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Abstract: A WebGis tool called GoProsit has been developed to support winegrowers in planning a
new sustainable vineyard and in the identification of high-quality terroir in Tuscany, Central Italy, by
providing various information on soils, climate, hydrological risks, and fertilization. GoProsit, hosted
by the web platform GEAPP, is a free, user-friendly, and interactive Geographic Decision Support
System (GDSS). Soil data behind the WebGis tool has a 1 ha resolution, achieved by processing
the legacy vector-type soil database of the Tuscany Region with the DSMART (Disaggregation and
Harmonization of Soil Map Units Through Resampled Classification Trees as supervised classification)
algorithm, which disaggregated the map to 297,023 vineyard grid cells. Each grid cell holds climatic
and pedologic information, along with physical and chemical features for each horizon of the most
probable soil. GoProsit also provides soil maps in image format obtained by georeferencing about
50 historical soil maps (1969–2012). Finally, GoProsit runs and returns the outputs of six models:
(a) carbon footprint, (b) potential erosion and maximum vine row length compatible with tolerable
erosion, (c) potential water stress, (d) risk of runoff/waterlogging, (e) identification of suitable
rootstocks, and (f) nutritional needs before planting. Statistics of the main model results for the
investigated area are reported. This promising tool will soon be usable for the whole Italian territory;
however, its potential makes it suitable for use in any wine-growing district.

Keywords: new vine plantation; vineyard soil management; digital soil mapping; spatial DSS;
agricultural modeling

1. Introduction

The impact of viticulture on the environment is generally high as morphology, hydrol-
ogy, and soil characteristics are often modified to enable profitable vine cultivation [1,2].
Besides that, viticultural areas are often located in hilly locations prone to soil erosion [3,4].
Proper soil management, when designing new vineyards and during their whole lifetime,
is crucial to guarantee that viticulture is environmentally sustainable, of high quality, and
terroir-related [5]. In fact, understanding the distribution and the characteristics of soils
could improve terroir acknowledgment.
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Viticulture in Tuscany, Central Italy, represents about 8% of the Utilized Agricultural
Area but produces about 30% of the regional agricultural income [6]. Many Tuscan wineries
expressed the wish to better know the distribution and characteristics of their soils as a
base to determine the most appropriate management practices for both the environment
and the wine quality (personal communication). The negative impacts of climate change,
with more frequent heavy rainfalls and long-lasting drought periods [7], have contributed
to increasing the need for winemakers to know soil characteristics. So far, the soil maps and
terroir mapping produced by a few Tuscan wine growers are sometimes difficult to overlap
with other agricultural and environmental information. Projection studies indicate that 23%
of Italian farms are adopting or intend to adopt Agriculture 4.0 technologies by 2024 [8].
Agriculture 4.0 is an extension of the “precision agriculture” concept and refers to the
ability to implement well-targeted and efficient tools and strategies aiming at improving
the yield and sustainability of agricultural activity and the environmental impact of the
entire agrifood chain [9].

In this framework, we developed the GoProsit for Agriculture 4.0 program, an online,
freely accessible, and easy-to-use Geographic Decision Support System (GDSS) combining
spatial and non-spatial data, based on Geographic Information Systems (GIS) functions. The
GDSS has been designed to transfer knowledge and provide operational support to winery
companies and decision makers involved in the management of vineyard landscapes
at different levels. The scope of this article is the description of the GDSS rationale and
functioning, as well as the elaboration of the results provided by the GDSS, as an assessment
pattern that can be further applied to any wine district.

To support the sustainable planning of new vineyards, GoProsit brings together data
and knowledge from different areas (pedology, hydrology, climate, geomorphology, Life
Cycle Assessment, agronomy, modeling, etc.), with a special focus on soil. GoProsit is
hosted by the web platform http://www.geapp.net/ [10] and has been applied to 297,023
grid cells. Each grid cell is equivalent to raster pixels with a resolution of 100 × 100 m (1
ha). Over the years, several DSS or DST (Decision Support Tools) have been developed
for farmers and many specifically for winegrowers [11,12]. Some of these are specialized
in plant health risks, others in irrigation and treatment planning, and, more recently, in
assessing and optimizing soil functions [13]. In our view, there was a need to implement a
new platform to suggest proper soil management to winegrowers, especially during new
plantations, based on multidisciplinary scientific georeferenced information.

2. Materials and Methods

A 100 m grid was obtained for Tuscany (Figure 1) based on the 1 km INSPIRE grid
(Version: 1.2, 2021) [14]. Each 100 m nodes were uniquely identified following the official
INSPIRE-compliant identification system; about 2,100,000 grid cells were obtained for the
whole of Tuscany, and 297,023 grid cells were selected for vineyards with a 150 m buffer,
based on the vineyards map made by the Regional Agency for the Agricultural Payments
(ARTEA) in 2020 [15].

GeoPackage [16] was chosen as a database container because of several benefits, in-
cluding that it is an open, standards-based, platform-independent, portable, self-describing,
compact format, without limitation on file size for transferring geospatial information.

2.1. Climatic Data

The monthly average, minimum, and maximum precipitation and temperature were
assigned to each grid node from the national METEOGRID climatic dataset with a 30 km
resolution [17]. According to the World Meteorological Organization (WMO), which defines
the “normal standard climates” as the average of climatic variables calculated for a uniform
period of 3 consecutive decades, the selected climate reference period was 1981–2010.

http://www.geapp.net/
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Figure 1. Vineyard saturation in the study area: the Tuscany Region divided into administrative 
provinces. The graduated symbol varies in size according to the percentage of vineyards within each 
province. The green part in the upper left the location of the Tuscan region within the Italian 
territory. 
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2.2. Downscaling of Tuscany Legacy Soil Database

In Tuscany, soils are described in a regional geographic database that is available
online on the Geoscopio portal [18] and the corresponding soil legacy maps which are
constantly updated by the Lamma Consortium (Environmental Modelling and Monitoring
Laboratory for Sustainable Development). It consists of alphanumeric and geographical
archives connected by key fields and contains information about (i) site description: soil
qualities, vertical subdivision in master horizons, and related analyses; (ii) area: map units
(MU) and pedo-landscapes at various scales; and (iii) data estimated from statistics or
expertise: soil typological subunit (STS) and taxonomic classification [19]. The regional
database identifies soils within soil map units, each containing one to several soil types
called soil type units (STUs), and then splits the STUs up into more pragmatic STSs.

The disaggregation of legacy soil maps is a current and great challenge in the field
of digital soil mapping (DSM), hence, the need to increase the spatial resolution of the
Tuscany soil map (downscaling) allocating unique soil classes and their attributes. DSMART
(Disaggregation and Harmonization of Soil Map Units Through Resampled Classification
Trees as supervised classification) is an algorithm based on data mining that was used for
the spatial distribution of soil classes to disaggregate multi-component soil polygon map
units into raster class maps and their associated probabilities [20]. DSMART follows the
SCORPAN approach formalized in [21], which represents a spatial association between soil
forming factors, soil classes or attributes (S), climate (C), organisms (O), relief (R), parent
material (P), age (A), and space (N) as a raster stack of covariates, and the occurrence
of soil classes or continue soil properties. Soil profiles inherit the covariate values and
are used as soil truth sample points in part for supervised classification and in part for
accuracy measurement. A subset of 3790 soil profiles was used as ground truth sample
points for supervised classification and 421 soil profiles, which was equal to 10% of the
whole dataset, as testing data. DSMART was used to predict the most probable STS per
pixel and create an explicit model for each STS. According to INSPIRE Data Specification on
Soil [22], STS definitions are closely linked to the “derived soil profiles” object class. They
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are statistical representations of the properties of the soil profiles belonging to STS [23],
obtained by calculating the average, standard deviation, range, sample size, and modal
value for categorical soil attributes. The statistics of in-depth soil properties were calculated
for the “master genetic horizons” (A, B, C, R) of each STS. All of this retains the original
soil profile descriptions, so long as pedologists assign genetic horizon code, horizon depth,
and thickness during the survey. Running the DSMART v.1.03 R package [24] requires the
following main steps:

(1) Use soil profile (training set) and intersected covariate values to build a decision tree
to predict the spatial distribution of soil classes or STSs.

(2) Extraction of the subset from the soil database corresponding to the land cover class
“agriculture” (farmland STS).

(3) For the sake of simplicity, the most probable STS is assigned at each grid cell (see
Figure 2 for more details).

Due to memory allocation issues in the R environment, the elaboration was split
into 6 parts, as many as the number of different soil regions in Tuscany. The soil region
represents a pedo-landscape unit, scaled at 1:5,000,000; it is the first informative level for
the soil map of Italy and, at the same time, is the tool for soil correlation at the continental
level [23]. The nodes of the reference grid inherit all the STS statistics.
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the Tuscany Region.

2.3. Digitalization of Existing Paper Maps

The digitalization of 50 already existing paper maps was aimed at harmonizing,
preserving, and valuing soil and zoning maps produced in Tuscany over the years. The
paper maps were surveyed at various scales, ranging from a maximum detail of 1:3000 to
the provincial scale of 1:100,000, and dated from 1969 to 2012. Despite notable differences
in quality and intended usage, the digitization of this collection of maps will enable their
dissemination and preservation as open data (FAIR—findable, accessible, interoperable,
and reusable) [25]. The digitalization was performed by georeferencing the maps using the
QGIS software (EPSG: 4326 WGS 84), following the methodologies described in “Mastering
QGIS. Packt Publishing Ltd., Birmingham, UK” [26] and the map design techniques from
“QGIS Map Design” [27]. Useful information shown in the maps’ legend was retrieved in
CSV format. Later, maps were incorporated into the WebGis section of the GoProsit digital
platform through direct uploading to the Geoserver (Figure 3).
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2.4. List of Models

The complete list of models used in the GoProsit GDSS is reported in this section;
for each of these, the purposes, input variables, and their current availability in the soil
database, as well as the intermediate and final outputs, any complementarity with other
GDSS models and the bibliography are described. Soil chemical and physical properties are
referred to the whole soil profile up to the rooting depth. To calibrate, parameterize and val-
idate the models, three demonstration areas, located in highly representative environments
of viticulture in Tuscany, were monitored for three years (summer 2019–summer 2022):
(i) the Petra farm located in Suvereto (LI) (lat: 43.033, long: 10.710), 8 ha, 40 m a.s.l., charac-
terized by Luvisols and Cambisols, moderate to gentle slopes, on ancient alluvial deposits,
cultivated with Merlot grape variety; (ii) the Montefioralle farm, located in Greve in Chianti
(FI) (lat: 43.580, long: 11.301), 6 ha, 380 m. a.s.l., characterized by Cambisols, moderately
steep slopes, on Arenite, cultivated with Sangiovese grape variety; and (iii) the Castello
di Verrazzano farm (lat: 43.601, long: 11.287), 6 ha, 320 m. a.s.l., characterized by Cam-
bisols and Regosols, steep slopes, on marly limestone flysch, cultivated with Sangiovese
grape variety.

2.4.1. New Vineyard Plant Carbon Footprint (by LCA)

In the framework of GoProsit, the environmental impact of a new vineyard plant has
been quantified through a Life Cycle Assessment (LCA) [28]. The methodology for running
an LCA analysis in viticulture is detailed, at the European level, in a dedicated Product
Environmental Footprint Category Rule (PEFCR) [29]. The LCA method allows the use of
different categories of environmental impact, including the Carbon Footprint (CF), which
is the estimate of greenhouse gas emissions (GHGs) associated with the production of a
good or service, and thus its contribution to global warming. The GHGs that the analysis
of agricultural supply chains focuses on are carbon dioxide (CO2), methane (CH4), and
nitrous oxide (N2O). Each of these gases has a different Global Warming Potential (GWP),
based on which CF results are normalized and expressed in units of CO2 equivalent (CO2e).
In the CF model presented here, the time horizon is 20 years [30] and the functional unit is
the hectare (CO2e ha−1), meaning that GHG emissions deriving from the establishment of
a new vineyard on 1 hectare of land are estimated by considering the GWP of GHGs over
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20 years. The processes included in the CF evaluation are as follows: (i) soil excavation,
(ii) stripping (removal of surface soil rich in organic matter and its redistribution once the
soil has been leveled), (iii) drainage, (iv) leveling, (v) basal fertilization (the pre-planting
fertilization), (vi) sowing of green manure before the plantation of the grafted rootstocks,
and (vii) soil preparation and planting of the grafted rootstocks. The inputs considered
are as follows: (i) diesel used by earthmoving and agricultural machinery, (ii) fertilizers,
(iii) green manure seeds, (iv) green manure biomass, (v) grafted rootstocks, and (vi) loss
of Soil Organic Carbon (SOC), assuming that a percentage of the carbon contained in the
soil is released to the atmosphere during the preparation of the new planting. The flows
of these inputs per hectare have been measured in the demonstration area of the Castello
di Verrazzano farm. Diesel consumption for earthmoving and leveling works has also
been measured in 7 other new vineyard plants in Tuscany located in hilly areas with lower
slopes, compared to the Castello di Verrazzano area (slope 26.4%), and in lowland areas
(slope < 3.6%). Based on these data, the relationship between diesel fuel consumption
and the slope was parameterized, and, subsequently, diesel consumption was estimated
in each node of the GoProsit grid based on the average slope (%) described by the GDSS.
Diesel consumption of agricultural machinery and green manure seeds were also assessed
in the other two demonstration areas (Petra and Montefioralle farms). Finally, the SOC
loss observed in the Castello di Verrazzano farm by measuring SOC content before and
after the earthmoving and leveling works (4 georeferred soil sampling points and 7 soil
profiles) has been compared with studies in the literature [31,32] in hilly regions with
lower slopes, and in flat areas (≤3.6%). A linear regression model was applied to estimate
the SOC loss when the slope was between 3.6 and 26.4%. The inputs of basal fertilizers
were calculated by the model “soil chemical–physical properties as a basis for pre-planting
fertilization” (Section 2.4.4), assuming that nutrients supply was carried out by organic
fertilizers (compost, digestate, manure, etc.), a common practice in Tuscany vineyards.
Flows were converted into CO2e through specific emission factors (EFs) selected on three
LCA databases (Biograce 4d 2023, Agribalyse 3.0.1. and Ecoinvent 3.6). The direct and
indirect N2O soil emissions associated with nitrogen fertilizers and green manure inputs
were estimated following the IPCC methodology [30,33]. The CF values obtained with the
methodology described above were then corrected by estimating the Soil Organic Carbon
(SOC) dynamics, since carbon sequestration or loss from soils affected substantially the
CF assessment in agriculture [34,35]. Overall, the CF assessment for the planting of a
new vineyard provided a CO2e ha−1 value associated with each node of the GoProsit
GDSS. Starting from CF results calculated upon median input parameters, a sensitivity
analysis [36] was conducted to evaluate the impact of each input parameter on the CF
output and to identify the most impactful ones. The sensitivity analysis was performed
by changing the median input parameters by 25% and observing the % change in the
output value.

2.4.2. Hydrological and Physical Models

Within the “hydrological and physical models” menu, soil degradation risks related
to runoff, water stagnation water stress, and potential erosion are estimated.

Water Stress Risk in the Pre-Planting Phase

The estimation of the risk of water stress in the pre-planting stage aims to prevent
conditions of water suffering in the vineyard due to errors made in the design phase. To
correctly assess the risk of water stress, it is necessary to consider not only the climate
but also other crucial factors, such as soil moisture, vineyard management, and the phe-
nological phase of the vine [37,38]). It is worth bearing in mind that the susceptibility of
the vine to water stress varies among the phenological phases; therefore, soil moisture
values identifying vine stress tolerance thresholds may be different [39]. For this reason, the
model does not just develop a monthly water balance according to Thornthwaite–Mather
(T-M) [40], but considers the specific water needs of the vine, evaluating them as a function
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of the phenological phase in agreement with what was reported by Gaiotti [41]. Starting
from the Thornthwaite–Mather balance spreadsheet developed by Armiraglio [42], some
improvements were made; in particular, field capacity (FC) and wilting point (WP) have
been computed by implementing the Saxton and Rawls equations [43], and the crop coeffi-
cient of the vine has been implemented to calculate the actual monthly evapotranspiration.
Provided that the model had to simulate the water needs of young plants, the rooting
depth was set to 30 cm only. Then, the soil water content referred to this depth interval
was converted into soil water potential value (SWP), expressed as MPa, and compared,
month by month, to the young plant water stress tolerance thresholds, expressed in MPa,
as well. In particular, the tolerance of young plants is always scarce along its annual cycle
(SWP ≤ 0.2 MPa), except for the shoot lignification phase, where the vine tolerates SWP
values up to 0.4 MPa. The result of the comparison provides the effective monthly stress
risk expressed in class, as illustrated in Table 1.

Table 1. Intersection between soil water potential values (MPa) and vine water stress tolerance. The
monthly vine stress classes are hereafter listed and defined: VH = Very high; H = High; M = Moderate
and N = Negligible.

Soil Water Potential (MPa)

Vine Water Stress Tolerance (MPa)

August–October
0.2–0.4

April–July; November
<0.2

>0.6 VH VH
0.6–0.4 H VH
0.4–0.2 M H

<0.2 N N

Successively, the final output of the model, i.e., the estimate of the annual water stress
risk, expressed in classes (Very high, High, Moderate, and Negligible), is determined
according to the frequency with which each monthly risk class occurs between April
and November.

Erosion Susceptibility by RUSLE Model and Identification of the Maximum Vine
Row Length

The estimation of erosion susceptibility in the pre-planting phase is aimed at prevent-
ing high soil loss and the triggering of instability phenomena caused by design errors in
the new vineyard. Adverse climatic conditions, combined with erodible soils, can cause
high soil erosion rates even on gentle slopes, well above the tolerable threshold if vineyard
rows are too long [44]. The assessment of the long-term average annual soil erosion in the
pre-planting phase was carried out by the well-known RUSLE (Revised Universal Soil Loss
Equation) model [45]:

A = R·K·LS·C·P (1)

where A = soil loss (t ha−1 yr−1), R = rain erosivity (MJ mm ha−1 h−1 yr−1), K = soil
erodibility (t ha h ha−1 MJ−1 mm−1), LS = slope length factor (dimensionless), C = cover-
management factor (dimensionless), and P = support practice factor (dimensionless). To
estimate the R factor from the national climatic database, the procedure of Diodato and
Bellocchi [46] was adopted, as it was able to describe the intra-annual climatic variability,
which was more suitable for overlapping the crop calendar of the different cultivated
species. K was calculated by the Renard equation [45], which requires the % values of sand,
silt, and clay of the surface horizon only. The topographic LS factor was determined in a GIS
environment and calculated for each node, starting from the slope (%) value and assuming
an average length of the vineyard of 100 m. As regards the calculation of the C factor, it
was assumed that the soil was tilled and that there was no vegetation cover. Therefore, a
C value of 0.185 was chosen, as suggested by Napoli et al. [47], for cultivated vineyards.
Furthermore, since the typical cultivation direction was along the maximum slope, the
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P factor should assume the maximum value (1) to indicate the absence of conservation
practices. However, a value of 0.8 was chosen, assuming that the new vineyards were
equipped with drainage systems. The result of the soil loss model was assessed for each
node of the grid and divided into 4 classes: Low, Moderate, High, and Very high for a value
lower than 11.2 t ha−1 y−1, between 11.2 and 20, 20 and 50, and over 50, respectively. The
calculation of maximum row length (Lmax) was calculated in all the nodes of the GoProsit
soil grid, replacing A with the value of 20 t ha−1 yr−1, the upper limit of the Moderate class
and making Lmax explicit in the RUSLE formula:

Lmax =
R ∗ K ∗ S ∗ C ∗ P

A
(2)

where Lmax, on sloping surfaces, has been set between 50 and 100 m to limit downtime
during mechanized operations and, at the same time, respect the guidelines of current
legislation [48].

Susceptibility to Waterlogging and Surface Runoff: Useful Information to Guide the
Hydrological Design of a New Vineyard

The estimation of soil susceptibility to water stagnation and/or surface runoff in the
pre-planting phase aims to provide indications of the land set-up systems necessary to
prevent possible irreversible damage to future vineyard production. To assess the suscep-
tibility of the soil to trigger surface runoff and stagnation phenomena, the modified T-M
water balance has been integrated by implementing the well-known SCS-CN hydrological
model [49]. This was necessary to separate the water surplus into two components: surface
runoff and deep drainage (seepage). The variables required to run the model include
monthly long-term temperature and precipitation values, latitude, exposure and elevation
of the site, soil information such as texture (% weight of sand, silt, and clay), soil depth
(m) (depth to the rock or to the impervious horizon with respect to water flows), and the
contents in coarse fragments (% vol.). In addition, it is assumed that in the pre-planting
phase, the soil is bare, and recently tilled; therefore, the curve number value was associated
with the use of the soil coded as “vineyards with inter-row tilled”. The model computes
the runoff coefficient (RC) value, defined as the ratio between the total average annual
runoff and the respective annual meteoric precipitation. A logical intersection between the
RC values and the site slope (%), both converted into classes, returns the estimation of the
level of risk, differentiated in runoff or waterlogging in relation to the vineyard steepness
(Table 2).

Table 2. Intersection between runoff coefficient (RC) and site slope classes to provide runoff and
waterlogging risk classes, hereafter listed and described as follows: “N” = Negligible for both
runoff and waterlogging phenomena, “M(S)” = Moderate waterlogging, “M(R)” = Moderate runoff,
“H(S)” = High waterlogging and “H(R)” = High runoff.

Site Slope (%)
RC Class

High Moderate Negligible

<5 H(S) M(S) M(S)
5–10 M(S) M(S) N
10–20 M(R) M(S) N
20–35 H(R) M(S) N
35–45 H(R) H(R) M(R)
>45 H(R) H(R) H(R)

2.4.3. Identification of Most Suitable Rootstocks

The choice of rootstock is crucial when planning a new vineyard. The primary function
of the rootstock is to protect the vines from soilborne pests, and this should be the first
aspect to be considered when selecting the rootstock. Almost all the commercially available
rootstocks are resistant to Phylloxera (Daktulosphaira vitifolia), while the same is not true
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for pathogens such as nematodes. Furthermore, the rootstock allows us to modulate the
vegetative–productive response of the vine on the basis of soil characteristics, compatibility
with the cultivar, and oenological objectives [50,51]. Starting from a set of 15 rootstocks,
(K5BB, SO4, 420A, 1103P, 110R, 140Ru, 101.14, 196.17, Gravesac, 41B, Fercal, M1, M2,
M3, M4) were identified among the most used ones, the application allows us to exclude
the rootstocks considered unsuitable because of the pedoclimatic characteristics of the
site. The characteristics or properties considered can be found directly in the database
or be derived, and concern fertility class, total limestone, salinity, acidity, risk of water
stress, and waterlogging. The soil assessments inherent in the chemical and physical soil
properties refer to the whole rootable volume. For the fertility class estimation, texture
and the associated potential fertility, useful soil depth (<50, 50–100, or ≥100 cm), and rock
fragments percentage (0–35 or ≥35%) were simultaneously considered. This property must
be considered to appropriately choose rootstocks based on the vigor they confer on the plant.
Regarding the evaluation of water stress and waterlogging risk, the outputs of the relative
models were employed. Each characteristic or property is assessed using the evaluation
criteria specific to the vine, available in the technical and scientific literature [51–56].

2.4.4. Soil Chemical–Physical Properties as a Basis for Pre-Planting Fertilization

This model refers to “nutritional needs”. A proper calibration of fertilization, based
on pedo-environmental and agronomic specificities of the cultivation area, is functional
to balance vine nutrition and reduce environmental pollution risk [56,57]. Ordinarily,
pre-planting fertilization (also known as “basal fertilization”) is carried out with the main
purpose of restoring optimum levels of organic matter and lacking mineral elements in the
soil (often strongly impacted by pre-planting earthworks), so as to improve soil fertility and
maximize the efficiency of fertilization in the following stages of vine growth and devel-
opment (training and production stages) [57,58]. Following a widely shared view among
guidelines for fertilization in the various fields of agricultural production, the amount
and type of amendments and/or mineral elements to be applied for basal fertilization
vary according to soil features, as resulting from a proper interpretation of analytical data
provided by soil chemical–physical analyses and concerning the available nutrient status
(K, P, Mg, micro-nutrients) soil texture, pH, limestone, organic matter, cation-exchange
capacity [57]. As a general rule, mineral nitrogen is excluded from basal fertilization due to
its high mobility in the soil and the still reduced vine root development during the early
years of growth, which would raise the risk of N loss from the soil. For similar reasons,
the supply of other nutrients in mineral form is also limited to those with low mobility
and only in cases of proven deficit with respect to pre-defined sufficiency thresholds (P, K,
Mg, and several micro-nutrients) [57]. A central role in pre-planting fertilization is usually
given to organic matter as an improver of soil physical properties (soil structure, density,
water retention capacity), a slow-release reserve of essential nutrients (especially nitrogen
and phosphorus) and an enhancer of soil microbial activity and biodiversity. The main
objective of this model is to provide information on soil chemical–nutritional status and an
estimation of the organic matter and nutrient requirement for pre-planting fertilization of
vineyards. The model was intended as an easy-to-use tool to support farmers in choosing
the most appropriate management of soil basal fertilization in relation to the vineyard
specificities. The methodological approach is based on criteria and algorithms compliant
with the National and Regional Guidelines for Integrated Production [57,59,60], validated
over years through agronomic field trials carried out across Italian regions for a wide range
of crops, and periodically updated. Schematically, the model works through two main
processing steps:

(1) Chemical–nutritional characterization of the soil based on STS statistics [54] to
provide the final user with a deeper knowledge of soil fertility across the whole soil profile
depth and possible limiting chemical conditions to vine growth. Soil properties selected
include texture, coarse fragments, bulk density, pH, salinity (electrical conductivity), total
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limestone, organic C, total N, C/N ratio, cation exchange capacity (CEC), exchangeable Ca,
Mg and K, Mg/K ratio, percentage of exchangeable Na (ESP) and available P.

(2) Estimation of OC and mineral nutrient requirements (K, P, and Mg) for basal
fertilization. In this second step, the model estimates OC and mineral nutrient requirements
for restoration/maintenance of optimum levels of soil basal fertility. The analytical values
of SOC and nutrients (weighted means across soil horizons up to a depth of 30 cm) are
compared to reference sufficiency thresholds, defined as a first approximation in relation
to three main soil texture aggregated classes (based on USDA classification [61]): coarse
(“sand”, “loamy sand” and “sandy loam”), medium (“loam”, “silty loam”, “silt”, “clay
loam”, “sandy clay loam” and “silty clay loam”) and fine (“sandy clay”, “silty clay” and
“clay”). For lacking mineral nutrients, the fertilizing unit requirement is estimated. The
estimation uses nutrient-specific correction factors to be applied to the deficit amount,
which takes into account nutrient interaction with soil properties that are most involved in
controlling nutrient availability and fertilizer use efficiency. In particular, the K correction
factor (“fixation factor”) is related to soil clay content, whereas the P correction factor
(“immobilization factor”) is a function of soil total limestone and clay content. If the
availability of a given nutrient falls within or above the average range of sufficiency, its
requirement for basal fertilization is assumed to be zero [57]. Unlike mineral elements, the
supply of organic matter for basal fertilization (in the form of amendments such as compost
or manure) is always encouraged by fertilization guidelines, due to the multiple benefits
of soil organic matter to soil fertility and ecosystem services. However, the criteria for
its quantification are less defined and mostly indicative. In general, SOC analytical value
is judged by comparison with reference values referred to as “normal”, which increase
as soil texture varies from “coarse” to “fine”. In addition, maximum limits are set to
the amendment amounts, established at 15 t ha−1 dry matter (d.m.) for soils poor in
OC, 13 t ha−1 d.m. for soils with “normal” SOC content, and 9 t ha−1 d.m. for soils
with a high OC content. Amendments supplies of less than 9 t ha−1 d.m. are always
admitted, regardless of SOC analytical result. The above-said restrictions respond to the
logic of preventing excessive organic matter inputs, exceeding soil capacity to integrate
it into a balanced equilibrium, which would introduce a risk of nitrogen loss from soil
following SOM mineralization [55]. Taking this approach into account, the quantification
of OC requirement for basal fertilization was carried out as follows: in situations of CO
deficiency, the model calculates the OC units necessary to restore the normal level, plus
a maintenance share based on the average annual rate of SOC mineralization (estimated
according to soil texture and the C/N ratio). For soils with a normal SOC content, instead,
only the maintenance amount is calculated. In any case, if the OC requirement exceeds the
maximum permitted input, the latter is provided as the final result.

3. Results and Discussion

In this section, we report the general results obtained with the DSMART algorithm,
the GDSS implementation, its graphical interface, and the results of the models run for the
entire wine-growing territory of Tuscany.

3.1. Soil Data Elaboration

The first result to be evaluated is the downscaling of the legacy soil map of Tuscany.
Each grid node inherits all the attributes and the relative values of the corresponding “most
probable” STS. As a first elaboration and general result, an overall descriptive statistic of
the soil properties was performed on the whole set of farmland STS (N = 415) (Table 3).
The list of parameters in Table 3 also represents the input required to run the models. The
list in Table 4 represents the outputs of the models on the whole dataset. For this work,
tables with descriptive statistics and graphs were obtained using the data analysis toolbar
of Microsoft® Excel® for Microsoft 365 MSO (Version 2401 Build 16.0.17231.20236) 64-bit.
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Table 3. Descriptive statistics of Tuscan soil database parameters used for modeling in vineyard
grid cells. In case of ordinal classes, only the class with the highest frequency (modal) is reported; in
case of interval scale, typical boxplot descriptors are reported. Minimum value, Q1: 0.25 quantile,
Me = Median; Mo = Modal class for category attributes, Q3: 0.75 quantile, and maximum value.

Parameter Input Models Data
Site Min Q1 Me./Mo. Q3 Max Unit Measure

elevation 0 103 229 307 1019 m. a.s.l.
aspect 5 145 191 233 350 ◦

slope 0 5 9 12 68 %

Climate

air temperature 10.3 13.3 13.8 14.3 15.7 ◦C
precipitation 625 781 790 813 1028 mm

Soil quality

rooting depth 20 89 110 132 250 cm
root impediment paralithic contact class
intern. drainage well drained 7 ordinal level

Soil layer (0–30 cm)

available P 4 10 12 16 77 mg/kg
bulk density 0.33 1.39 1.46 1.5 1.86 g/cm3

field capacity 19.6 66.1 75.3 96.1 147 mm
wilting point 11.1 33.5 38.8 50.4 103 mm

coarse fragments 0 1.5 6 18.5 73 g/100 g
org. carbon 0.1 0.9 1.1 1.3 7 g/100 g
tot. nitrogen 0.2 0.7 1 1.3 8.0 g/kg

Soil-derived profile, from surface to bedrock, 1 to 4 master horizons (A, B, C, R)

horizon type B class (A, B, C, R)
upper limit 0 0 34 54 106 cm
lower limit 2 40 72 101 250 cm

coarse fragments 0 0 6 24 90 g/100 g
clay 0 19 27 38 80 g/100 g
silt 1 31 38 45 92 g/100 g

sand 1 18.8 32 48 98 g/100 g
tot. carbonates 0 0 7 15 84 g/100 g

org. carbon 0.06 0.48 0.77 1.13 7.0 g/100 g
tot. nitrogen 0.00 0.46 0.79 1.15 8 g/kg

reaction 4.2 7.1 7.7 8 8.7 pH H2O
exchang. Ca2+ 0.2 10.5 14.9 19.7 97 meq/100 g
exchang. Mg+ 0.08 1.32 2.29 3.49 27 meq/100 g
exchang. K+ 0 0.23 0.31 0.45 23 meq/100 g

ESP 0 0.9 1.9 3.3 83 meq/100 g
CEC 0.7 14.9 19.8 24.5 60 meq/100 g

electr. conduct. 0.01 0.12 0.16 0.26 7.6 (1:2.5) dS/m

All the predicted soil classes were ranked based on the probabilities raster maps to
generate three “most probable” STS (first, second, and third most probable STS) in each
node. Finally, the first most probable map, generated using the highest probability value,
was used as the final map and for prediction accuracy assessment. The goodness-of-fit
measures were applied to the training dataset equivalent to 421 soil profiles, accounting
for 10% of the total dataset. In 20% of cases, the predicted first most probable soil class
matched the one recorded for the profile by expert pedologists in the soil correlation
process. The overall accuracy increased up to 65% if also determined by the second and
third most probable STS, which generally do not differ much from each other in their
main characteristics. The direct prediction of STS soil classes has a greater advantage than
the predictions of each single continuous parameter. The STS is “overall soil variation”
and, conceptually, is already a three-dimensional soil body with horizons described in
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both horizontal and vertical sections. Computing wide portions of landscape (soil region)
characterized by many STS can compromise our accuracy results, certainly decreasing
the possibility of predicting the right STS. However, as suggested by [62] and confirmed
in this study, we should take into account the taxonomic distance when evaluating the
accuracy of predicting soil classes. This metric quantifies the separation between soil classes,
giving partial credit to some incorrect allocation. For example, Profondi Stagnic Luvisols
vs. Cutanic Stagnic Luvisols could be a misclassification, but their taxonomic distance is
minimal; therefore, DSMART may suggest harmonizing them. Overall, soil properties
varied across a wide range of values (Table 3). However, some extreme values may refer
to borderline agricultural areas captured from preliminary 150 m GIS buffer operation on
vineyards shapefile. Table 4 reports the overall results of the applied models. The model
results will be discussed in the following paragraphs. However, the overview provides
a snapshot of the median situation of Tuscan vineyards. It is interesting to highlight
that (i) in the analyzed nodes, the median CF estimated for a new vineyard and the soil
loss due to erosion are very high (15.1 t CO2e/ha and 12.3 t/ha, respectively); (ii) the
seven most frequently recommended rootstocks among those considered are shown; and
(iii) the soils of Tuscan vineyards result deficient in organic matter, but not in potassium
phosphorus and magnesium, at least in 75% of the grid nodes analyzed. It is clear how
such information, georeferenced in wine-growing districts everywhere in the world, can be
extremely interesting for supporting agricultural policies useful to the territory.

Table 4. List of the output parameters for the GEAPP models; typical boxplot descriptors are reported.
Minimum value, Q1: 0.25 quantile, Me. = Median; Mo. = Modal class for category attributes, Q3:
0.75 quantile and max value for whole dataset, maximum value.

Models’ Outputs
Eco-Sustainability Min Q1 Me./Mo Q3 Max Unit Measure

carbon footprint 0 5.6 15.1 28.5 91.0 t CO2e/ha

Water stress

cuttings water stress Negligible 4 classes

Hydrological and physical models

erosion susceptibility Low susceptibility 4 classes
soil loss 0.1 6.2 12.3 18.8 115 t/ha

max. length of rows 50 100 100 100 100 m

Water limitations

runoff risk Medium risk 3 classes
waterlogging risk Stagnation moderate 3 classes

Rootstock

suitable rootstock M1–M3–M4–41B–420A–Gravesac–Fercal 15 rootstocks
(42 clusters)

Soil OC and nutrient requirement for basal fertilization

Potassium (K2O) 0 0 0 0 300 kg/ha
Phosphorus (P2O5) 0 0 0 0 102 kg/ha
Magnesium (MgO) 0 0 0 0 250 kg/ha

Organic C 0 0.92 1.10 7 7 t/ha

3.2. Graphical User Interface, Digitalized Maps, and WebGis

The GoProsit section of the GEAPP web portal (https://www.geapp.net/, accessed
on 18 February 2024) is divided into four main sections. The central one is a terrain
map, containing the demonstration areas of the PROSIT project and a constellation of
georeferenced points (grid nodes) throughout the viticultural areas of Tuscany (Figure 4).
The left panel contains the navigation tools, while the side panel with a tree menu can
access the models, the description of the STS, and the 50 georeferenced historical soil maps.

https://www.geapp.net/
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In the right display, we can see all the information about the selected grid nodes and model
outputs. As for the historical soil maps, these are displayed through a Web Map Service
(WMS) provided by CREA’s Geoserver Web Server (Figure 5).
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legend of the map units is shown in the right panel.

On the right of the map, in the “point grid outputs” section, farmers and experts can
access a complete overview of the soil type units and soil properties of each selected area
with input, output, and intermediate data of the models with over 200 variables deriving
from the grid. The information can be visualized intuitively through the GDSS, with colors
and symbols representing the different soil typological units and their properties.

3.3. Models Results

As reported above, the results and discussion of individual models are also given in
general terms over the entire viticultural territory of the Tuscany Region and divided by
administrative provinces.

3.3.1. Sustainability Assessment by Carbon Footprint

The median Carbon Footprint of a new vineyard plant in Tuscany is 15.1 t CO2e ha−1,
mainly ranging from 5.6 to 28.5 t CO2e ha−1 (Q1 and Q3, respectively, Table 4). To the best
of our knowledge, no studies up until now have evaluated the overall impact of a new
vineyard on GHG emissions. However, other works, i.e., [31,32], focused on the impact of
new vineyard plants on soil physical, chemical, and biological characteristics, estimating
the change in SOC. SOC losses measured in the Verrazzano field (−40% after earthmoving
works) were higher if compared with [31,32] (ranging from −6.4% in a flat valley until
−33% within the area with slope) and this can be explained by the intense and long-lasting
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earthmoving works, that exposed a deep layer of soil to oxidation for a long time, and
the steep slope of the field that favored erosion when the soil was bare (from March 2021
until April 2022, except for a short period of cover crops grown on ¼ of the land). Based
on the previously published literature [63], it was assumed that a negative CF could not
be the result and that the minimum limit was zero (Figure 6). As a maximum value, the
value derived from “heroic viticulture”, defined as viticulture ran on land with a slope
above 30% or an altitude above 500 m [64], was chosen, since the CF impact in those cases
is driven by exceptional circumstances. Therefore, for grid nodes with these characteristics,
the CF value was not calculated by the model. For these reasons, and mostly for the
limited information available in the grid about soil nitrogen content, which is needed to
calculate basal fertilization, it was possible to calculate the output of the CF model only for
203,644 nodes out of 297,023 (69% of total grid cells).
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relation to the node estimated slope (A) and to the 0–30 cm Total Organic Carbon (B). Despite the
considerable overlap of the points, it is possible to observe the dispersion cloud of the CF results of
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Based on the sensitivity analysis, the main parameter that affects the CF results is the
slope and, more specifically, the coefficient that relates the slope and the diesel consumption.
The second parameter that highly affects CF results is the soil carbon stock, and in particular
the initial SOC and bulk density, despite the median soil carbon stock in Tuscany, was quite
low, at 40 t C/ha, ranging from 32 to 46 t/ha (Q1 and Q3, respectively). The CO2e emissions
associated with the production of manure used for basal fertilization and the sequestration
of organic carbon associated with green manure were negligible if compared to the CO2e
emissions due to diesel consumption and SOC losses. Therefore, the reduction of diesel
consumption due to soil excavation, leveling, and drainage installation, as well as the use
of soil stripping or other useful techniques to reduce SOC losses are the key actions that
should be put in place to reduce CF of a new vineyard plant. Preserving the carbon stock
of agricultural soils by management practices is crucial to curbing global warming [65].
Regarding the location, the lowest CF impact will be observed if new vineyard plants are
built in areas with minimal slopes (plains) and with low organic matter content.

3.3.2. Hydrological and Physical Model

The application in the GIS environment of the hydrological models (water stress,
erosion, runoff, or waterlogging susceptibility) allows the return of the risk level of each
model in all the nodes of the grid within the Tuscany Region.
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Water Stress Risk

Regarding water stress, although the vine is defined as an arid-resistant species, high
quantities of water are necessary during the driest months to allow the plant to complete its
growth cycle [39]. As previously indicated the water stress risk may be determined by both
pedological properties and climatic characteristics; in fact, Figure 7A shows that the water
stress of a young vine is inversely correlated to soil available water capacity (AWC in mm),
while Figure 7B highlights how the stress increases as the average annual temperature is
higher and the average annual rainfall lower. It is, however, interesting to note how the
modal class is associated with the lowest risk, which affects as much as 85.1% of Tuscany
vineyard areas.
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Table 5 lists the distribution of the surfaces (%) occupied by each water stress class per
province. It emerges from the data how the class “High” is entirely sited in the Grosseto
province (GR), a direct consequence of its specific geographical position: southernmost
location and proximity to the sea, where the climate is particularly hot and dry. The
“Moderate” class is 50% located in the province of Grosseto, with the remainder divided
according to the size of the provinces (Siena > Firenze > Arezzo) Table 5.

Table 5. Percentage distribution of the surface under each water stress class in the different provinces
of Tuscany.

Water Stress
Class

Tuscan Provinces
Total

AR FI GR LI LU MS PI PO PT SI

High 0.00 0.01 0.38 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.43
Moderate 1.15 1.49 7.11 0.64 0.06 0.01 0.48 0.03 0.08 2.76 13.82
Negligible 12.69 23.49 9.48 4.13 2.05 1.09 6.46 0.75 1.69 23.93 85.75

Total 13.84 25.00 16.96 4.79 2.11 1.10 6.94 0.78 1.77 26.70 100.00

In these areas, where the water stress risk is higher, it is important to have the possibil-
ity of irrigating throughout the vineyard training phase, since the young plants have roots
that are still poorly developed and more vulnerable and subject to water stress.

Erosion Risk

The results obtained from the model for estimating erosion risk showed, as expected,
that the class representing the maximum erosion susceptibility is characterized by both
the highest rainfall and slope values; conversely, the “Negligible” class is associated with
the lowest rainfall and slope values. Figure 8 illustrates the average values of both the
annual rainfall (mm) and terrain slope (%) calculated on all the pixels belonging to the
same erosion class. The surface (%) occupied by each class is also indicated on the x-axis
of the graph. The frequency of distribution of the class areas follows the inverse level of
danger, as follows: Low > Moderate > High > Very high. Regarding the distribution of the
erosion risk within the Tuscany Region, it is to be highlighted the ubiquitous nature of this
phenomenon; hence, the distribution of the erosion risk classes is entirely determined by
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the size of the single provinces compared to the total surface of the region (Siena > Firenze
> Grosseto > Arezzo).
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Runoff and Waterlogging Susceptibility

During the realization of a new vineyard, deep tillage is carried out and heavy ma-
chinery is used; this often results in severe soil compaction that contributes to increased
runoff and erosion. The period immediately following, when the soil is still affected by the
disturbance caused by the mechanical operations of deep tillage and leveling and is devoid
of vegetation cover, is the most critical both in terms of slope dynamics, if combined with
erosion processes, and vine physiology. Planning errors can have consequences, sometimes
serious and permanent, on vine production due to the strong decrease in soil fertility
or even to the death of the cuttings themselves. If correctly implemented, the hydraulic
regulation system is crucial in controlling these risks. When conditions favorable to runoff
triggering occur on a slope, the same critical factors can induce water stagnation in the
lower part of the slope. Thus, if runoff can generate erosion on the slopes, waterlogging in
lowland areas can cause other types of damage, sometimes irreversible for the vine. This
species, in fact, does not tolerate prolonged stagnation (some days), a possible cause of
rotting of the collar and roots and the consequent withering of the plant itself. It is therefore
crucial to have an effective drainage network, superficial and deep, able to intercept and
drive away water excess. As the risk level increases, the priority of creating land set-up
systems and drainage networks increases. The application in the GIS environment of the
modified T-M water balance–SCS-CN, also holds the description of the prevailing risk (R
for runoff or S for water stagnation/waterlogging) for each node of the grid, so providing
useful information about the vineyard hydraulic set-up. The runoff and waterlogging risk
are described in Figure 9A,B. The former shows that the overall phenomenon of runoff and
waterlogging, considered together, depends, as expected, on soil texture; as the percentage
of sand increases, the susceptibility to runoff and waterlogging decreases; the opposite
occurs when considering the clay content. It is also noted that the modal class is repre-
sented by the “Moderate” one, which characterizes 78% of the considered area. Figure 9B
illustrates separately the runoff from the waterlogging phenomenon considering the slope
(%) effect: as the slope increases, the risk of runoff increases; on the contrary, where the
terrain is flat, the phenomenon of water stagnation obviously prevails. The distribution
of runoff and stagnation risk classes among the different Tuscan provinces is once again
strongly influenced by the extension of the single province compared to the entire region.
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3.3.3. Rootstocks Selection

Table 6 shows the results provided by the original tool developed for the selection of
the most suitable rootstocks starting from the Tuscany Region soil dataset. Nine groups
of rootstocks have been identified, which, overall, are suitable in 98.8% of the considered
regional area: in each group, up to a maximum of two limiting factors have been identified.
The results are much more affected by fertility and chemical characteristics (total CaCO3,
pH, and salinity) with respect to water stress and waterlogging, in which the results
not critical (Negligible or Moderate) in the nine groups. The most common limiting
factor in Tuscan vineyard areas appears to be the high fertility, either as a single factor
or combined with medium salinity or acidic pH, detected in 59.9, 13.6, and 5.9% of the
total area, respectively. Only 4.9% of the investigated areas did not exhibit any pedological
limitations for vine cultivation (group E), which is why none of the 15 rootstocks considered
were excluded.

Table 6. For each group of rootstocks (A–I) associated with specific soil conditions, the number (n.)
of suitable rootstocks and the % area with respect to the total in which those specific soil conditions
were detected are reported. The limiting factors are highlighted in bold.

Group * n. Area % Fertility
Class Total CaCO3 Class Salinity

Class pH Class

A 8 59.9 High <Very calcareous Low Neutral/
Alkaline

B 7 13.6 High <Very calcareous Medium Alkaline

C 12 6.5 Medium Strongly calcareous Low Alkaline

D 4 5.9 High Non-calcareous Low Acidic

E 15 4.9 Medium <Very calcareous Low Neutral/
Alkaline

F 14 3.3 Medium Moderate–Very calcareous Medium Alkaline

G 11 2.2 Low <Moderately calcareous Low Neutral

H 10 1.3 Medium Non-calcareous Low Acidic

I 7 1.2 Medium Very calcareous High Alkaline
* A: M1–M3–M4–41B–420A–Gravesac–Fercal–101.14; B: M1–M3–M4–420A–Gravesac–Fercal–101.14; C: M1–M2–
M3–M4–41B–1103P–K5BB–110R–SO4–420A–Fercal–140Ru; D: M1–M3–Gravesac–Fercal; E: M1–M2–M3–M4–41B–
1103P–K5BB–110R–SO4–420A–196.17–Gravesac–Fercal–101.14–140Ru; F: M1–M2–M3–M4–1103P–K5BB–110R–
SO4–420A–196.17–Gravesac–Fercal–101.14–140Ru; G: M2–M4–41B–1103P–K5BB–110R–SO4–196.17–Gravesac–
Fercal–140Ru; H: M1–M2–M3–1103P–K5BB–110R–196.17–Gravesac–Fercal–140Ru; I: M2–M3–M4–1103P–196.17–
101.14–140Ru.

3.3.4. Nutritional Model

Soil OC, exchangeable K, exchangeable Mg, and available P distribution among
different content classes as resulting from the Tuscany soil dataset and their estimated
requirement for basal fertilization are shown in Figures 10–13.
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correlation was found for exchangeable K, whereas exchangeable Mg was weakly related 
to soil CEC (n. observations = 353; Mg = 0.642 + 0.095*CEC, R2 = 0.130, p < 0.0001). 

SOC content mostly averaged from “medium” to “low” (93% of the dataset), falling 
below 1.2% in 40% of records, which consistently reflects the range of SOC levels 
commonly found under long-term vine growing in Tuscany. 

Soil organic matter is generally the focus of pre-planting fertilization, due to its 
multifunctional role in soil fertility and the strong impact it may undergo under pre-
planting earthworks. The latter often involves land leveling and/or mixing of the soil 
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SOC and nutrient contents varied across a wide range. Correlation analysis confirmed
a number of expected relationships among soil properties. Soil total N was significantly
related to SOC (n. observations = 238; total N = 0.301 + 0.725*SOC, R2 = 0.656, p < 0.0001),
soil CEC was positively related to both clay and SOC content (n. observations = 392;
CEC = 5.753 + 0.387*Clay + SOC*2.609, R2

m = 0.383, p < 0.0001). No significant correlation
was found for exchangeable K, whereas exchangeable Mg was weakly related to soil CEC
(n. observations = 353; Mg = 0.642 + 0.095*CEC, R2 = 0.130, p < 0.0001).

SOC content mostly averaged from “medium” to “low” (93% of the dataset), falling
below 1.2% in 40% of records, which consistently reflects the range of SOC levels commonly
found under long-term vine growing in Tuscany.

Soil organic matter is generally the focus of pre-planting fertilization, due to its
multifunctional role in soil fertility and the strong impact it may undergo under pre-
planting earthworks. The latter often involves land leveling and/or mixing of the soil
profile by deep plowing, resulting in the outcropping of underlying layers that are very
poor in organic matter [31].

The estimated range of OC requirement for basal fertilization, corresponding approxi-
mately to 36 to 60 t ha−1 of cattle manure and 13 to 22 t ha−1 of compost, is consistent with
the OC inputs usually provided by vine growers.

As for soil exchangeable K, exchangeable Mg, and available P contents, only in a
minority of cases (15.5%, 7.6%, and 24.7% of the whole dataset, respectively), were below
the average sufficiency levels. In these cases, organic fertilization alone is often enough to
cover the theoretical deficit, with the advantage of a slow nutrient release preventing them
from chemical immobilization or leaching.

4. Conclusions

The soil information underlying GoProsit does not claim to replace a proximal or site-
specific pedological survey, but it has the advantage of offering a wealth of decision support
information. The designated area can range from the size of a hectare to tens of hectares,
or even the entire region. The soil foundational data and climate information within each
grid node are sufficient for running all the models. The comprehensive assessment of
Carbon Footprint (CF) for a new vineyard, including the consideration of organic matter
loss along with the availability of essential macronutrients, are topics that, to the best of
our knowledge, have not been addressed in the literature before. Our results indicate
that establishing a new vineyard can have a significantly higher impact than managing
a mature vineyard or cultivating on arable land. It is important to note that this impact
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should be considered amortized over the productive lifespan of the vineyard. For the
first time, the DSMART technique was used for the Italian territory and was found to be
necessary to assign unique STS to each grid cell from the “aggregated” vector soil map
of the Tuscany Region and from its subsequent use in models at a local scale. Although
the pedological and climatic information provided does not always have a degree of
detail suitable for supporting managing decisions at the scale of a single vineyard, GEAPP
is nevertheless an undoubtedly useful tool for technical and political planning at the
district and regional levels. One possible solution to overcome the limitations inherent
in the regional database and make model results more reliable at the farm scale is to
integrate the system with an interactive user interface (GUI) that allows users to update
the data with site-specific information. However, the decisional pattern presented in this
manuscript generates a GDSS suitable for use in any wine-growing district, providing
useful information for farmers, researchers, agricultural consultants, and policy makers,
and opening new perspectives in soil management during new vineyard planning.
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