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Abstract: Buckwheat microgreens are rich in nutrients and have a unique flavor that is favored by
consumers. The light environment is closely related to the growth and development of the plant. In
order to study the effects of treatments with different combinations of red and blue light on the edible
organ morphology and nutritional quality of buckwheat microgreens, five experimental treatments
were designed, with energy ratios of red light to blue light of 5:1 (R5B1), 3:1 (R3B1), 1:1 (R1B1),
1:3 (R1B3) and 1:5 (R1B5), respectively, and a white light treatment used as the control (CK). The
results showed that different combination treatments of red and blue light had obvious effects on
the growth of buckwheat microgreens. The hypocotyl length and main root length of buckwheat
microgreens treated with a high proportion of red light (R5B1) were obviously higher than those of
other treatment designs. However, contents of soluble protein, chlorophyll, rutin and total flavonoids
in buckwheat microgreens showed an increasing trend with an increase in the proportion of blue light.
Considering the fresh weight, dry weight and quality indexes of the edible organ, the combination of
red light and blue light with a ratio of 1:1 was most suitable for buckwheat microgreen production.
The results could provide a reference for the production of buckwheat microgreens.

Keywords: red and blue light; buckwheat microgreens; edible organ; morphology; quality

1. Introduction

In recent years, there has been growing interest in vegetables that are abundant in
bioactive compounds. Microgreens, known for their delicate, delicious, and nutritious qual-
ities, are now being considered as a new “functional food” [1,2]. Buckwheat microgreens
are a type of microgreen that is produced by the germination of buckwheat seeds, and are
rich in nutrition and have a special flavor that is welcomed by many consumers of fresh
vegetables in China. In addition, its stems and leaves are rich in vitamins, amino acids,
rutin, minerals and other nutrients that the human body needs.

Light, as an important environmental factor for plant morphology and development,
plays a crucial role in factory cultivation. The light environment is closely related to the
growth and development of plants, and regulating the light environment well is a necessary
condition for achieving high yield and high quality in agricultural factory production [3].
The emergence of Light Emitting Diode (LED) lights allows people to choose light of differ-
ent wavelengths when regulating plant growth; moreover, the effects of light conditions
on vegetables such as lettuce, peppers, tomatoes, and cucumbers have been extensively
studied [4–6]. At present, artificial lighting in plant factories mostly adopts high-pressure
sodium lamps, fluorescent lamps, etc.; however, LED as a lighting source has become a
research hotspot at home and abroad. An LED is a solid-state semiconductor based on
III–IV group compounds such as GaAs (gallium arsenide), GaP (gallium phosphide), and
GaAsP (gallium arsenide phosphide), and its structure uses solid-state semiconductor
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wafers as light-emitting substances; when a forward voltage is applied to both its ends, the
carriers in the semiconductor wafers will be recombined to release excess energy, which
triggers photon radiation, forms visible light, and directly converts electrical energy into
light. In addition, LEDs have benefits such as small size, low energy consumption, extended
lifespan, safety of use, energy saving, and environmental preservation in comparison to
conventional lighting devices [7].

At present, the regulatory effect of combinations of red and blue lights on the morphol-
ogy, development and nutritional quality of microgreens has received widespread attention
internationally. Seo et al. [8] also found that different light condition treatments could affect
the content of monomeric phenols in buckwheat sprouts and microgreens. Under red and
blue light irradiation, the contents of rutin and chlorogenic acid in buckwheat microgreens
were higher, while under blue light irradiation, the accumulation of anthocyanins in buck-
wheat microgreens was promoted. In addition, light condition stress has a certain impact
on the expression of genes such as FtDFR and FtANS. Nam et al. [9] found that red light
could promote the synthesis of flavonoids in the cotyledons of young buckwheat seedlings,
while blue light could significantly inhibit the accumulation of C-glycosyl flavonoids in the
plants. Tuan et al. [10] studied the regulation of white, blue and red light-emitting diodes on
carotenoid content and synthesis-related enzymes in microgreens; the results showed that
compared with blue light and red light, the amount of carotenoids in microgreens under white
light treatment was 1282.63 ug/g DW, and the expression of synthesis-related enzyme genes
was higher than that under blue and red light treatment. The study by Ban Tiantian et al. [11]
found that under red light irradiation, the contents of vitamin C, protein, and anthocyanins
in pea microgreens were the highest, while the content of amino acids increased by 312.55%
compared with the control under blue light irradiation, and the quality and growth indices
of microgreens improved by a ratio of R4B1 between red and blue light. Therefore, during
the cultivation process, appropriate combinations of red and blue light should be selected to
improve the growth, development, and nutritional quality of microgreens.

Although existing research indicates that technologies regulating combinations of red
and blue light have good application prospects in agricultural production, research on
buckwheat microgreens is not yet very complete. Therefore, this study used buckwheat
microgreens as experimental materials, and set different light condition treatments to
study the effects of different combinations of red and blue light condition treatments
on the growth, nutritional quality, and metabolites of buckwheat microgreens. Through
this research project, the impact of combinations of red and blue lights on the growth
and nutritional quality of buckwheat microgreens is clarified, providing a reference for
achieving the large-scale application of high-performance combinations of red and blue
lights required for buckwheat microgreen production.

2. Materials and Methods
2.1. Experiment Materials

The experiment was conducted in Shengjian Ranch, Inner Mongolia, China in 2022. The
tested buckwheat seeds were “Mongolian No.2” provided by Inner Mongolia Academy of
Agricultural Sciences, with a thousand grain weight of 35.56 ± 0.05 g. Choose plump, mature,
mechanically undamaged, and uniformly sized seeds for the experiment. The hypocotyl is the
main edible part of buckwheat microgreens. The LED lights used in this study were produced
by Shandong Guixiang Optoelectronics Co., LTD (Weifang, Shandong, China).

2.2. Seed Processing

Sterilization treatment: Soak the seeds in a 10% sodium hypochlorite solution for 0.5 h,
and then rinse with clean water 5 times.

Soaking: at room temperature, water and seeds are mixed in a mass ratio of 4:1; the
soaking time is 14 h.

Germination: Soaked seeds are placed in a seedling tray with a size of 32 cm × 25 cm ×
5 cm, the bottom of the seedling tray is covered with moist gauze, and an amount of 20 g is
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sowed in each seedling tray. Place the seedling tray in a dark environment for germination,
with a temperature of 25 ± 1 ◦C, relative humidity of 85%, and a cultivation time of 24 h.

After the seeds sprout, transfer the seedling tray to the cultivation rack and perform
different light treatments. The temperature of the cultivation room is 25 ± 1 ◦C and the
relative humidity is 85%.

2.3. Light Condition Design

The experiment adopted a random block design, with the proportion of red and blue
composite lights as variables, and selected red light at 660 nm wavelength and blue light at
450 nm wavelength as lighting sources. A total of 5 light condition treatments with different
ratios of red and blue light were set up in the experiment, with white light as the control, and
each treatment was repeated 3 times. The main parameters and proportion settings of the
energy distribution in the combinations of red and blue light are shown in Table 1. Adjust
the distance between the light source and the plant, use a plant light analyzer to adjust
the ratio of red and blue light, and maintain the light intensity at 30 µmol/m2·s−1 with a
light period of 12 h/d. Spray distilled water evenly every 8 h. After germination, conduct
light cultivation and harvest after 7 days of cultivation. The edible organ morphology
development of buckwheat microgreens under these different light condition treatments is
shown in Figure 1.

Table 1. Main parameters and proportion settings of spectral energy distribution in the combinations
of red and blue light.

Treatment Light Condition Light Spectral Energy
Distribution λp (nm) Light Intensity

(µmol·m−2·s−1)

W (CK) Fluorescent light White light 380~750 nm 30

R5B1 Red + Blue Red:Blue = 5:1
Red light 660 nm

30Blue light 450 nm

R3B1 Red + Blue Red:Blue = 3:1
Red light 660 nm

30Blue light 450 nm

R1B1 Red + Blue Red:Blue = 1:1
Red light 660 nm

30Blue light 450 nm

R1B3 Red + Blue Red:Blue = 1:3
Red light 660 nm

30Blue light 450 nm

R1B5 Red + Blue Red:Blue = 1:5
Red light 660 nm

30Blue light 450 nm
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2.4. Measurement Indicators and Methods
2.4.1. Measurement of Growth Characteristics

After 7 days of cultivation under different lighting conditions, 30 plants were randomly
selected from the different treatments. Measure the length of the hypocotyl and main root
using a ruler, and the diameter of the hypocotyl using a vernier caliper. Measure the fresh
weight of the entire plant and the fresh weight of edible organs using an electronic balance;
after the measurement is completed, the plant and edible organs are packaged and marked
and then sterilized in an oven at 105 ◦C for 15 min. Then, they are dried to a constant
weight at 80 ◦C and weighed to obtain the dry weight of the entire plant and edible organs.
Average values are used to represent test results.

Edible rate(%) =
Fresh weight of edible organ

Total fresh weight
× 100%

2.4.2. Measurement of Quality Characteristics

The soluble protein content was determined using the Coomassie Brilliant Blue G-250
method [12]. The vitamin C content was measured using a spectrophotometer [13]. The
chlorophyll content was determined via the ethanol acetone extraction method [14]. The
content of rutin was determined by ethanol extraction spectrophotometry [15]. The total
flavonoid content was determined by ethanol extraction spectrophotometry [16].

2.5. Data Processing and Analysis

The experimental data were processed and analyzed using Microsoft Office Excel 2016
and SPSS 19.0 statistical analysis software, and Tukey’s post-hoc test was used to determine
the significance of differences between each treatment (p < 0.05).

3. Result and Analysis
3.1. Effects of Different Combinations of Red and Blue Light on the Edible Organ Morphology
Characteristics of Buckwheat Microgreens

The effects of different treatments of combinations of red and blue light on the
hypocotyl length, hypocotyl diameter, and main root length of the buckwheat micro-
greens are shown in Figure 2. The longest hypocotyl length of the buckwheat microgreens
was recorded under R5B1 treatment at 11.42 mm, significantly higher than that in control
group W, followed by buckwheat microgreens under R3B1 treatment. From the graph,
it can be seen that as the proportion of blue light in combinations of red and blue light
gradually increases, the hypocotyl length shows a decreasing trend. Compared with the
control group, the R1B5 treatment group reduced the hypocotyl length of the buckwheat
microgreens by 30.1%, significantly inhibiting the increase in the hypocotyl length of the
buckwheat microgreens, but the diameter of the hypocotyl reached its maximum value of
1.78 mm under R1B5 treatment. Compared with the control, except for the high-proportion
red light treatments R5B1 and R3B1, other combinations of red and blue light treatments
all increased the hypocotyl diameter of the buckwheat microgreens to varying degrees,
showing an upward trend, and there was no significant difference between R5B1 and R3B1
compared to the control group, which indicates that adding a high proportion of blue light
in combinations of red and blue light is beneficial for the lateral growth of the hypocotyl
in buckwheat microgreens. Compared with the control group W, the main root length
of the buckwheat microgreens under high-proportion red light R5B1 treatment reached
its maximum value of 5.63 cm, significantly higher than other treatments; however as
the proportion of blue light increased, the root length of the buckwheat microgreens was
inhibited, and the main root length under R1B5 treatment was 2.86 cm, significantly lower
than the 3.65 cm of the control group W, which indicates that a high proportion of red light
in combinations of red and blue light can promote the growth of buckwheat microgreen
roots, while increasing the proportion of blue light will inhibit root elongation.
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Figure 2. Effects of different combinations of red and blue light on hypocotyl length, hypocotyl
diameter, and main root length of the buckwheat microgreens: (A) Hypocotyl length; (B) The diameter
of the hypocotyl; (C) Main root length. Different letters represent significant differences between
treatments for the same indicator when p < 0.05.

3.2. Effects of Different Combinations of Red and Blue Light on the Biomass of the
Buckwheat Microgreens

The effects of different treatments of combinations of red and blue light on the biomass
of the buckwheat microgreens is shown in Table 2. Among the six light condition treatments,
the buckwheat microgreens treated with the highest proportion of red light, R5B1, showed
the highest total fresh weight and fresh weight of edible organ, significantly higher than the
control W. The total fresh weight and fresh weight of edible organ of R1B5, treated with the
highest proportion of blue light, were the lowest. The total dry weight and dry weight of
edible organ of the buckwheat microgreens treated with different combinations of red and
blue light were significantly higher than in the control group W, and reached the maximum
in R1B1 treatment.

Table 2. Effects of different combinations of red and blue light on the biomass of the buckwheat mi-
crogreens.

Light
Treatment

Total Fresh
Weight/mg

Total Dry
Weight/mg

Fresh Weight of
Edible Organ/mg

Dry Weight of
Edible Organ/mg

Edible
Rate/%

W 261.50 ± 3.82 b 17.44 ± 0.79 c 212.67 ± 1.53 c 14.23 ± 0.57 d 81.33 ± 0.88 c

R5B1 273.61 ± 2.14 a 21.24 ± 0.57 b 243.56 ± 2.08 a 17.15 ± 0.18 b 89.05 ± 0.09 a

R3B1 268.28 ± 1.31 ab 21.23 ± 0.42 b 235.32 ± 4.51 a 16.02 ± 0.18 c 87.70 ± 1.18 a

R1B1 264.48 ± 3.07 ab 23.77 ± 0.89 a 223.04 ± 3.61 b 19.27 ± 0.29 a 84.31 ± 0.51 b

R1B3 251.53 ± 2.47 c 21.54 ± 0.44 b 205.11 ± 3.97 cd 17.66 ± 0.43 b 81.49 ± 0.61 c

R1B5 246.08 ± 3.52 c 20.95 ± 1.13 b 200.68 ± 2.52 d 17.06 ± 0.11 b 81.58 ± 0.45 c

Different letters represent significant differences between treatments for the same indicator when p < 0.05.

The highest edible rate of the buckwheat microgreens, under the R5B1 treatment,
reached 89.05%, which was significantly higher than the control treatment. There was no
significant difference between the edible rate of the two high-proportion blue treatment
groups R1B3 and R1B5 and the control group. It can be seen that, compared with the control
group, as the proportion of red light increases, the edible rate of buckwheat microgreens
significantly increases.

3.3. Effects of Different Combinations of Red and Blue Light on the Nutritional Quality of
Buckwheat Microgreens

The effects of different treatments of combinations of red and blue light on the contents
of soluble protein, vitamin C, chlorophyll, and carotenoids in the buckwheat microgreens
are shown in Figure 3. The soluble protein content under R1B1, R1B3, and R1B5 treatments
was significantly higher than in the control W, with R1B5 treatment reaching a maximum
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value of 4.98 mg/g FW. Different proportions of combinations of red and blue light all in-
creased the content of soluble protein in buckwheat microgreens, with only R5B1 treatment
showing no significant increase in soluble protein compared to the control. The results
showed that the soluble protein content increased with increases in blue light ratio.

Agronomy 2024, 14, x FOR PEER REVIEW 7 of 11 
 

 

 
Figure 3. Effects of different combinations of red and blue light on the contents of soluble protein, 
vitamin C, chlorophyll, and carotenoids in the buckwheat microgreens: (A) Soluble protein; (B) 
Vitamin C; (C) Chlorophyll; (D) Carotenoids. Different letters represent significant differences 
between treatments for the same indicator when p < 0.05. 

3.4. Effects of Different Combinations of Red and Blue Light on the Content of Secondary 
Metabolites in Buckwheat Microgreens 

The effects of different treatments of combinations of red and blue light on the 
content of rutin and total flavonoids in the buckwheat microgreens are shown in Figure 
4. When the buckwheat microgreens were harvested after seven days of light cultivation, 
different combinations of red and blue light had different effects on the rutin content in 
the buckwheat microgreens. The rutin content in the high-proportion red light treatments, 
R5B1 and R3B1, was significantly lower than in the control, and the rutin content in the 
R5B1 treatment was the lowest at 45.96 mg/g, which decreased by 21.7% compared to the 
control; there was no significant difference between the R1B1 treatment and the control 
group. As the proportion of blue light in combinations of red and blue light increased, the 
rutin content in the buckwheat microgreens also increased significantly; the rutin content 
in the R1B3 and R1B5 treatments was significantly higher than that in other treatment 
groups, with the highest rutin content, in the R1B5 treatment, reaching 64.45 mg/g, which 
was 15.6% higher than the control group. 

On the seventh day of light cultivation of the buckwheat microgreens, compared with 
the control group W, different combinations of red and blue light significantly increased 
the total flavonoid content in the buckwheat microgreens. Among them, R1B5 treatment 
showed the greatest improvement, which was 15.9% higher than the control group. The 
comparison of total flavonoid content among the other treatments is R1B3 > R1B1 > R3B1 
> R5B1. The total flavonoid content of R5B1 treatment was 77.66 mg/g, which was also 
significantly higher than in the control W. As the proportion of blue light in combinations 
of red and blue light increased, the content of total flavonoids in the buckwheat 
microgreens showed a gradually increasing trend. 

Figure 3. Effects of different combinations of red and blue light on the contents of soluble protein,
vitamin C, chlorophyll, and carotenoids in the buckwheat microgreens: (A) Soluble protein; (B) Vita-
min C; (C) Chlorophyll; (D) Carotenoids. Different letters represent significant differences between
treatments for the same indicator when p < 0.05.

Variously proportioned combinations of red and blue light treatments all increased the
content of vitamin C in the buckwheat microgreens. The highest content of vitamin C in the
buckwheat microgreens, under R1B5 treatment, reached 511.2 mg/kg, and the content of
vitamin C showed an upward trend with increases in blue light ratio; the vitamin C content
in the buckwheat microgreens under R5B1 treatment was 432.5 mg/kg, which was still
higher than the control group. There was no significant difference between each treatment
and the control.

Different treatments of combinations of red and blue light had different effects on the
chlorophyll content and carotenoid content of the buckwheat microgreens. Compared with
the control W, each combination of red and blue light increased the chlorophyll content
of the buckwheat microgreens. Among all treatments, the chlorophyll and carotenoid
contents under R1B5 treatment were the highest of any group, reaching 17.09 mg/100 mg
and 2.67 mg/100 mg, respectively; the chlorophyll content increased by 29.8% compared to
the control. The contents of chlorophyll and carotenoids under different light condition
treatments showed a similar trend of change, all increasing with increases in blue light ratio.

3.4. Effects of Different Combinations of Red and Blue Light on the Content of Secondary
Metabolites in Buckwheat Microgreens

The effects of different treatments of combinations of red and blue light on the con-
tent of rutin and total flavonoids in the buckwheat microgreens are shown in Figure 4.
When the buckwheat microgreens were harvested after seven days of light cultivation,
different combinations of red and blue light had different effects on the rutin content in
the buckwheat microgreens. The rutin content in the high-proportion red light treatments,
R5B1 and R3B1, was significantly lower than in the control, and the rutin content in the
R5B1 treatment was the lowest at 45.96 mg/g, which decreased by 21.7% compared to the
control; there was no significant difference between the R1B1 treatment and the control
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group. As the proportion of blue light in combinations of red and blue light increased, the
rutin content in the buckwheat microgreens also increased significantly; the rutin content in
the R1B3 and R1B5 treatments was significantly higher than that in other treatment groups,
with the highest rutin content, in the R1B5 treatment, reaching 64.45 mg/g, which was
15.6% higher than the control group.
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Figure 4. Effects of different combinations of red and blue light on the contents of rutin and total
flavonoids in the buckwheat microgreens: (A) Rutin; (B) Total flavonoids. Different letters represent
significant differences between treatments for the same indicator when p < 0.05.

On the seventh day of light cultivation of the buckwheat microgreens, compared with
the control group W, different combinations of red and blue light significantly increased the
total flavonoid content in the buckwheat microgreens. Among them, R1B5 treatment showed
the greatest improvement, which was 15.9% higher than the control group. The comparison of
total flavonoid content among the other treatments is R1B3 > R1B1 > R3B1 > R5B1. The total
flavonoid content of R5B1 treatment was 77.66 mg/g, which was also significantly higher
than in the control W. As the proportion of blue light in combinations of red and blue light
increased, the content of total flavonoids in the buckwheat microgreens showed a gradually
increasing trend.

4. Discussion

Different combinations of red and blue light have a positive effect on the growth of
buckwheat microgreens, leading to elongation of the hypocotyl and significant increases in
main root length, edible fresh weight, and edible rate. This experiment found that during
the growth of buckwheat microgreens, compared with the control group under white light
(W), treatment groups R5B1 and R3B1, with high proportions of red light, significantly
increased the hypocotyl length of the buckwheat microgreens. It is speculated that red
light can enhance the activity of plant photosensitizers, thereby promoting cell division
in the stem and causing an increase in hypocotyl length, which is due to the conversion
of two different structures in the photosensitizers, Pfr and Pr, in the plant after red light
irradiation, causing changes in endogenous hormones and promoting the growth of its
hypocotyl [17]. The study found that blue light inhibited the elongation of hypocotyls in
seedlings, while red light had the opposite effect [18], which is consistent with the results
of this experiment. In the growth and development of buckwheat microgreens, adding a
high proportion of blue light, such as in treatments R1B5 and R1B3, to red and blue light
combinations will significantly inhibit the elongation of the hypocotyl of the buckwheat
microgreens, but significantly increase the diameter of the hypocotyl. Previous studies have
shown that light can inhibit the growth of sprouts, causing sprouts to transition towards
a shorter and thicker type, and the inhibitory effect of blue light is most significant [9];
the results of this experiment are almost consistent with the above, and the mechanism
of this change may be due to the change in endogenous hormone content caused by blue
light. However, studies have also shown that blue light can promote the elongation and
development of hypocotyls in microgreen vegetables, which may be related to differences
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in light quality responses among different plant varieties [19]. The fresh weight and dry
weight of microgreen vegetables can indicate the level of yield and efficiency, and fresh
weight is a major indicator reflecting the economic benefits of microgreen vegetables, as
well as an important indicator of plant health and material metabolism. Previous studies
have shown that combinations of blue and red light reduce the fresh and dry weight of
cucumber seedlings as the blue light ratio decreases [20]. This experimental study found
that using combinations of red and blue light with a high proportion of red light to treat
buckwheat microgreens resulted in a significant increase in fresh weight compared to the
control and other treatments, reaching its maximum value, which may be due to the fact
that red light can improve photosynthetic rate and increase carbohydrate accumulation [21].
However, under the treatments with a high proportion of blue light among combinations
of red and blue light, the buckwheat microgreens showed the opposite effect, significantly
inhibiting the accumulation of carbohydrates, and previous reports have shown that blue
light can regulate some key enzymes in the tricarboxylic acid cycle, especially pyruvate
kinase, which has a regulatory effect on yeast metabolism. It can significantly increase the
dark respiration rate of mitochondria, leading to a decrease in biomass.

In plants, most enzymes belong to the soluble proteins, which have relatively large
molecular weights and complex structures that can produce various reactions, and can also
regulate plant growth and development, resistance to diseases and pests, maturity, and
aging, etc.; therefore, they play a unique role in biomass, and their content is a key indicator
of plant metabolism, whereas soluble protein is easily absorbed by the body, which is an
important indicator of good nutritional quality [22]. It is known that blue light can pro-
mote mitochondrial dark respiration and provide a carbon source for organic components,
promoting protein synthesis; this phenomenon is closely related to the stress resistance
response of plants [4]. This experiment showed that the soluble protein content of the
buckwheat microgreens is highest under higher proportions of blue light treatment. Li et al.
found that the soluble protein content was highest in the leaves of seedlings exposed to blue
light, which is consistent with the conclusion of this experiment [23]. Vitamin C is a very
important vitamin that is essential for the human body. Since the human organism cannot
synthesize vitamin C, vitamin C is considered an essential dietary micronutrient and needs
to be ingested through diet [24]. Su et al. found a positive correlation between blue light ir-
radiation and vitamin C content in pea seedlings, which was higher than other light quality
irradiation treatments [25]. Ioannidi et al. [26] conducted experimental studies on tomatoes
and found that increases in vitamin C content in tomato fruits may be due to external stress
causing the expression of key enzymes in the vitamin C synthesis pathway in the fruit. In
plants, galactolactone dehydrogenase (GLDH) can directly catalyze the conversion of galac-
tose esters to vitamin C [27], and there is evidence to suggest that blue light can enhance
the activity of GLDH, thereby promoting the accumulation of vitamin C [28]. Chlorophyll
is the material basis of photosynthesis and has an important impact on the photosynthetic
efficiency of plants. Carotenoids have a certain protective effect on photooxidation and
can improve resistance to light inhibition. Zhang et al. [29] found that under blue light
treatment, the chlorophyll content of Toona sinensis seedlings was significantly higher
than that of the control and other treatments. Studies have shown that under blue light
conditions, the chlorophyll content in pea leaves significantly increases [30]. Lobiuc et al.’s
study [31] showed that at the molecular level, blue light upregulates the gene expression
of MgCH, GluTR, and FeCH, regulating the synthesis of enzymes involved in chlorophyll
biosynthesis and thus promoting chlorophyll accumulation.

Rutin and total flavonoids are important secondary metabolites in buckwheat micro-
greens. Rutin is a representative flavonoid compound [32], a plant-synthesized phenolic
substance; its effects include promoting blood circulation and removing blood stasis, lower-
ing blood lipids, lowering blood sugar, diuresis, anti-cancer activity, enhancing hypoxia
resistance, and improving immune function [33]. The results of this experiment indicate
that the contents of rutin and total flavonoids in the buckwheat microgreens treated with
the highest proportion of blue light (R1B5) are significantly higher than in the control group
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(W) and other treatments with different combinations of red and blue light. After four days
of exposure to blue light, the maximum rutin content was observed in the sprouts [34],
consistent with the results of this experiment. Previous research has shown that compared
to red light or fluorescent lamps, blue light can be used to increase flavonoid levels in
common buckwheat malt [35]. Liu et al. [36] found that under blue light conditions, the
flavonoid content in the leaves of honeysuckle seedlings is the highest. Nam et al. [9]
found that blue light promoted the total flavonoid content in buckwheat malt, while red
light showed the opposite effect, which could be due to the synthesis of flavonoids being
sensitive to changes in light quality. Furthermore, blue light effectively enhances flavonoid
accumulation by upregulating the expression of pathway genes [37], thus leading to the
promotion of synthesis and accumulation of total flavonoid in buckwheat microgreens.

5. Conclusions

The growth condition under red–blue light combinations was better than that under
white light in buckwheat microgreens production. A high proportion of red light treatment
is conducive to increasing the weight of the edible organ of buckwheat microgreens, while
increasing the proportion of blue light can improve the nutritional quality of buckwheat
microgreens to a certain extent. Considering the fresh weight, dry weight and quality
indexes of the edible organ, the combination of red light and blue light with a ratio of
1:1 was most suitable for buckwheat microgreen production. The results can provide a
reference for the production of buckwheat microgreens.
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