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Abstract: At present, the electronic nose has became a new technology for the rapid detection of
pesticides. However, the technique may misidentify them for samples that have not been involved in
training. Therefore, a hybrid model based on unsupervised and supervised learning was proposed
for the first time in this paper. The model divided the detection process of soil pesticide residues
into two steps: (1) an unsupervised machine learning method was used to identify whether the soil
was contaminated with pesticides; (2) when the soil was contaminated with pesticides, a supervised
classifier was further used to predict the types of pesticides in the soil. The experimental results
showed that the model had a recognition accuracy of 99.3% and 99.27% for whether the soil was
contaminated with pesticides and the pesticide type of the contaminated soil, respectively, with
a detection time of 0.03 s. The results revealed that the proposed hybrid model can quickly and
comprehensively reflect the soil information’s status.

Keywords: electronic nose; soil pesticide residues; hybrid model; contamination detection

1. Introduction

Pesticides play an important role in modern agricultural production, as they are the
main way to reduce agricultural product losses, solve the problems of plant diseases and
pests, and increase yields [1]. However, only about 30% of pesticides can effectively exert
their effects [2,3]. Pesticides that are not effectively utilized enter the environment. Al-
though they undergo varying degrees of degradation or migration under natural conditions,
soils that have been contaminated for a long time face problems such as acidification, nutri-
ent loss, a decrease in porosity [4,5]. Research has shown that the pesticide content in plant
roots, stems, and leaves increases with the increase of a pesticide residue’s concentration in
the soil [6,7]. Pesticides in these plants ultimately cause harm to human beings through
the material cycle of the ecosystem [8]. Pesticide residues in soil can be released into the
atmosphere as volatile organic compounds (VOCs). This is mainly because pesticides are
volatile by nature, allowing them to transition directly from a liquid or solid to a gaseous
form. Under the influence of sunlight, they decompose into smaller molecules or VOCs.
Moreover, soil microorganisms can convert pesticides into VOCs through biodegrada-
tion [9]. The early detection of soil pollution is of great significance for soil protection and
human safety. And the remediation methods used for different types of pesticide pollution
vary, so it is crucial to accurately identify the types of residual pesticides in the soil [10–12].

At present, chromatography, mass spectrometry, and spectroscopy are the most mature
methods for detecting pesticide residues, with advantages such as their high sensitivity,
wide detection range, and strong reliability [13]. However, these methods rely on large
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instruments, which are expensive and costly, making it difficult to conduct on-site test-
ing. In addition, sample preprocessing is cumbersome and time-consuming, requiring
professional technical personnel to perform it. These defects make it difficult for them to
achieve fast and real-time detection and limit their widespread use. The chemicals used
for pretreatment before testing may also cause environmental pollution [14]. Therefore,
it is necessary to continue to develop new, fast, accurate, easy-to-operate, and low-cost
pesticide residue detection methods to meet practical needs and minimize negative impacts
on the environment.

An electronic nose is a device that simulates mammalian olfactory organs’ ability
to identify odors [15]. Compared with traditional methods, electronic noses have the
advantages of having a small size, no sample pretreatment, a fast detection speed, being
non-destructive, and having environmental protection. Therefore, they are widely used in
various fields such as the food industry [16], chemical industry [17] and medical field [18].
In recent years, electronic noses have also received increasing attention in the field of soil
information detection. For example, in order to solve problems such as time-consuming,
laborious, and complex operations in traditional soil nutrient testing, Dorji et al. [19] devel-
oped an electronic nose that detects volatile organic compounds to monitor the soil’s status,
successfully classifying soils with different organic matter contents using PCA. Fabrizio
et al. [20] used electronic nose technology to measure the volatile organic compounds
released by soil microorganisms and calculate their activity. Bieganowski et al. [21] mea-
sured the volatile organic compounds released by soil microorganisms and calculated their
activity using electronic nose technology. Andrzej et al. [22] successfully differentiated the
gasoline and diesel pollution levels in soil using electronic nose technology, PCA, and an
ANN. At present, studies have applied electronic nose systems for the detection of pesticide
residues in soil. Kong et al. [23], inspired by bionics, proposed a biomimetic strategy for
detecting unknown pesticide residues in soil using electronic noses. These findings indicate
the broad application potential of electronic noses in soil pollution monitoring, including
pesticide residue detection [24].

Machine learning plays a crucial role in soil information and pollution recognition,
which use electronic nose technology. The choice of machine learning methods directly
impacts recognition accuracy. Unlike other fields, soil pesticide residue detection requires
the careful selection of machine learning techniques. Firstly, the selected method should
be able to detect pesticide contamination in soil, regardless of whether the pesticide has
been previously detected. This step is essential for subsequent actions. Secondly, the
precise identification of pesticide types is necessary for effective soil management and
remediation. However, due to the limited availability of training samples covering all
pesticide types, achieving accurate identification through supervised learning using an
electronic nose is challenging [25–27]. It is difficult to obtain training samples covering all
pesticide types. This can easily lead to contaminated samples being misjudged as healthy
samples and missing the best opportunity for soil management. Currently, most research
has overlooked the distinction between a contaminated soil that did not participate in
training and a healthy soil.

We proposed a model which combines supervised and unsupervised learning in this
paper. A hybrid model based on a one-class SVM and supervised learning was used to
realize the reliable identification of soil health and the accurate identification of pesticide
types. The proposed hybrid model adopts a distributed framework, which includes two
steps: pollution detection and pesticide identification. An unsupervised learning system
called a one-class SVM is used to model healthy soil in the first step. It can realize the
real-time detection of soil pollution and obtain healthy soil sample information. Even if
there are pesticides that have never appeared in the soil, the pollution can be accurately
identified. In the second step, a supervised learning classifier is used for accurately identify
the types of pesticide residue in the soil. This model addressed the issue in current research
where contaminated soil that did not participate in training may be incorrectly identified as



Agronomy 2024, 14, 766 3 of 14

healthy soil. In addition, the effects of different feature extraction methods and supervised
learning classifiers on the recognition of soil pesticide residues are studied in this paper.

2. Experimental Materials and Methods
2.1. Sample Preparation

Soil was collected from the Jilin University Experimental Farmland (at 43◦51′41′′ N and
125◦20′27′′ E) and was confirmed to be unpolluted before sampling. Gas chromatography–
mass spectrometry was used to determine that the collected samples were not contaminated
with pesticides. Twenty sampling points were randomly selected in the sampling field,
stones and weeds were removed from the soil surface, and the soil was collected from a
depth of 0–20 cm. All soils were placed at room temperature (24 ◦C) for natural air drying,
were evenly mixed, sieved through a 1 mm sieve, and evenly mixed again for later use.
Taking the representativeness and severity of the pesticide pollution to be the criteria, we
comprehensively considered the types of pesticides, the amount of pesticides used, the
types of pesticide applications, and the pollution hazards. Six pesticides were selected,
namely Dithane (65%, Zhongxun, Jiangxi China), Mancozeb (80%, Guoguang, Sichuang
China), Chlorpyrifos (40%, Xinnong, Zhejiang China), Cyfluthrin (5.7%, Weierda, Zhejiang
China), Glyphosate (41%, Weiyuan Tiansheng, Zhejiang China), and Deltamethrin (25 g/L,
Bayer, Leverkusen Germany). The six selected pesticides involved organophosphorus,
organosulfur, and pyrethroid, which were widely used and severely harmful pesticides.
And, they contain herbicides, insecticides, and fungicides in their type of application, and
vary in their remediation measures. The pesticide solution was diluted according to the
recommended dosage in the pesticide user manual (Figure 1a).
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Figure 1. Experimental soil preparation of the (a) pesticide dilution, (b) drip irrigation pesticides,
and (c) soil leaching.

In order to obtain a sufficient number of soil samples contaminated with various types
of pesticides, it is necessary to manually prepare the soil to be tested. The use of leaching
experiments to prepare soil pollution samples is more in line with the diffusion law of
pesticides in natural soil. The preparation of 7 soil-leaching devices (pollution-free, Dithane,
Mancozeb, Chlorpyrifos, Flumethrin, Glyphosate, and Deltamethrin) was conducted. A
layer of glass wool and quartz sand were placed on the bottom of the leaching column,
40 cm of soil was poured into the leaching column, and compacted and wet (Figure 1c).
One mL of six diluted pesticide solutions were and evenly dropped onto the soil surface
of the leaching column. The distilled water leaching column was used as a pollution-free
control (Figure 1b). Then, the leaching of soil by rainwater was simulated using an 800 mL
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CaCl2 solution of 0.01 mol/L. After leaching, the soil was removed from the leaching
column and stored in a plastic bag [28].

2.2. Gas Chromatography–Mass Spectrometry Detection

The analysis of volatile components within the samples was conducted utilizing
headspace gas chromatography–mass spectrometry (HS-GC/MS). The extraction of volatile
organic compounds was achieved through the application of a PDMS/DVB fiber (65 µm;
Supelco, Bellefonte, PA, USA). An Agilent Technologies 5975 gas chromatography–mass
spectrometer (Agilent Technologies, Palo Alto, CA, USA) was utilized for analysis, paired
with an HP-5MS-fused silica capillary column (30 m × 0.25 mm, 0.25 µm). The procedure
for detection entailed the equilibration of pesticide samples at 60 ◦C for 30 min, followed by
the extraction of volatile organic compounds using PDMS/DVB fibers (65 µm; US Supelco)
for 20 min at the same temperature. Subsequent to extraction, the fibers were introduced
into the GC-MS inlet and desorbed at 250 ◦C for 1 min, during which data collection
ensued. The separation of volatile compounds was facilitated by an HP-5MS-fused quartz
capillary column (30 m × 0.25 mm, 0.25 µm), employing a specialized temperature schedule:
initiating at 40 ◦C for 3 min, followed by incrementing up to 280 ◦C at a rate of 10 ◦C/min,
and then being sustained for 15 min. Helium was used as the carrier gas, with a flow rate
maintained at 1 mL/min. The mass-selective detector operated with an electron impact
potential of 70 eV, a centrifugal source temperature of 230 ◦C, a quadrupole temperature
of 150 ◦C, and a scan range from 20 to 550 Amu. The identification of compounds was
achieved through a comparison with the NIST 2008 library database.

2.3. Soil Pesticide Odor Data Collection

In this study, a self-developed electronic nose (Figure 2) is used to collect soil pesticide
odor signals. The developed electronic nose consists of an air pump (D15S), a circuit board,
a detection chamber, a gas sensor array, and a signal acquisition card (USB5631). The sensor
array is the core component of the electronic nose system and is applied to sense the gas to
be measured. When the gas comes into contact with the sensor, the resistance of the sensor
decreases. Due to the variety of gases in the soil, we selected 26 semiconductor metal oxide
sensors (Table 1) to form a sensor array. The change in the sensor will be reflected by the
circuit diagram (Figure 2b). The decreases in the sensor resistance Rs will cause the output
voltage across the load resistor RL to rise. The output voltage is read by a data acquisition
card and converted to a digital signal to be stored in a computer-specified path. In addition,
the air pump provides the power for gas transmission, and the detection chamber is the
place where the sensor reacts with the gas. Its sealing has an important impact on the
sensitivity of the detection system. The air pump and data acquisition card were purchased
from Chengdu Hailin Technology (Chengdu, China) and ART Technology (Beijing, China).
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Table 1. Model and basic parameters of the gas sensor.

NO. Sensor Target Gases Marker

1 TGS2612 Methane, LP, etc. Figaro

2 TGS2611 Methane, natural gas Figaro

3 TGS2620 Ethanol, organic solvents Figaro

4 TGS2603 Trimethylamine, methanethiol, etc. Figaro

5 TGS2602 Ammonia, hydrogen sulfide, etc. Figaro

6 TGS2610 LP, propane, butane Figaro

7 TGS2600 Hydrogen, alcohol, etc. Figaro

8 GSBT11 Volatile organic gases Ogam

9 MS1100 Toluene, formaldehyde, benzene, etc. Ogam

10 MP135 Hydrogen, alcohol, carbon monoxide, etc. Winsen

11 MP901 Alcohol, smoke, formaldehyde, toluene, benzene,
acetone, paint, etc. Winsen

12 MP-9 Carbon monoxide, methane Winsen

13 MP-3B Alcohol Winsen

14 MP-4 Methane, natural gas, methane Winsen

15 MP-5 Propane Winsen

16 MP-2 Propane, smoke Winsen

17 MP503 Alcohol, smoke, isobutane, formaldehyde Winsen

18 MP801 Benzene, toluene, formaldehyde, alcohol, smoke Winsen

19 MP905 Benzene, toluene, formaldehyde, alcohol, smoke,
lighter gas, paint Winsen

20 MP402 Methane, natural gas, methane Winsen

21 WSP1110 Nitrogen dioxide Winsen

22 WSP2110 Toluene, formaldehyde, benzene, alcohol, acetone, etc. Winsen

23 WSP7110 Hydrogen sulfide Winsen

24 MP-7 Carbon monoxide Winsen

25 MP-702 Ammonia Winsen

26 TGS2618 Butane, LP gas Figaro

The electronic nose system is activated 30 min prior to collect data, which will allow
the sensor surface to reach the operating temperature and clean the sensor surface with
dry air. An amount of 10 g of the collected soil is taken and placed in a sealed beaker. The
volatile soil gas is transported to the sensor surface via an air pump, causing a chemical
reaction on the sensor’s surface. This is converted into an electrical signal using the data
acquisition card and uploaded to a computer via a data cable. After collecting the gas
from a soil sample, it is necessary to pass the clean gas into the chamber for 1 min to
completely exhaust the residual gas and bring the sensor signal to the baseline level before
collecting the gas from the next sample. A total of 160 samples were collected for each
pesticide, and 40 samples were collected for healthy soil. Finally, a total of 1000 odor
samples were collected.

2.4. Experimental Data Analysis Methods

For the reliable detection of soil pollution and an accurate identification of pesticide
types, a hybrid model based on unsupervised learning one-class SVM and supervised
learning was proposed. The proposed hybrid model adopts a distributed framework,
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which includes two steps: pollution detection and pesticide identification, as shown in
Figure 3. The hybrid model proposed in this paper first determines whether the soil is
contaminated, and if pollution exists, and accurately identifies the type of pollution. Even
if there are no such contaminated samples in the training set, the model can successfully
detect soil contamination. Moreover, this step-by-step detection framework can greatly im-
prove detection efficiency and accuracy by identifying pesticide types only when pollution
is detected.
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The main purpose of pollution detection is to quickly determine whether the soil
is contaminated, and the main responsibility of pesticide identification is to accurately
identify the type of pesticide. Among them, pollution detection is mainly carried out by a
one-class SVM. A one-class SVM operates as a uni-class classifier, capable of executing the
training of classifiers utilizing solely a singular category of target samples. It compensates
for the shortcomings of traditional multi-class classifiers that rely too much on samples,
and its decision-making method is more accurate in identifying minor faults, which are
used to model healthy soil samples and obtain the boundaries of healthy soil samples.
Therefore, as long as the soil is contaminated, it can be quickly identified based on the
learned boundaries.

Pesticide recognition is accurately recognized by a supervised learning classifier. Three
mainstream classifiers are used in this paper including a support vector machine (SVM),
K-nearest neighbor (KNN), and random forest (RF). An SVM [29] is a linear classifier with
the largest interval in the feature space. It performs machine learning in the cases of small
samples. Because of the use of a kernel function, it overcomes the curse of dimensionality
and the problem of non-linear separability. A KNN [30] is a simple and powerful classifier,
which has the advantages of having a fast model training time, good prediction effect,
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and being insensitive to an outlier. The RF [31] classifier is constituted by an ensemble of
decision trees, where the classification outcome is ascertained by the modal output type
derived from the individual trees. It has high accuracy, can handle a large number of input
variables, and can balance the error for unbalanced classification sets. The overall process
for identifying soil pesticide residue hybrid models is as follows: Firstly, feature extraction
is performed on the obtained soil odor data to significantly reduce data redundancy and
obtain essential odor information. Then, a one-class support vector machine is used for
pollution detection to determine whether the soil is contaminated. If no pollution is
identified, the entire identification is complete. If pollution is identified, the odor data
enters the pesticide identification step. The contaminated soil is also first subjected to
feature extraction to obtain essential odor information, and then precise classifiers are used
to identify pesticides. Based on the identification results, corresponding soil remediation
measures can be taken to achieve safe and efficient soil remediation.

Under the objective of soil residue analysis, we divide the analysis into soil health
detection tasks and precise pesticide identification tasks. In the soil health detection task,
considerations such as the speed of detection, training efficiency, and model scalability
are addressed by employing unsupervised learning with a one-class SVM. For the precise
pesticide identification task, the focus is on the accuracy of identification and whether
supervised learning models were utilized. This framework of combining unsupervised
and supervised models in a hybrid model allows for the rapid and accurate detection of
soil residues with minimal training requirements.

The feature extraction that runs through the entire process is crucial for soil pollution
and pesticide identification. In this paper, wavelet transform (WT), Fourier transform (FT),
maximum (MAX), and mean (Mean) are selected as candidate feature schemes [32]. WT
and FT can effectively reflect the transient information of odor, while the MAX and Mean
can effectively reflect the steady-state information of an odor.

The wavelet transform (WT) disassembles the original response into components of
lower and higher frequencies, exhibiting a robust resistance to interference. It facilitates
multi-resolution analysis, possessing the capability to delineate local attributes of the signal
across both time and frequency domains. The WT feature extraction formula is as follows:

WT(a, τ) =
1√
a

∞∫
−∞

f (t) ∗ ψ

(
t − τ

a

)
dt, (1)

where t represents time and f (t) represents the sensor’s response value.
Fourier transform (FT) constitutes the transformation of unprocessed data into a novel

domain, effectuating the decomposition of the raw response into a confluence of direct
current (DC) elements and various harmonic constituents. The amplitude attributes of
each constituent facilitate both qualitative and quantitative assessments. The FT feature
extraction formula is as follows:

F(ω) = F[ f (t)] =
∫ ∞

−∞
f (t)e−iwtdt, (2)

where t represents time and f (t) represents the sensor’s response value.
The MAX epitomizes the ultimate steady-state attributes of the entire dynamical

response sequence at equilibrium, encapsulating the maximal variation in the sensor’s
reaction to olfactory stimuli. This parameter is commonly employed as a predominant
method for feature extraction. The MAX feature extraction formula is as follows:

xi = Vmax
i , (3)

where i represents the i-th sensor, Vmax
i represents the maximum voltage value of the

i-th sensor.
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The Mean is a calculation method used to measure the average value of data. It can
not only reflect the central tendency of a group of data, but also compare different data
to see the difference between different datasets. The Mean feature extraction formula is
as follows:

x =
∑n

i=1 xi

n
, (4)

where x represents the average value, xi is the response value of the sensor.

3. Results and Analysis
3.1. Main Volatiles in Pesticide Samples

A total of 128 volatile compounds were detected in the pesticide samples vis gas
chromatography-mass spectrometry, which are shown in Table 2. According to the results,
there are two obvious characteristics of the pesticide volatiles. First, there are many
types of pesticide volatiles, including alcohol, aromatic hydrocarbon, phenol, halogenated
hydrocarbon, and soon. The complexity of pesticide volatiles has been a difficult problem
in the detection of pesticide gases. Over the years, many scholars have been committed to
trying to break through the limitations of sample preparation procedures, separation and
detection techniques [33], but there is still no optimal solution. Therefore, the electronic
nose system designed in this paper contains more gas sensors so that it can detect more
volatiles, thus improving the accuracy of its pesticide detection. The second significant
characteristic of the pesticide volatiles is that different pesticides have both the same and
different volatiles. This is the key premise of using an electronic nose to detect pesticides
in soil. The same volatile matter between pesticides allows electronic noses to quickly
distinguish healthy soil from contaminated soil, with the distinguishing markers being
the same compounds emitted by these pesticides. Then, the different volatiles between
pesticides make it possible to distinguish the different types and brands of pesticides in the
contaminated soil.

Table 2. The detected volatiles in pesticides.

Type of Compound Glyphosate Chlorpyrifos Cyfluthrin Deltamethrin Mancozeb Dithane

Alcohol 10 0 0 1 3 4

Aromatic
hydrocarbon 2 23 35 18 3 8

Phenol 0 0 0 1 0 0

Halogenated
hydrocarbon 0 1 1 0 0 0

Nitrile 0 0 0 0 0 1

Ether 2 0 0 0 0 2

Aldehyde 1 0 0 0 3 1

Ketone 0 0 0 0 1 2

Alkane 8 0 0 0 11 10

Olefin 0 0 0 0 0 3

Amide 0 0 1 0 0 0

Ester 2 0 0 0 0 6

Other 3 1 0 1 3 3

The chromatographic results of the pesticide samples further proved the feasibility of
using an electronic nose to detect pesticide residues in soil and the rationality of selecting
the core components of an electronic nose (sensor array).
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3.2. Unsupervised Soil Contamination Test Results

Each detection model was trained using 40 samples and health testing was conducted
on 1000 samples. The results of the soil pesticide residue pollution detection are shown
in Table 3. As shown in Table 3, in the soil pollution detection module, the recognition
rates of FT, MAX, Mean, and WT combined with the one-class SVM have all reached over
99.00%, with the highest recognition rate being that of the WT, reaching 99.40%, and the
lowest being that of the FT, reaching 99.00%. This indicates that a one-class SVM machine
combined with feature extraction can not only extract soil contamination information, but
also can use the extracted soil contamination information to effectively distinguish whether
the soil is contaminated or not. One-class SVMs only require healthy soil samples during
the training process of pollution detection models, learning the rules of healthy samples,
and do not require additional pollution samples. While the current, commonly used,
supervised learning classifier can slightly outperform the one-class SVM in some cases, it
needs healthy soil samples and pesticide-contaminated soil samples for pollution detection.
However, in most cases, it is difficult to obtain training samples covering all pesticide types,
and the accuracy of the established model in detecting newly measured soil pollution
samples will be greatly affected in practical applications. Moreover, with the reduction in
the pollution sample size during model training, it can be found that the effect of supervised
learning on soil health detection will decline, becoming even lower than that of the one-
class SVM. This is because as the number of contaminated samples decreases, the pollution
feature information is greatly reduced, which will reduce the machine’s recognition ability
for contaminated samples. Figure 4 lists the confusion matrix of each detection model
established using the MAX eigenvalue. From the confusion matrix, it can be seen that
once the monitoring model identifies errors, it will misjudge the contaminated samples
to be healthy samples. This will prevent the contaminated soil from being discovered,
resulting in its continuous pollution and deterioration, which is not conducive to soil
remediation and management. However, the one-class SVM often misjudges healthy
samples as contaminated samples when identifying errors. As a preliminary screening
method for soil pollution, the electronic nose will perform more accurate measurements on
predicted pollution samples after identification, so the impact of this misjudgment on soil
governance and remediation is minimal.

Table 3. Soil pesticide residue pollution test results.

Detection Model

Training Samples Healthy
Sample

Polluted
Sample

Healthy
Sample

Polluted
Sample

Healthy
Sample

Polluted
Sample

20 20 30 10 40 0

KNN-FT 100.0 100.0 -
RF-FT 99.9 97.6 -

SVM-FT 99.9 98.7 -
One-class SVM-FT - - 99.0

KNN-MAX 100.0 100.0 -
RF-MAX 99.9 99.5 -

SVM-MAX 99.0 98.6 -
One-class SVM-MAX - - 99.2

KNN-Mean 100.0 100.0 -
RF-Mean 99.9 99.6 -

SVM-Mean 98.7 100.0 -
One-class SVM-Mean - - 99.3

KNN-WT 100.0 100.0 -
RF-WT 100.0 99.2 -

SVM-WT 97.6 100.0 -
One-class SVM-WT - - 99.4
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Meanwhile, the electronic nose system applied in this paper performs real-time detect-
ing of soil pollution. After using different feature extraction methods, the recognition time
required for using the one-class SVM is within 0.1 s. The recognition time using the Mean
combined with the one-class SVM is the fastest method, taking only 0.03 s. The slowest one
is the use of FT combined with the one-class SVM, which only takes 0.08 s. The efficiency
of this pollution detection is unmatched by commonly used chromatography methods.

Furthermore, in order to consider the impact of different sample sizes during the model
training stage on the recognition performance of the one-class SVM, different numbers of
training samples were used to establish an unsupervised detection model, and the results
are shown in Figure 5. As the number of training samples increases, the soil pollution
detection effect is better, which is consistent with the traditional supervised learning
model [34]. However, it is not difficult to find that the one-class SVM can still achieve good
recognition performance when using only five training samples to establish the model. The
recognition rate exceeds 96% under different feature extraction methods.
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It can be seen from the above analysis that the proposed unsupervised learning
model requires fewer training samples when conducting soil pollution detection, and
only five healthy soil samples can be used to at least complete the model’s establishment.
Its recognition accuracy is comparable to that of traditional supervised learning, but
when identifying errors, the proposed supervised learning method does less harm to soil
governance and restoration.

3.3. Results of the Supervised Identification of Pesticide Types

The results of identifying the pesticide residue types are shown in Table 4, which shows
the effectiveness of using KNN, RF, and an SVM in the pesticide residue pollution type
detection module. From the table, it can be seen that different feature extraction methods
combined with different classifiers have a significant impact on the recognition results,
which are the same as the traditional research methods of the electronic nose [35]. In specific
detection applications, the selection of different feature extraction methods and classifiers
is the key to optimizing the performance of electronic nose systems. The recognition rates
of four feature extraction methods, FT, MAX, Mean, and WT, combined with three pattern
recognition methods, KNN, RF, and an SVM, demonstrate that the electronic nose can
fully recognize the types of organophosphorus, organosulfur, and pyrethroid pesticides,
providing the accurate basis for subsequent contaminated soil remediation work. Using
MAX or Mean as the feature extraction method and an SVM as the supervised learning
classifier achieves the highest pesticide type recognition rate of 99.27%.

Table 4. Identification results of the pesticide residue contamination type detection module using
KNN, RF, and an SVM.

Feature Extraction Methods FT MAX Mean WT

Classifier KNN
Recognition rate(%) 98.98 96.98 97.92 98.23

Classifier RF
Recognition rate(%) 95.63 98.13 97.92 98.23

Classifier SVM
Recognition rate(%) 95.42 99.27 99.27 99.17

Considering the impact of different feature extraction methods on pesticide type
recognition, the average recognition rates of FT, MAX, Mean, and WT in the three classifiers
were calculated to be 96.68%, 98.13%, 98.37%, and 98.54%, respectively. WT achieved the
highest average recognition rate, indicating its effectiveness in accurately identifying soil
pesticide types. In evaluating the impact of different supervised learning classifiers on
pesticide type recognition, the average recognition rates of KNN, RF, and the SVM using
different features were found to be 98.03%, 97.48%, and 98.28%, respectively. The SVM
displayed the highest average recognition rate, possibly due to its advantages in solving
nonlinear problems and handling small sample problems [36].

4. Discussion

This paper proposed a hybrid model based on an electronic nose system to prevent
the electronic nose system from misjudging samples that have not participated in training.
The experimental results showed that the combination of the electronic nose system and
the model could classify healthy soil with an accuracy of 99.3%, and the pesticide type
recognition accuracy was 99.27%. This result indicated that the proposed model combined
with the electronic nose system has significant application value in the field of soil pesticide
residue detection. In Table 5, we summarized the papers on the application of an electronic
nose in pesticide detection. As can be seen from the table, the previous research had shown
that electronic nose systems could be used to detect pesticide residues, and the results of
this study supported such conclusions. Unlike the previous works, this paper considered
the problem that untrained samples might lead to the misjudgment of the electronic nose



Agronomy 2024, 14, 766 12 of 14

system and solved this problem using the proposed hybrid model, which greatly enhanced
the potential of the electronic nose system in the field of pesticide residue detection.

Table 5. The summary of papers on the application of electronic noses in pesticide detection.

Application Scenario Pesticide Brands Recognition Rates References

Tea Cyhalothrin; bifenthrin; fenpropathrin >88% [37]

Cherries Diazinon >100% [27]

Apples Cypermethrin; chlorpyrifos >94.64% [26]

Chili Profenofos / [38]

Mint Malathion >97% [39]

Soil Glyphosate; chlorpyrifo; deltamethrin; cyfluthrin;
mancozeb; dithane z-78 >92.5% [23]

Soil Chlorpyrifos; cyfluthrin; dithane >93.75% [24]

Groundwater Glyphosate; chlorpyrifos; deltamethrin; cyfluthrin;
mancozeb; zineb >98.08% [40]

Groundwater Chlorpyrifos; malathion; chlorothalonil; lindane >99.29% [41]

Although the hybrid model combined with an electric nose proposed in this study can
accurately predict pesticide residues in soil, its study was conducted in a laboratory with
fewer interference factors. In the future, it can be applied to agricultural detection to verify
the reliability of this method.

5. Conclusions

In this study, an electronic nose device was utilized to collect odor samples from
different types of pesticide-contaminated soils. A hybrid model combining unsupervised
and supervised learning approaches was proposed. Among the detection methods for
soil pesticide residue contamination, the combination of the one-class SVM and the Mean
achieved the shortest detection time and a recognition rate of 99.30%. In the module for
detecting the types of pesticide residue contamination in soils, the combination of the Mean
and SVM achieved the highest recognition rate of 99.27%. Overall, using an electronic nose
system and the Mean as a feature extraction method resulted in the optimal recognition
accuracy and the fastest detection time. This demonstrates the ability of the electronic nose
system to collect soil odor information and, when combined with feature extraction and
machine learning methods, to effectively identify whether the soil is contaminated with a
pesticide residue and the type of residue. Moreover, it can quickly identify soil pesticide
residue even with a small sample size during the precise soil remediation process.
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Abbreviations List

Abbreviation: Full name:
PCA Principal component analysis
ANN Artificial neural network
WT Wavelet transform
FT Fourier transform
MAX Maximum
Mean Mean value
One-Class SVM One-class support vector machine
KNN K-nearest neighbor
RF Random forest
SVM Support vector machine
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