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Abstract: Although crop conversion from annual to perennial crops has been considered as one
path towards climate-smart and resource-efficient agriculture, the effects of this conversion on
soil multifunctionality and biomass yields remain unclear. The objective of the study is to en-
hance soil multifunctionality while exerting a marginal influence on farmer income. Here, we
investigated the effects of annual winter wheat (Triticum aestivum L.) and two perennial crops
(a grass (Lolium perenne L.), a legume (Medicago sativa L.), and their mixture) on soil multifunctional-
ity and biomass yield on the Yellow River floodplain. Soil multifunctionality was assessed by the
capacity of water regulation and the multifunctionality of carbon (C), nitrogen (N), and phospho-
rus (P) cycles. C cycle multifunctionality index is the average of β-xylosidase, β-cellobiosidase, and
β-1, 4-glucosidase. N cycle multifunctionality index is the average of L-leucine aminopeptidase
and β-1, 4-N-acetyl-glucosaminidase, and acid phosphatase represented (and dominated) P cycle
functions. The results showed that perennial crops enhanced soil multifunctionality by 207% for
L. perenne, 311% for M. sativa, and 438% for L. perenne + M. sativa, compared with annual winter
wheat (T. aestivum). The effect of perennial crops on soil multifunctionality increased with infiltration
rate, dissolved organic C, microbial biomass C, and extracellular enzymatic activities for both C and
N acquisition. However, we observed that perennial crops had a lower biomass yield than annual
crop. Therefore, the transition of agricultural landscapes to perennials needs to take into account the
balance between environmental protection and food security, as well as environmental heterogeneity,
to promote sustainable agricultural development.

Keywords: land use change; Yellow River floodplain; crop type; soil extracellular enzymes; soil
functions; annual and perennial crops

1. Introduction

Annual and perennial crops supply a multitude of functions and services in agroe-
cosystems. Annual crops provide around 80% of the global food for humans [1], which is
achieved through intensive management such as mechanized tillage, fertilization, and use
of pesticides, in addition to the expansion of cropping areas [2]. However, these intensive
agronomic practices are now recognized as having negative impacts on soil health such as
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aggravating soil erosion [3], reducing soil fertility [4,5], and impairing multiple ecosystem
functions and services, that is, soil multifunctionality [6,7]. The purpose of quantifying
soil multifunctionality is to assess the capacity of soil to concurrently fulfill multiple func-
tions [8], such as water regulation and soil carbon (C), nitrogen (N), and phosphorus (P)
cycle multifunctionality. The initial step of the methodology involves delineating the soil
function and selecting the pertinent soil parameters. Subsequently, the soil multifunctional-
ity index is always computed [8] by the averaging approach. The soil multifunctionality is
fundamental to soil health and represents a comprehensive manifestation of soil well-being.
In agroecosystems, the understanding of soil function has evolved beyond mere maximiza-
tion of biomass yield, encompassing a comprehensive pursuit of coordinated objectives
such as optimizing yield, enhancing soil quality, promoting environmental sustainability,
and improving resource efficiency. Furthermore, the adjustment of Chinese dietary habits
has emphasized the growing importance of animal husbandry, thus elevating the promi-
nence of perennial herbs [9]. Simultaneously, the suboptimal soil quality in the Yellow
River floodplain impedes the productivity of conventional agriculture.

Given these negative impacts of annual crops on the environment, such as aggravat-
ing soil erosion, reducing soil fertility, and impairing multiple ecosystem functions and
services, perennial crops are increasingly suggested as an alternative option to maintain
soil multifunctionality and biomass yield [10]. Perennial crops can play an integral role
in increasing soil multifunctionality and biomass yields [11,12]. For example, decreasing
tillage frequency [13] can retain biomass yield [14] and increase soil multifunctionality [11].
Thus, perennial crops can provide an alternative management strategy to intensive annual
crops. However, the impacts of crop conversion from annual to perennial crops on soil
multifunctionality and biomass yield are unclear. Furthermore, the extent to which these
impacts depend on the specific perennial crops remains unknown.

Numerous studies have suggested that the conversion of annual crops to perennial
crops had significant impacts on soil multifunctionality [15]. Generally, grasses with fibrous
and rhizomatous roots densely grow near the soil surface, forming a network that reduces
soil pore space, restricts water movement, and reduces soil infiltration rate [16,17]. This
phenomenon contributes to improved physical properties of the soil such as total porosity
and water holding capacity [18]. Moreover, leguminous plants with robust taproots and
N-fixing capabilities can enhance the physicochemical properties of the soil by increasing
extracellular enzymatic activities (EEAs), thereby influencing C, N, and P cycles [19,20].
The mixed sowing of legume–grass combinations exhibits complementary rather than
competitive potential in terms of growth morphology and development rhythm, utilization
of soil nutrients, as well as root distributions [21,22]. However, there are few reports on
the effect of a single sowing of grass, legume, or mixed legume–grass combinations on
soil multifunctionality.

Here, we conducted a one-year field experiment involving crop type conversion in the
Yellow River floodplain, China, to explore the influences of implementing two different
perennial crops on soil multifunctionality and biomass yield. The Yellow River floodplain
is an important agroecosystem of North China, and serves as the main region of grain
production in China. The soil multifunctionality was assessed by measuring soil physi-
cal, chemical, and microbial properties and soil EEAs. The Z-score average of eight soil
variables related to water regulation and C, N, and P cycling was calculated (details in
the Materials and Methods). Our research questions were the following: (1) Does the soil
multifunctionality respond to annual and perennial (a grass, a legume, and a mix of these
both) crops differently? (2) What are the relationships between soil multifunctionality and
biomass yield under crop conversion from annual to perennial crops?

2. Materials and Methods
2.1. Study Site and Experimental Design

The field experiment was located in the Yellow River floodplain in Henan Province,
China (34◦66′ N, 114◦23′ E; 76 m above sea level) (Figure 1). Based on the nearby meteoro-
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logical data records at the site, the average annual temperature is 14.5 ◦C, and the mean
annual precipitation is 627 mm. The soil is classified as Aquic Inceptisol (WRB classifica-
tion), a typical alkaline soil in the North China Plain derived from alluvial sediments of the
Yellow River [23]. At the initial stage of the study, the surface soil at 0–20 cm depth exhib-
ited a soil bulk density of 1.59 g cm−3, a total C content of 13.20 g kg−1, a total N content of
0.82 g kg−1, a total P content of 0.88 g kg−1, an available P content of 37.5 mg kg−1, and
an available N content of 11.2 mg kg−1. The pH of the soil was 8.23. The soil within the
study area exhibited a composition of 0.70% clay, 39.09% silt, and 60.22% sand [24]. Before
establishing the field experiment, there was at least a 20-year history of rotation to produce
winter wheat (Triticum aestivum L.) and summer maize (Zea mays ssp. mays), which were
common crops for the Yellow River floodplain.
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Figure 1. Location of the study area in Kaifeng, Henan Province, China. The distribution of all
experiment plots. Triticum aestivum L., Lolium perenne L., Medicago sativa L., and L. perenne + M. sativa.
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The experimental was established in 2020, and designed to compare biomass yield of
various crops and soil multifunctionality (SMF). The investigated crop types were annual win-
ter wheat, and the perennials, Lolium perenne L., Medicago sativa L., and L. perenne + M. sativa.
The crops of annual winter wheat, L. perenne, and M. sativa were manually planted using a
drill with a sowing capacity of 30.0, 22.5, and 30.0 kg per ha and a row spacing of 15 cm,
relatively (Changjing Garden Company, Chian). The planting ratio of L. perenne + M. sativa
is 1:1. The total experimental area was about 400 m2 and arranged in a split-plot design
with four blocks per crop. The crop type split-plots consisted of L. perenne, M. sativa, a
mixture of L. perenne + M. sativa, and a control treatment consisting of the annual winter
wheat, and there was at least one meter buffer zones between adjacent split-plots. The size
of the blocks was 4 m by 20 m. The split-plot size was 4 m by 4 m (Figure 1).

2.2. Soil Sample Collection

In July 2021, the samples in each plot were collected with five soil cores at 0–10 cm and
10–20 cm depths and mixed to produce a composite soil sample at each depth. Samples
were placed on ice in a cooler and transported back to the laboratory immediately after the
field sampling. All soil samples were sieved using a 2 mm mesh in the lab [25]. Each sample
was separated into three portions. The first portion was air-dried to measure physical
properties. The second portion was for chemical properties. The third portion was stored
at 4 ◦C for the soil EEAs and microbial biomass analysis.

2.3. Measurements
2.3.1. Biomass Yield

The annual biomass yield of winter wheat was measured by harvesting an area of
1 m × 1 m from the middle of each plot when the crop reached physiological maturity. All
perennial crops were collected in July 2021, when the plant community biomass peaked.
One 1 m × 1 m quadrat was selected randomly in each plot at harvest to determine perennial
biomass yields. The dry weight of the plant material was measured after oven-drying at
65 ◦C for 48 h [26].

2.3.2. Soil Physical, Chemical, and Microbial Properties

Soil steady infiltration rate was measured by the point source method [27]. Soil water
content was determined by the drying method. Soil bulk density was measured using the
metal ring (100 cm3) method. Soil total porosity and water-holding capacity were measured
and calculated by the method and equations proposed by Huang et al. (2019) [28]. Soil pH
was measured in all of the soil samples by a pH electrode in a mixture of soil and water,
with a soil/water ratio of 1:2.5 (Sartorius Basic PH Meter PB-10, Göttingen, Germany).
Dissolved organic C in the extracts was detected using a multi N/C 2100S TOC-TN analyzer
(Analytik Jena AG, Jena, Germany). Soil microbial biomass C and N were measured by the
chloroform fumigation extraction method with conversion factors of 0.45 and 0.54 used to
calculate microbial biomass C and N [29].

2.3.3. Soil Extracellular Enzymatic Activities

Soil EEAs includingβ-xylosidase (BX),β-cellobiosidase (CBH), andβ-1, 4-glucosidase (BG),
β-1, 4-N-acetyl-glucosaminidase (NAG), L-leucine aminopeptidase (LAP), and acid phos-
phatase (AP) were measured from 1 g of soil using fluorometry microplates [30]. These soil
EEAs were identified using 4-methyl-umbelliferone and 7-amino-4-methylcoumarin [31].
Soil EEAs were expressed in units of nmol activity g−1 dry soil h−1 (nmol g−1 h−1) Enzyme
active substrate (Thermo Fisher SCIENTIFIC, Shanghai, China).

To estimate the C (BG, CBH, and BX)-, N (NAG and LAP)-, and P-related enzymes
(AP), we used an equation to normalize the soil EEAs performing similar functions [32,33].
Let us take the calculation of C acquisition (C-acq) EEAs as an example:

C-acq = 3
√
(BG·BX·CBH), (1)
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2.3.4. Assessing Soil Multifunctionality

The SMF is not a one-dimensional measurable process, and includes quantifying the
provision of multiple ecosystem processes and services simultaneously [34]. We evaluated
multifunctionality using the SMF index, obtained as the average of several functions. The
index is an averaging approach and attempts to combine a collection of soil functions into
a single index, so that high values of SMF mean high values of many, but not necessarily
all, of the functions included.

To obtain the SMF index for each plot, we first normalized each of the two soil
function categories measured (water regulation and nutrient cycle functions) using the
Z-score transformation. The process of nutrient cycling encompasses the processes of
carbon, nitrogen, and phosphorus cycling [35]. These standardized soil functions were then
averaged to obtain an SMF index [11,36]. Water regulation was composed of total porosity
and water-holding capacity [18]. Carbon (C) cycle multifunctionality was composed
of BX, BG, and CBH activities. N cycle multifunctionality was composed of NAG and
LAP activities. P cycle multifunctionality was composed of AP activity. The Z-score
transformation was used to standardize soil EEAs to acquire a multifunctionality index
based on the methods described by Delgado-Baquerizo et al. (2016) [34].

Z-score = (x − meani)/SDi (2)

where x is the measured soil EEAs, mean is the average of enzyme i, and SD is the standard
deviation of enzyme i.

2.4. Statistical Analysis

Statistical analyses were performed in R (version 4.1.3) by using packages nlme [37]
and ggiraphExtra [38]. All observational data were first tested for normality using the
Kolmogorov–Smirnov method, and the non-normally distributed data were logarithm-
or square root-transformed. Linear mixed-effects models were performed to tested the
effects of crop types and soil depth on soil properties including soil water content, bulk
density, steady infiltration rate, soil pH, dissolved organic C, microbial biomass C, and
microbial biomass N. The block in the experiment was considered as a random effect and
crop types and soil depths as fixed effect. The effects of crop types on the eight measurable
proxies, the three calculated proxies, and the five multifunctionality indexes were analyzed
in linear mixed models, with crop types as a fixed factor. Between-group comparisons
were performed using Tukey’s post hoc tests. Pearson correlations were used to assess
the relationships between SMF, biomass, and soil properties. The comprehensive analysis
between SMF and biomass yield was realized with the “ggiraphExtra” package.

3. Results
3.1. Soil Physical, Chemical, and Microbial Properties

Compared with an annual crop of winter wheat, perennial crops significantly affected
soil physical, chemical, and microbial properties (Table S1; Figures 2 and 3). The main
effects of perennial crops on soil properties were limited to the topsoil with the single
exception of bulk density in both topsoil and subsoil (Table S1). Compared with an an-
nual crop of winter wheat, perennial crops (L. perenne, M. sativa and L. perenne + M. sativa)
significantly increased the soil water content by 47%, 40%, and 38% (Table S1; Figure 2),
steady infiltration rate by 18.4 mm h−1, 26.7 mm h−1, and 22.8 mm h−1 (Figure 3), dis-
solved organic C by 40.1 mg kg−1, 28.4 mg kg−1, and 52.0 mg kg−1 (Table S1; Figure 2),
and microbial biomass C by 89.0 mg kg−1, 63.1 mg kg−1, and 116 mg kg−1, respectively
(Table S1; Figure 2).
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Figure 2. Mean values are shown with standard errors for (a) soil water content, (b) bulk density,
(c) soil pH, (d) dissolved organic carbon content, (e) microbial biomass carbon, and (f) microbial
biomass nitrogen in each crop type and soil depth. Lowercase and uppercase letters denote significant
differences at p < 0.05 between crop types within 0–10 cm and 10–20 cm, respectively. Asterisks
denote significant differences between 0 and 10 cm and between 10 and 20 cm within each crop type
at p < 0.05.
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Figure 3. Mean values are shown with standard errors for (a) biomass yield and (b) steady infiltration
rate in each crop type. Note: different letters in the bars indicate significant differences among four
crop types according to Tukey’s HSD tests (p < 0.05).

3.2. Soil Extracellular Enzymatic Activities

Compared with an annual crop of winter wheat, perennial crops (L. perenne, M. sativa
and L. perenne + M. sativa) significantly increased C-acq EEAs by 6.09 nmol g−1 h−1,
5.19 nmol g−1 h−1, and 10.6 nmol g−1 h−1 (Figure 4), and N-acq EEAs by 2.57 nmol g−1 h−1,
1.40 nmol g−1 h−1, and 2.72 nmol g−1 h−1, respectively (Figure 4). Perennial crops (M. sativa
and L. perenne + M. sativa) also significantly increased P-acq EEAs by 61.5 nmol g−1 h−1

and 51.6 nmol g−1 h−1, respectively (Figure 4). The soil depth only significantly affected
C-acq and P-acq EEAs (Table S2).
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zymatic activities, (b) nitrogen acquisition extracellular enzymatic activities, and (c) phosphorus
acquisition extracellular enzymatic activities in each crop type and soil depth. Lowercase and upper-
case letters denote significant differences at p < 0.05 between crop types within 0–10 cm and 10–20 cm,
respectively. One, two, and three asterisks denote significant differences between 0 and 10 cm and
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3.3. Soil Multifunctionality and Biomass Yield

Compared with an annual crop of winter wheat, perennial crops (L. perenne, M. sativa
and L. perenne + M. sativa) significantly enhanced the SMF by 207%, 311%, and 438%
(Figure 5), C cycle multifunctionality by 188%, 151%, and 318% (Figure 6), and N cycle
multifunctionality by 170%, 100%, and 150% (Figure 6). The two combined perennial crops
(M. sativa and L. perenne + M. sativa) significantly increased the P cycle multifunctionality
by 214% and 190% (Figure 6). In addition, the soil depth significantly affected the water
regulation, C cycle multifunctionality, and P cycle multifunctionality (Table S3).
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Figure 5. Mean values are shown with standard errors for soil multifunctionality index in each
crop type and soil depth. Lowercase and uppercase letters denote significant differences at p < 0.05
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significant differences between 0 and 10 cm and between 10 and 20 cm within each crop type at
p < 0.05 and p < 0.01, respectively.
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Figure 6. Mean values are shown with standard errors for (a) soil water regulation, (b) carbon
cycle multifunctionality index, (c) nitrogen cycle multifunctionality index, and (d) phosphorus cycle
multifunctionality index in each crop type and soil depth. Lowercase and uppercase letters denote
significant differences at p < 0.05 between crop types within 0–10 cm and 10–20 cm, respectively.
One, two, and three asterisks denote significant differences between 0–10 cm and 10–20 cm within
each crop type at p < 0.05, p < 0.01, and p < 0.001, respectively.

In contrast, the biomass yield was significantly lower in perennial crops (L. perenne,
M. sativa and L. perenne + M. sativa) than in annual crops of winter wheat, accounting
for 3.02 t ha−1, 3.35 t ha−1, and 2.81 t ha−1, respectively (Figure 3). The perennial crop
combination of L. perenne + M. sativa had the highest SMF and C cycle multifunctionality,
whereas the perennial crops of L. perenne had the highest N cycle multifunctionality, and
M. sativa had the highest water regulation and P cycle multifunctionality (Figure 7).
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Figure 7. Soil multifunctionality (SMF), water regulation (WR), carbon cycle multifunctionality
(CCMF), nitrogen cycle multifunctionality (NCMF), phosphorus cycle multifunctionality (PCMF),
and biomass yield for the T. aestivum, L. perenne, M. sativa, and L. perenne + M. sativa. To facilitate
comparison among the four crop types, the data were subjected to a standardization process to allow
for direct comparison.

3.4. Correlations of Soil Multifunctionality and Biomass with Soil Properties

In general, the SMF was positively correlated with multiple indexes related to steady
infiltration rate (r = 0.71, p < 0.01), dissolved organic C (r = 0.71, p < 0.01), microbial biomass C
(r = 0.71, p < 0.01), C-acq EEAs (r = 0.804, p < 0.001), and N-acq EEAs (r = 0.65, p < 0.01) in
topsoil (Figure 8a). The carbon (C) cycle multifunctionality was positively correlated with
soil water content (r = 0.63, p < 0.01), steady infiltration rate (r = 0.62, p < 0.05), dissolved
organic C (r = 0.895, p < 0.001), microbial biomass C (r = 0.882, p < 0.001), and N-acq EEAs
(r = 0.853, p < 0.001). Meanwhile, the N cycle multifunctionality was positively correlated
with the soil water content (r = 0.68, p < 0.01), steady infiltration rate (r = 0.62, p < 0.05),
dissolved organic C (r = 0.768, p < 0.001), microbial biomass C (r = 0.771, p < 0.001), C-acq
EEAs (r = 0.747, p < 0.001). The SMF was negatively correlated with soil pH (r = −0.66,
p < 0.01), which was attributed to the negative correlation of the C cycle multifunctionality
and N cycle multifunctionality with the soil pH (r = −0.56, p < 0.05, r = −0.63, p < 0.01).
Water regulation was negatively correlated with the bulk density (r = −0.71, p < 0.01). There
was no clear relationship between the SMF and soil water content, bulk density, microbial
biomass N, and P-acq EEAs. The biomass yield showed significant positive correlations
with the soil pH (r = 0.74, p < 0.01), and negative correlations with the soil water content
(r = −0.804, p < 0.001), steady infiltration rate (r = −0.73, p < 0.01), dissolved organic C
(r = −0.752, p < 0.001), microbial biomass C (r = −0.73, p < 0.01), C-acq EEAs (r = −0.742,
p < 0.001), and N-acq EEAs (r = −0.747, p < 0.001) (Figure 8a).

In the subsoil, the SMF was positively correlated with the N-acq EEAs (r = 0.68,
p < 0.01) and P-acq EEAs (r = 0.68, p < 0.01), which likely accounts for the observed positive
correlations between the N cycle multifunctionality and P-acq EEAs (r = 0.882, p < 0.001),
as well as the P cycle multifunctionality and N-acq EEAs (r = 0.880, p < 0.001) (Figure 8b).
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4. Discussion

We found that perennial crops significantly increased soil multifunctionality, but had
varied effects on single soil functions (Figures 5 and 6). Soil multifunctionality reflected
a comprehensive response of all single functions, which might show positive, negative,
or non-significant responses [39]. This report suggests that the effects of perennial crops
on single soil functions were greater in topsoil than in subsoil (Figure 6). Moreover, the
soil steady infiltration rate, pH, dissolved organic C, microbial biomass C, and both C-acq
and N-acq EEAs were positively correlated with soil multifunctionality [40], but negatively
correlated with biomass yield (Figure 8a). Therefore, perennial crops, particularly mixed
perennial crops, could be a promising strategy for increasing soil multifunctionality in the
Yellow River floodplain but at a cost to crop yield.

4.1. Perennial Crops Increased Single Functions and Soil Multifunctionality

Soil properties and EEAs measured in this study contributed to the effects of perennial
crops on C, N, P cycling multifunctionality and soil multifunctionality, but they depended
strongly on the different crops. We found that the introduction of perennial crops resulted
in an increase in soil multifunctionality as well as C and N cycling multifunctionality
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(Figures 5 and 6). Our results were consistent with earlier findings that complementary effects
of functionally for perennial crops (a grass and a legume) promoted soil multifunctionality [41].
Therefore, the incorporation of a combination of grass and legume species might represent an
optimal choice for fostering sustainable development in this agroecosystem.

Compared with an annual crop of winter wheat, the perennial grass, the legume, and
a mixture thereof increased overall increased overall soil multifunctionality by enhancing
C and N cycle multifunctionality. For instance, the synergistic effects of distinct single
functions (such as C and N cycle multifunctionality) could mutually reinforce each other, re-
sulting in higher soil multifunctionality [42]. Indeed, perennial grasses, legumes, and mixed
crops of grasses–legumes may facilitate C cycling by increasing dissolved organic C content,
microbial biomass C, and C-acq EEAs, thereby increasing C cycle multifunctionality [11,32].
Moreover, perennial grasses, legumes, and mixed crops of grasses–legumes might increase
microbial activity and N-acq EEAs in response to increasing dissolved organic C content,
thereby increasing N cycle multifunctionality [43]. The negative correlation between water
regulation and soil bulk density could counterbalance the positive effects of increased soil
infiltration on water regulation (Figure 8a). These results highlight the crucial role of soil
water holding capacity in water regulation, suggesting its importance over other factors [18].
In other words, regardless of whether it pertains to annual or perennial crops, the imme-
diate impact on water regulation remains conspicuous. Our findings also suggested that
P-acq EEAs play a pivotal role in distinguishing P cycle multifunctionality across different
crop types [44]. The limited P-acq EEAs of perennial grasses resulted in reduced P cycle
multifunctionality. Furthermore, our study underscored the importance of a neutral soil pH
because it enhances soil multifunctionality [45]. Compared with annual crops, perennial
(grasses, legumes, and mixed crops of grasses–legumes) crops exhibited the potential to
maintain a neutral soil pH. Therefore, perennial mixed crops of grasses–legumes exhibit
high potential in sustaining soil multifunctionality.

4.2. Relationship between Soil Multifunctionality and Biomass

Crop types underlay the observed relationship between soil multifunctionality and
biomass yield. As shown in Figure 7, biomass yield was significantly higher in annual
crops of winter wheat compared with the perennial grass, legume, and their mixture,
although soil multifunctionality was higher in perennial crops. We hypothesize that
there are three potential factors contributing to this result. Firstly, the growth duration
of winter wheat in the Yellow River floodplain ranges from 220 to 270 days; one possible
explanation is the shorter life cycle and higher rates of photosynthesis and water use
efficiency observed in winter wheat compared with perennial crops [46]. Furthermore,
aboveground perennial mixed crops of grasses–legumes might intensify competition for
light to support photosynthesis and water use efficiency [47]. Secondly, the biomass
yields of perennial crops is merely 2–4 t ha−1, due to the limited duration of planting in
this study, perennial crops might exhibit underdeveloped above-ground structures; it was
noteworthy that the C cycle multifunctionality was significantly enhanced by 151–318% and
the N cycle multifunctionality was improved by 100–170% when comparing perennial crops
to annual winter wheat, and that root growth exerts a substantial influence on soil dynamics,
particularly in relation to C and N cycling [48]. The roots of mixed crops of grasses–legumes
enhanced soil porosity by 8% through increased growth [49] and contributed to soil organic
C content through growth and turnover [45]. Thirdly, perennial crops had been found to
enhance the diversity of soil microbial communities, which had demonstrated a significant
positive correlation with soil multifunctionality in previous research studies [10]. Perennial
crops also enhanced soil multifunctionality by fostering bacterial and fungal diversity
through root development [50]. Consequently, optimizing soil multifunctionality and
biomass yield should be further prioritized for sustainable agriculture in the future.
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4.3. Implications and Uncertainties

Our findings have important implications for understanding the impacts of perennial
crops on soil multifunctionality in the short term. For instance, perennial grasses, legumes,
and mixed crops of grasses–legumes led to an increase in soil multifunctionality at various
levels even after one growing cycle (Figure 7). Our results are consistent with earlier
findings showing that the maintenance of soil multifunctionality is contingent upon species
diversity [41]. Importantly, mixed perennial crops had the greatest effects in enhancing
the soil multifunctionality and C cycle multifunctionality by significantly augmenting
soil C input and EEAs. These findings were also consistent with previous research, indicat-
ing that it should be “compared with the perennial grass, legume, and their mixture not
only yields a greater quantity of matter (not significant) but also provide higher energy
output [51]. However, the selection of mixed perennial crops should consider not only the
complementary effects but also the potential for interspecific competition.

Here, we used data from a one-year experiment as a case study to assess soil multifunc-
tionality during initial crop conversion from annual to perennial crops. The significance of
our analysis lies in its demonstration of quantifiable short-term effects on soil multifunc-
tionality. It is crucial to acknowledge that we did not assign weights to individual functions,
assuming equivalent importance for all functions [52]. Also, the perennial crops investi-
gated in this study are not representative of all perennial crop types. In further research, we
propose integrating additional functions, comparing a wider range of crop types, and seek-
ing crops that could simultaneously enhance both soil multifunctionality and biomass yield
in the long term. Unfortunately, the data in this study are limited to a one-year experiment,
and it is imperative that our findings undergo further validation over an extended duration
of time. The intriguing nature of our short-term findings may potentially be attributed to
prompt reactions to regional climate conditions or analogous factors.

5. Conclusions

Our findings provide experimental evidence that the selected perennial crops could
increase soil multifunctionality compared to an annual crop in the short-term. Perennial
crops were effective for increasing soil multifunctionality in an agroecological system but
led to significantly lower yields than the annual crop. Mixed perennial crops have higher
potential to increase soil multifunctionality than single perennial crops. Finally, our results
suggested that perennial crops have important implications for promoting soil functions of
the agroecological system in the Yellow River floodplain. In addition, more research on
potential environmental impacts is required before applying this knowledge across broad
areas. Although long-term and extensive research is still required to approve the presented
results obtained after one year only on the long-term, and to optimize the selection of ideal
annual and perennial crops, our results provide early insight by underscoring the need and
the benefits of systematic research on crop-specific biomass yield and soil multifunctionality
in the same agroecosystem.
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properties; Table S2: Linear mixed-effects model of crop type, soil depth, and their interactive effects
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depth, and their interactive effects on soil multifunctionality.
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