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Abstract: Analysis of the relationship between future land use change and agricultural non-point
source pollution (ANPSP) evolution is vital to promoting sustainable regional development. By
simulating future land use types, we can identify and analyze the evolution trend of ANPSP. This
study takes Chongqing as a case study to establish an integrated solution based on the PLUS model,
output coefficient model, and GIS technology. The solution can simulate data, identify trends, and
identify key control areas under future development scenarios. The results show that the PLUS model
can simulate land use types at the provincial scale with high accuracy, with a Kappa coefficient of
around 0.9. The land use type changes show that urban expansion has occupied a large amount
of cultivated land. From 2000 to 2020, the proportion of high-load areas with TN pollution load
levels was 4.93%, 5.02%, and 4.73%, respectively. Under the two scenarios in 2030–2050, the number
of high-load areas decreased, and the average load level decreased from west to east. Sensitivity
analysis found that risk changes are more sensitive to the increase in fertilizer application. When the
TN and TP output coefficients are increased, the number of towns with increased levels is greater
than those with decreased levels when the output coefficients are decreased. Sensitivity analysis
can better identify key pollution control areas. The areas sensitive to changes in farmers’ behavior
are mainly the Hechuan District, Nanchuan District, Qijiang District, Jiangjin District, and Bishan
District. This study provides data and decision-making support for rural green development and
water environment improvement.

Keywords: agricultural non-point source pollution; PLUS model; output coefficient model; sensitivity
analysis; Chongqing

1. Introduction

With the rapid development of the agricultural economy and urbanization, the contra-
diction between economic growth and the ecological environment is becoming increasingly
prominent. Excessive pesticides and fertilizers result in the leaching of nitrogen and
phosphorus from the soil into surface and groundwater, leading to agricultural non-point
source pollution (ANPSP) [1,2]. Wide distribution, multiple sources, continuous emissions,
randomness, and potential hazards characterize ANPSP. Quantifying and identifying the
pollution load and critical control areas of ANPSP is the key to green development and
constructing a beautiful China [3]. As point-source pollution is controlled, ANPSP has be-
come the world’s primary source of water pollution, attracting widespread attention from
all over the world. For example, in the European Union and Germany, agriculture accounts
for about 55% and 48% of surface water pollution, respectively [4]; in Pakistan, due to the
unqualified quality of water resources, the concentration of arsenic in groundwater in some
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areas is too high, causing 40% of deaths and 50% of waterborne infections [5]; in South
Korea, 60% of water pollution is related to non-point source pollution from agricultural
activities [6]; in China, according to the results of the second national pollution source
survey, the total emission of water pollutants in China is about 26.0774 million tons, of
which the proportions of COD, TN, and TP emissions from agricultural sources are 49.77%,
46.52%, and 67.22%, respectively [7]. Therefore, an accurate estimation of the pollution load
of ANPSP is essential for solving the pollution problem. It is a critical issue that must be
addressed in national governance and rural green development in the present and future.

As research on ANPSP deepens, current research hotspots focus on pollution load,
mechanism research, prevention techniques, relevant models, risk assessment, and source
identification [8,9]. For example, Zhou et al. [10] used the PTRFFM to analyze the agricul-
tural NPS load of Miyun Reservoir and identified areas with high pollutant transmission
rates. Yu et al. [11] used the source–sink landscape theory to explore the intensive agri-
cultural watersheds in southeastern China quantitatively and found that the proportion
of sink-type landscapes is large. Currently, ANPSP models are mainly based on meteoro-
logical data, land use data, and pollution survey data. They generally include AGNPS,
AnnAGNPS, HSPF, and SWAT models. These models require a large amount of input
data. Due to the differences in data input and the difficulty in obtaining complete and
high-precision data in some areas, the accuracy of the models is affected [12]. Currently,
there are three main methods for evaluating the pollution load of ANPSP: (1) Small-scale
evaluation based on models such as SWAT, such as Zhang et al. [13] used the SWAT model
and multiple scenarios to calculate the spatial nitrogen pollution in Luoyang City from
2009 to 2018 and analyze the reasons for the change in nitrogen pollution. (2) Large-scale
evaluation based on panel data, such as Wang et al. [14] used panel data from 37 cities in
the Yangtze River Delta from 2000 to 2019 to measure ANPSP. (3) Grid-scale evaluation
based on the output coefficient method, such as Li et al. [15] used the output coefficient
model to evaluate the impact of ANPSP on TN and TP in Beijing, Daqing, and the Three
Gorges Reservoir areas. The output coefficient model is also applicable to other countries
and regions. Johnes [16] calculated the nitrogen and phosphorus loads in the catchment
area of the Windrush River, a tributary of the Thames River in the United Kingdom, using
an output coefficient model; Worrall et al. [17] found through an output coefficient model
that the release of nitrogen from the soil in the UK is showing a decreasing trend; Zhang
et al. [18] simulated the annual variation of phosphorus load in diffusion runoff in Colorado,
New York, and Ohio using an output coefficient model. Currently, there is little research
on the evolution trend of ANPSP in the future. Zhu et al. [19] used the CLUE-S model
to assess the trend of ANPSP risk in the Fuling District of Chongqing, which belongs to
the county-level scale research. Overall, there is little research on the trend evaluation of
ANPSP load at the provincial scale. Land use simulation is a vital issue that needs to be
solved. Currently, common land use-type data simulation methods include CA-Markov
models, system dynamics models, CLUE-S models, and PLUS models [20–22]. Blissag
et al. [23] simulated land use changes in the HoDNA basin from 2030 to 2050 using the
CA-ANN approach; Chasia et al. [24] simulated potential land use changes in the SiO
Malaba Malakisi catchment area using the CLUE-S model. Among these models, only the
PLUS model is suitable for land use-type data simulation at the provincial scale.

Chongqing is a typical mountain city with a high proportion of mountains, a high pro-
portion of rural areas, a high intensity of land development and utilization, and abundant
and concentrated precipitation. As a result, the risk of ANPSP in the region is relatively
high. According to publicly available data from Chongqing in 2020, the application inten-
sity of fertilizer per hectare of cultivated land area was 266.36 kg/hm2, which exceeds the
internationally recognized safe upper limit of fertilizer application of 225 kg/hm2 [25].

Xiao et al. [26] pointed out that from 1998 to 2011, the average annual emissions of
TN and TP in the Chongqing section of the Three Gorges Reservoir Area were 134,076.92 t
and 61,651.66 t, respectively, with an average emission intensity of 1910 kg/hm2 and
610 kg/hm2; Guan et al. [27] pointed out that the ANPSP in various districts and counties
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of the Three Gorges Reservoir Area is generally at medium risk, with the Nan’an District
of Chongqing having the highest risk value, followed by areas such as Dadukou and
Shapingba. It is evident that the implementation of ANPSP control in Chongqing is
urgent. Chongqing is located in the upper reaches of the Yangtze River and is a critical
ecological security barrier zone with important ecological status. The assessment of the
ANPSP load under future development scenarios in Chongqing is of great scientific and
practical significance for reducing regional pollution risks and promoting regional rural
green development.

Therefore, this study takes Chongqing as a case study. First, it simulates Chongqing’s
land use type data from 2030 to 2050 under the natural development scenario (ND) and the
ecological protection scenario (EP) based on the PLUS model. Second, it identifies the evo-
lution patterns and trends of the ANPSP load in Chongqing from 2000 to 2050 based on the
output coefficient model. Third, it conducts sensitivity analysis through output coefficient
adjustment to analyze the evolution trends of ANPSP load under different fertilization
scenarios. Finally, it comprehensively identifies key control areas for ANPSP, providing
methods and data support for rural green development and precise pollution control.

2. Materials and Methods
2.1. Study Area

Chongqing is located in southwest China and is at the heart of the Three Gorges
Reservoir area, as shown in Figure 1. It is an essential ecological barrier in the upper
reaches of the Yangtze River. Chongqing is also the core of national economic strategies
such as the Chengdu–Chongqing Twin Cities Economic Circle and the Western Land–
Sea New Corridor. It plays a pivotal role in the economic development and ecological
environment protection of the entire Yangtze River basin. Chongqing has a land area
of 8.24 × 104 km2, making it the most prominent mountain city in China. It belongs to
the typical category of large cities, large mountainous areas, and large rural areas. The
Chongqing Municipal Government has conducted ecological restoration and governance
work to address environmental pollution issues. In 2022, the city added 1617 km2 of water
and soil loss control area; the coverage rate of green pest control for major agricultural
crops reached 51.76%; and the coverage area of livestock tail water treatment in the city
reached 90,000 mu. These efforts have to some extent eased the conflict between economic
development and environmental protection (data from the “2022 Chongqing Ecological
Environment Status Bulletin” released by the Chongqing Municipal Bureau of Ecology
and Environment (https://sthjj.cq.gov.cn, accessed on 10 December 2023). However, with
the rapid economic development in the region, the contradictions between agricultural
planting, economic growth, and ecological protection will gradually intensify. There are
39 districts and counties and 1035 townships in Chongqing, with complex terrain, a variable
climate, multiple soil types, and abundant plant types. It is challenging to solve the problem
of ANPSP in identifying districts and counties, and it is tough to prevent and control it
in various townships accurately. In addition, due to the complex terrain, variable climate,
diverse soil types, and rich planting types in the region, the current ANPSP problem is
difficult to control over a large area. Therefore, accurately identifying key control areas is a
critical problem that needs to be solved.

https://sthjj.cq.gov.cn
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Figure 1. Location map of Chongqing city.

2.2. Data Sources

The data used in this study mainly include land use data (2000, 2010, and 2020),
vegetation coverage index (NDVI) data (from the Resource and Environment Science
Data Center of the Chinese Academy of Sciences (http://www.resdc.cn/, accessed on
20 November 2023), digital elevation model (DEM) data (from the Geographic Space
Data Cloud of the Chinese Academy of Sciences (http://www.gscloud.cn/, accessed on
15 December 2023), water system data and road data (from OpenStreetMap maps), and
district and town boundary data (from the Chongqing Municipal Planning Department).

2.3. Methods
2.3.1. The PLUS Model

The PLUS model is software developed by the High-Performance Spatial Comput-
ing Intelligent Laboratory (HPSCIL) of the China University of Geosciences (Wuhan)
(https://www.urbancomp.net/archives/plus, accessed on 20 August 2023). The model
mainly simulates future land use-type data under different scenarios in the study area by
using the rule mining framework (LEAS) based on land expansion analysis and the CA
model (CARS) based on a multi-type random seed mechanism [28]. The model considers
the complexity and micro-nature of the macro-driving factors of the land use system, thus
improving the simulation accuracy of the model. The flowchart for land use simulation in
this study is shown in Figure 2.

http://www.resdc.cn/
http://www.gscloud.cn/
https://www.urbancomp.net/archives/plus
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(1) LEAS module.

This module extracts expansion information from the land use data of two periods
and uses the random forest classification method to obtain the possibility of growth of
each type of land use and the influence weights of each driving factor. The development
probability of the spatial point of i land use being converted into k land use is obtained.
The specific calculation formula is as follows [22]:

Pd
i,k(x) =

∑M
n=1 I(h(x) = d)

M
(1)

In this model, d can be 0 or 1. When d is 1, it means that other land use types are
converted to land use type k. When d is 0, it means that land use type k is converted to
other land cover types. x is a high-dimensional vector composed of multiple driving factor
variables. I() is an indicator function. hn(x) is the type of element x simulated by the n-th
decision tree. M is the total number of decision trees in the random forest model.

(2) CARS module.

This module combines the top-down and bottom-up structural mechanisms, con-
necting random seed generation with the decreasing threshold. Under the constraints
of development probability and the number of land uses, it automatically simulates the
generation of land use patches with the following calculation formula [29]:

OPd=1,t
i,k =

{
Pd=1,t

i,k × (γ × µk)× Dt
k, Ωt

i,k = 0 and γ < Pd=1
i,k

Pd=1
i,k × Ωt

i,k × Dt
k, Ωt

i,k ̸= 0 or γ ≥ Pd=1
i,k

(2)

In this equation, γ is a random value from 0 to 1. OP represents the total probability
of the i-th pixel transitioning from the initial land use type to the k-th land use type in the
t-th iteration. µk is the threshold for the k-th site type to generate a new patch. Dt

k is the
inertia coefficient of the k-th land use type in the t-th iteration. Ωt

i,k is the spatial influence
factor of the i-th pixel transitioning from the initial land use type to the k-th land use type
in the t-th iteration.
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Land use change is a complex process that varies over time and space. Therefore, the
selection of driving factors should consider data availability, security, accessibility, and
comprehensiveness. Considering the data availability and human activity impact, the
driving factors selected in this study are shown in Table 1.

Table 1. Driving factors and their meanings.

Types Driving Factors Meaning

Terrain data Elevation DEM data

Traffic data
Distance from highway

The distance from roads
and water systems is

expressed in
Euclidean distance

Distance from expressway
Distance from ordinary highways

Stream
Distance from other roads

Distance from primary rivers
Distance from secondary rivers

Urban data Urban land /

Vegetation Index NDVI data /

Regions restricted by national
regulations for development Water area /

Land use needs and development vary across regions. To make the results more
scientific and reliable, this study sets up two scenarios to simulate the future land use
situation in Chongqing from 2030 to 2050, providing a more reliable and forward-looking
scientific and theoretical reference for relevant departments in Chongqing.

Scenario 1: ND: Based on the land use changes in Chongqing from 2000 to 2020,
according to the current land use spatial evolution laws, without setting any policy impacts,
the land use needs under the natural growth scenario from 2030 to 2050 are predicted with
an interval of 10 years.

Scenario 2: EP: Based on the land use changes in Chongqing from 2000 to 2020, urban
development will be limited, and the ecological environment will be protected. Combined
with the current Chinese farm land protection strategy and the transformation of urban
development models, in the EP, the growth rates of farm land, grass land, and unused land
are reduced by 10%, and the growth rates of wood land, water bodies, and urban land are
reduced by 10% to balance the area changes [30,31].

2.3.2. The Export Coefficient Model

The export coefficient model was proposed to calculate the total pollution load in a
watershed under different land use types [32]. The model is based on the mathematical
method of multivariate linear regression analysis. Combining the determined pollutant
output coefficients and land use data, the model constructs the relationship between land
use types and non-point source pollution load values in Chongqing. Then, the pollution
load of different types is summed to obtain the total pollution load of the study area. The
total pollution load is divided into five levels: low-level zone, lower-level zone, medium-
level zone, higher-level zone, and high-level zone, according to the natural breakpoint
method. In this study, the total pollution emission was represented by the agricultural
emissions of TN and TP. The model equation is as follows [16]:

Lj =
m

∑
i=1

Eij Ai + P (3)

In this equation, j is the type of pollutant; i is the type of land use in the watershed,
with a total of m types; Lj is the total load of pollutant j in the watershed (kg·hm−2·a−1);
Eij is the output coefficient of pollutant j in the i-th type of land use in the watershed
(kg·hm−2·a−1); Ai is the area of the i-th type of land use (hm2); P is the total amount of
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pollutant input by rainfall (kg·hm−2·a−1), which is not considered in this study. Based
on existing research and the actual situation of the study area, the output coefficients of
each land use type are determined as shown in Table 2 (Currently, the commonly used
land use type data does not distinguish between dryland and paddy fields, and Chongqing
belongs to a typical dryland and paddy field rotation region. Unused land refers to bare
land, wasteland, and other land that cannot be included in the other five types.), concerning
the study by Zhu et al. [33].

Table 2. The output coefficient of land use types in Chongqing.

Pollution Type Farm
Land

Wood
Land

Grass
Land

Urban
Land

Water
Body

Unused
Land

TN 24.19 2.60 6.04 13.00 - -
TP 1.86 0.17 0.85 1.80 - -

3. Results
3.1. Land Use Status and Simulation Accuracy Analysis

Chongqing’s land use types have undergone significant changes from 2000 to 2020, as
shown in Figure 3. The largest land use type is farm land, with its area share decreasing
from 46.93% in 2000 to 45.05% in 2020. Urban land area share increased from 608.82 km2

in 2000 to 2383.76 km2 in 2020, with a clear increasing trend. This is mainly due to the
expansion of cities, which have occupied cultivated land in neighboring areas. Forest area
increased first and then decreased; grass land area showed a decreasing trend; and water
area showed an increasing trend.
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The Kappa coefficient was used to evaluate the accuracy of the PLUS model. The
Kappa coefficients of this study’s 2000–2010 and 2010–2020 simulations were 0.92 and 0.89,
respectively. These values indicate that the simulated results are highly consistent with the
actual data, with high simulation accuracy. The model can accurately reflect the land use
distribution in the study area. The comparison results are shown in Figure 4.
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3.2. Land Use Data Simulation under Future Development Scenarios

Based on the land use data of Chongqing in 2020, the PLUS model was used to simulate
the area of each land use type under the two scenarios of 2030–2050 and obtain the land
use transition matrix, as shown in Figures 5–7.
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In the two scenarios, farm land and wood land are Chongqing’s main land use types.
Farm land is mainly distributed in the southwest of the Chongqing metropolitan area
and the southwest of the Northeast Chongqing urban agglomeration, while wood land is
distributed primarily in the northeast of the Northeast Chongqing urban agglomeration and
the northeast of the Southeast Chongqing urban agglomeration. Farm land, grass land, and
unused land are decreasing, while wood land, water bodies, and urban land are increasing.
In the ND scenario and EP scenario, the area of urban land, water body, and wood land
increased by (33.22%, 36.05%), (18.50%, 12.98%), and (0.84%, 0.92%), respectively, in 20 years,
with a significant increase in urban land. Farm land, grass land, and unused land decreased
by (4.52%, 4.06%), (0.20%, 2.08%), and (2.91%, 6.33%), respectively, in 20 years. Under
the two scenarios, urban land is mainly concentrated in the outward expansion of the
Chongqing metropolitan area. Grass land mainly grows in the Northeast Chongqing urban
agglomeration and the Southeast Chongqing urban agglomeration. Compared with the
ND scenario, the EP scenario restricts the probability of land use transfer to a certain extent.
The trend of reducing the area of ecological land is effectively controlled, and the reduction
rate slows down.
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3.3. Measuring ANPSP Load in Long-Term Series
3.3.1. Analysis of Changes in ANPSP Load from 2000 to 2020

From 2000 to 2020, the total pollution load showed a downward trend, but the overall
load value was relatively high due to the large base. The total pollution load of TN and
TP in 2000, 2010, and 2020 was 1.08 × 108 kg, 1.07 × 108 kg, and 1.05 × 108 kg, and
8.61 × 106 kg, 8.55 × 106 kg, and 8.53 × 106 kg, respectively. The main sources of ANPSP
TN and TP from 2000 to 2020 were both farm land, with TN and TP pollution load emissions
of 9.31 × 107 kg, 9.23 × 107 kg, and 8.93 × 107 kg, and 7.16 × 106 kg, 7.10 × 106 kg, and
6.87 × 106 kg, respectively. In all cases, the total contribution rate to pollution emissions
was over 80%. The contribution rates of wood and grass land to pollution emissions were
relatively low, with the average annual contribution rate of TN emissions being 8.09%
and 4.68%, respectively, and the average contribution rate of TP emissions being 6.61%
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and 8.23%, respectively. The contribution rate of urban land was the lowest, with average
contribution rates of 1.69% and 2.92% for TN and TP emissions, respectively.

3.3.2. Analysis of the Change in ANPSP Load under the ND in 2030–2050

In the ND, the total load of TN and TP is reduced, and the distribution of TN and TP
pollution load levels is roughly the same, as shown in Figure 8.
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Figure 8. Distribution of average TN and TP load levels for each township under the ND (TP trend
is consistent). (a–c) respectively represent the load situation of TN 2030–2050; (d–f) respectively
represent the average load situation of TN 2030–2050.

From 2030 to 2050, the quantity changes are shown in Table 3. In the TN pollution
level, the low levels and high levels remain stable, with an average annual percentage of
20.68% and 4.41%, respectively. The lower-level zone shows an increasing trend, with the
percentage of grade numbers in 2030, 2040, and 2050 being 31.88%, 32.17%, and 32.66%,
respectively. The medium-level zone shows a fluctuating trend, with the percentage of
grade numbers in 2030, 2040, and 2050 being 28.02%, 28.21%, and 27.83%, respectively. The
higher-level zone decreases from 15.17% in 2030 to 14.30% in 2050. Among them, there are
five towns with an increase of more than 1.00 × 104 kg. The rise of Mawu Town, Fushou
Town, Qingyang Town, Zhonggang Township, and Xinglong Town is relatively large, all of
which have increased by more than 1.20 × 104 kg. Except for Qingyang Town, which rose
by one level, the levels of the remaining areas remain unchanged. There are 72 towns, with
a decrease of more than 1.00 × 104 kg. Jiasi Town, Tai’an Town, Youxi Town, Fengming
Town, Qiantang Town, Shima Town, and Zitong Street have the largest decrease, all of
which have decreased by more than 1.20 × 104 kg, and the load level remains unchanged.

Table 3. Distribution of pollution load levels in the ND from 2030 to 2050.

Pollution Load Level
Number of Townships (TN) Number of Townships (TP)

2030 2040 2050 2030 2040 2050

Low-level zone 211 215 216 229 230 229
Lower-level zone 330 333 338 339 339 346

Medium-level zone 290 292 288 265 226 264
Higher-level zone 157 150 148 147 147 147
High-level zone 47 45 45 55 53 49
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From 2030 to 2050, the TP pollution load remained stable in the low-level, lower-
level, medium-level, and higher-level zones, with the annual average percentage of grade
numbers being 22.16%, 32.98%, 25.60%, and 14.20%, respectively. The high-level zone
showed a downward trend, with the number of zones accounting for 5.31%, 5.12%, and
4.73% in 2030, 2040, and 2050, respectively. Among them were three townships with an
increase of more than 1.00 × 103 kg, namely Zhonggang Township, Mawu Township, and
Fushou Township. The grades remained unchanged. There were 17 townships with a
decrease of more than 1.00 × 103 kg, with Shima Township having the largest decrease, but
it remained in the high-level zone.

The overall trend of the average load levels of TN and TP distribution is consistent
with that from 2000 to 2020. The average load level decreases from west to east, with the
highest average load level in the Chongqing metropolitan area and the lowest average
pollution load in the Southeast Chongqing urban agglomeration. Among the average load
levels in TN, 17 areas were upgraded, 97 areas were downgraded, and 921 areas remained
unchanged. The areas with unchanged levels accounted for 88.99%. Among the average
load levels of TP, 26 areas were upgraded, 56 areas were downgraded, and 952 areas
remained unchanged. The areas with unchanged levels accounted for 91.98%. In particular,
the TN and TP loads in Banan District have a clear downward trend. The changes in the
high-level zones of the average load level of TN in 2030, 2040, and 2050 are 69.23%, 61.54%,
and 46.15%, respectively. The changes in the high-level zones of the average load level of
TP in 2030, 2040, and 2050 are 53.85%, 46.15%, and 30.77%, respectively.

3.3.3. Analysis of the Change in ANPSP Load under the EP in 2030–2050

In the EP, the pollution levels of TN and TP are the same. The load levels of all towns
tend to be stable from 2030 to 2050, as shown in Figure 9.

Agronomy 2024, 14, x FOR PEER REVIEW 11 of 17 
 

 

From 2030 to 2050, the TP pollution load remained stable in the low-level, lower-
level, medium-level, and higher-level zones, with the annual average percentage of grade 
numbers being 22.16%, 32.98%, 25.60%, and 14.20%, respectively. The high-level zone 
showed a downward trend, with the number of zones accounting for 5.31%, 5.12%, and 
4.73% in 2030, 2040, and 2050, respectively. Among them were three townships with an 
increase of more than 1.00 × 103 kg, namely Zhonggang Township, Mawu Township, and 
Fushou Township. The grades remained unchanged. There were 17 townships with a de-
crease of more than 1.00 × 103 kg, with Shima Township having the largest decrease, but 
it remained in the high-level zone. 

The overall trend of the average load levels of TN and TP distribution is consistent 
with that from 2000 to 2020. The average load level decreases from west to east, with the 
highest average load level in the Chongqing metropolitan area and the lowest average 
pollution load in the Southeast Chongqing urban agglomeration. Among the average load 
levels in TN, 17 areas were upgraded, 97 areas were downgraded, and 921 areas remained 
unchanged. The areas with unchanged levels accounted for 88.99%. Among the average 
load levels of TP, 26 areas were upgraded, 56 areas were downgraded, and 952 areas re-
mained unchanged. The areas with unchanged levels accounted for 91.98%. In particular, 
the TN and TP loads in Banan District have a clear downward trend. The changes in the 
high-level zones of the average load level of TN in 2030, 2040, and 2050 are 69.23%, 61.54%, 
and 46.15%, respectively. The changes in the high-level zones of the average load level of 
TP in 2030, 2040, and 2050 are 53.85%, 46.15%, and 30.77%, respectively. 

3.3.3. Analysis of the Change in ANPSP Load under the EP in 2030–2050 
In the EP, the pollution levels of TN and TP are the same. The load levels of all towns 

tend to be stable from 2030 to 2050, as shown in Figure 9. 

 
Figure 9. Distribution of average TN and TP load levels for each township under the EP (TP trend 
is consistent). (a–c) respectively represents the load situation of TN 2030–2050; (d–f) respectively 
represents the average load situation of TN 2030–2050. 

From 2030 to 2050, the quantity changes are shown in Table 4. The town with the high-
est percentage of TN pollution levels is in the lower-level zone, with an average annual rate 
of 32.20%, which shows a fluctuating trend. The percentage of loads is 31.98% → 31.88% → 
32.75%. The medium-level zone remains stable, with an average annual rate of 28.08%; the 
low-level zone shows an upward trend; and the high-level zone and the higher-level zone 
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From 2030 to 2050, the quantity changes are shown in Table 4. The town with the
highest percentage of TN pollution levels is in the lower-level zone, with an average
annual rate of 32.20%, which shows a fluctuating trend. The percentage of loads is
31.98% → 31.88% → 32.75%. The medium-level zone remains stable, with an average
annual rate of 28.08%; the low-level zone shows an upward trend; and the high-level
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zone and the higher-level zone show a downward trend. Among them, there are seven
towns with an increase of more than 1.00 × 104 kg, namely, Mawu Town, Fushou Town,
Qingyang Town, Zhonggang Township, Xinglong Town, Baitao Street, and Ganzhui Town;
the number of towns with a decline of more than 1.00 × 104 kg is 61, and the decrease of
Jiasi Town, Zi Tong Street, Youxi Town, and Shima Town is relatively large, all of which are
greater than 2.10 × 104 kg.

Table 4. Distribution of pollution load levels in the EP from 2030 to 2050.

Pollution Load Level
Number of Townships (TN) Number of Townships (TP)

2030 2040 2050 2030 2040 2050

Low-level zone 210 215 216 229 230 229
Lower-level zone 331 330 339 341 340 345

Medium-level zone 290 295 287 264 264 264
Higher-level zone 157 150 148 146 148 147
High-level zone 47 45 45 55 53 50

The town with the highest percentage of TP pollution levels is in the lower-level
zone, with an average annual rate of 33.04%; only the high-level zone shows a downward
trend, with the percentage of loads from 2030 to 2050 being 5.31% → 5.12% → 4.83%. The
remaining pollution levels remain stable. Among them, there are only four towns with an
increase of more than 1.00 × 103 kg, namely, Zhonggang Township, Fushou Town, Mawu
Town, and Baitao Street; the number of towns with a decline of more than 1.00 × 103 kg
is 16, with the decline being relatively small, and the town with the largest decline is
Shima Town.

The average load level’s spatial distribution trend is consistent with the ND. In the TN
average load level, 10 towns were upgraded, 107 towns were downgraded, and 918 towns
remained the same. In the TP average load level, 7 towns were upgraded, 59 towns
were downgraded, and 969 towns remained the same. Among them, the level of Banan
District has decreased significantly. In the TN average load, Dongwenquan Town, Huimin
Street, and Tianxingsi Town levels have been downgraded to higher-level zones. In the
TP average load, Huimin Street and Tianxingsi Town levels have been downgraded to
higher-level zones.

3.4. Sensitivity Analysis of Output Coefficients to Pollutant Load Levels

As shown in Figure 10, when the output coefficients of TN and TP are increased by
5% in both scenarios, the townships with an increased pollution load are relatively evenly
distributed. When the output coefficients of TN and TP are increased by 10%, the number of
townships with an increased pollution load increases significantly, with an average increase
of more than 80% per year. When the output coefficients of TN and TP are decreased by
5%, the spatial distribution of townships with decreased pollution load is inconsistent with
that of townships with increased pollution load by 5%, and the number of townships with
decreased pollution load is relatively small. When the output coefficients of TN and TP
are decreased by 10%, the number of townships with a decreased pollution load is less
than that of townships with an increased pollution load by 10%. Therefore, when the
output coefficients of TN and TP increase, the pollution load increases, and vice versa.
When the output coefficients are adjusted, the pollution load levels of all townships change
accordingly. In both scenarios, the areas with the most changes in the pollution load levels
of townships are the sensitive areas. Specific sensitive areas are shown in Table 5.
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Table 5. Regions where load levels are sensitive to farmer behavior in two scenarios for 2030–2050.

Chongqing Metropolitan Area Northeast Chongqing
Urban Agglomeration

Southeast Chongqing
Urban Agglomeration

+5% Hechuan, Jiangjin, Bishan,
and Rongchang

Zhongxian, Liangping, Yunyang,
and Fengjie Wulong and Pengshui

+10% Hechuan, Nanchuan, Qijiang, Jiangjin,
Bishan, Rongchang, and Changshou

Zhongxian, Liangping, Wanzhou,
Yunyang, Fengjie, and Wushan Wulong, Pengshui, and Xiushan

−5% Dazu and Nanchuan Fengdu and Kaizhou Youyang

−10% Tongliang, Qijiang, Nanuan, Banan,
Fuling, Dazu, and Yubei

Fengdu, Dianjiang, Kaizhou,
Wanzhou, Fengjie, and Wuxi Shizhu, Pengshui, and Youyang

4. Discussion
4.1. The PLUS Model Is Suitable for Simulating Land Use-Type Data in Chongqing City

Previous research has shown that the PLUS model has been used for land use change
and optimization, ecological risk assessment, and scenario simulation. The model can
compensate for the evolutionary ability of land patches under different policies of other
models such as FLUS, CLUE-S, and CA-Markov. It is also suitable for simulating regions of
larger scales with high simulation accuracy [34]. In this study, we compared our results
with those of other studies ([29,34–36]; the specific results are shown in Table 6) and
found that our kappa coefficients were 0.92 and 0.89, respectively. This indicates that our
simulation accuracy is high, which has certain advantages in accuracy and provides more
reference value.

Table 6. Simulation accuracy was studied by other authors.

Author Model Study Area Kappa

Lu et al. [34] PLUS The yellow river 0.812
Cao et al. [35] PLUS Hefei 0.85
Han et al. [29] PLUS Enshi City and Lichuan City 0.81

Li et al. [36] PLUS Hangzhou City 0.75



Agronomy 2024, 14, 737 14 of 17

4.2. Sensitivity Analysis Can Better Identify Key Areas for Pollution Control

Identifying critical areas for the control of ANSP is essential to improving the cost-
effectiveness of regional protection practices [37,38]. Most existing studies have identified
critical areas based on the “amount” of pollution load. For example, Ding et al. [39] used
the SWAT model to identify key source areas based on the control units; Chang et al. [40]
identified key pollution source areas in the study area based on nutrient load and nutrient
load intensity, which is a method to identify critical control areas based on the average
pollution load of TN and TP; and Xu et al. [41] identified key control source areas based on
the size of the comprehensive pollution index.

In this study, we can identify areas with a high pollution load and key areas for control
in the study area by adjusting the output coefficients to achieve sensitivity analysis. This
can more clearly identify areas more sensitive to changes in output coefficients. As the
output coefficients are increased, the number of sensitive areas increases. Therefore, control
over sensitive areas should be strengthened.

4.3. Land Use Pattern Optimization Plays an Important Role in the Prevention and Control
of ANPSP

In this study, we analyzed the proportion of townships with a land use structure of
more than 20%, 40%, 60%, and 80% of cultivated land and forest land in 2020 and 2050, as
well as the proportion of the total pollution load of these townships in the total pollution
load of all townships. The results are shown in Table 7. The results show that the total
pollution load mainly comes from farm land and wood land. However, even when the
proportion of farm land is low, the pollution load of the township is still high. The pollution
load of townships with more than 80% wood land is extremely low. This shows that the
land use structure significantly impacts the pollution load. In both scenarios, the total
pollution load of farm land and wood land in the EP is relatively low. This shows that
optimizing land use structure is beneficial to reducing the pollution load.

Table 7. Share of farm land, wood land, and total pollution level proportion (unit: %).

20% 40% 60% 80%

Township Total Pollution
Level Township Total Pollution

Level Township Total Pollution
Level Township Total Pollution

Level

2020
Farm land 83.86 93.00 52.27 64.25 31.69 42.31 15.17 21.17
Wood land 62.80 63.54 38.55 36.24 18.55 15.37 2.71 1.55

2050
NP

Farm land 81.06 91.67 46.86 59.52 27.54 37.35 10.92 15.73
Wood land 64.15 66.16 39.13 38.34 19.13 16.72 2.61 1.48

EP
Farm land 80.87 91.61 45.99 58.63 27.05 36.45 10.72 15.38
Wood land 64.25 66.13 39.13 38.21 19.13 16.64 2.71 1.44

Existing studies by Zhu [42], Lin [30], and Han [29] et al. have shown that the ecological
protection scenario is conducive to pollution control or the improvement of environmental
risk through multi-scenario simulation of point source pollution.

4.4. Limitations and Future Prospects of this Study

This study can provide methods and data support for ANPSP control in Chongqing.
However, this study still has some shortcomings. First, the driving factors considered in the
simulation of land use type data are currently commonly used but may also be incomplete.
Second, the selection of output coefficients in calculating the ANPSP load mainly refers to
the existing research results, which may differ from the actual situation. This study’s farm
land output coefficient did not distinguish between dryland and paddy fields and will be
further considered in the future. Third, this study did not conduct an in-depth analysis
of the influencing factors of the ANPSP load. Therefore, in the future, we will conduct
in-depth research on relevant topics, obtain more localized parameters, and identify the key
influencing factors of ANPSP load to effectively support the goal of regional agricultural
green development and the construction of a beautiful China.
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5. Conclusions

This study uses a combination of the PLUS model and the output coefficient model
to analyze the evolution trend of ANPSP load for a long time series from 2000 to 2050 in
Chongqing. It also analyzes the sensitivity of regional pollution loads to output coefficient
adjustment. This study provides good data and methodological support for regional
agricultural green development and constructing a beautiful China. The main conclusions
are as follows:

(1) The PLUS model has high accuracy in simulating the spatial distribution of future
land in Chongqing. Wood land and farm land are the primary land use types in
Chongqing. In the ND, the urban land area will increase from 3.98% in 2030 to 6.20%
in 2050. In the EP, the urban land area will increase from 3.87% in 2030 to 5.87% in
2050. The urban expansion will further occupy cropland.

(2) From 2000 to 2020, the proportion of high-level zones with TN pollution load levels in
Chongqing was 4.93%, 5.02%, and 4.73%, respectively. In both scenarios, the number
of high-level zones decreased, and the average load level decreased from west to east.

(3) The sensitivity analysis found that the number of townships with increased levels
when TN and TP output coefficients were increased was greater than the number of
townships with decreased levels when the output coefficients were decreased. This
indicates that the risk level is more sensitive to the increase in fertilizer application.
Sensitivity analysis can better identify critical areas for pollution control, and the areas
sensitive to changes in farmers’ behavior mainly include Hechuan District, Nanchuan
District, Qijiang District, Jiangjin District, and Bishan District.
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