyzing the operation processes of different production equipment,
we develop remote control methods and formulate standardized access protocols to control
other highly intelligent production equipment on the farm. Looking ahead, we envision
the unmanned farm control platform evolving towards smarter functionalities, integrating
the latest technology to cater to personalized and refined agricultural production needs, as
well as managing complex agricultural machinery operation scenarios. Future work will
focus on researching multi-type intelligent equipment control methods and cooperative
operation scheduling methods.
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