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Abstract: Chlorophyll content is a crucial assessment parameter in the growth monitoring of lettuce,
particularly in cases when it is affected by disease. Accurate estimation of chlorophyll content is
beneficial for early detection and prevention of diseases and holds significant importance in practical
production. To construct a model for estimating the chlorophyll content in lettuce leaves under
cadmium stress, this study utilized lettuce as the experimental material. The visible–near-infrared
reflectance spectra of lettuce leaves, as well as the relative chlorophyll content of the leaves, were
detected and analyzed under different concentrations of cadmium stress. Subsequently, an inversion
model for estimating the relative chlorophyll content in lettuce leaves was established. First, to
determine the optimal spectral preprocessing method, eight techniques are utilized: Savitzky–Golay
smoothing (SG), multiplicative scatter correction (MSC), standard normal variable transformation
(SNV), mean normalization (MN), baseline offset (B), detrending (D), gap derivatives—first derivative
(FD), and gap derivatives—second derivative (SD). These methods are used to preprocess the spectra
and establish a partial least squares regression (PLSR) monitoring model. The optimal spectral
preprocessing method is then selected. Next, the feature bands are extracted from the preprocessed
spectral data using the correlation coefficient method. Finally, the selected feature bands will be
combined with support vector regression (SVR) to establish a chlorophyll content estimation model
using a training-to-testing set ratio of 4:1. The results showed that the PLSR model established after
preprocessing with detrending (D) had the highest accuracy, with the coefficient of determination
(Rv

2) and root mean squared error (RMSEv) values of 0.87 and 1.16, respectively. The feature bands
selected by the correlation coefficient method were used to establish SVR models for estimating
the chlorophyll content of lettuce leaves under cadmium stress, with the highest accuracy being
achieved by the genetic algorithm (GA)–SVR model. It can be seen that near-infrared spectroscopy
technology provides a scientific basis for rapid, nondestructive, and accurate detection of lettuce
diseases and stress.

Keywords: lettuce cadmium stress; visible–near-infrared reflectance spectroscopy; support vector
regression; spectral preprocessing; estimation model; relative chlorophyll content

1. Introduction

Cadmium stress not only affects the quality and yield of vegetables but also poses a
threat to human health through the food chain [1]. Rapid, nondestructive, and accurate
diagnosis of the degree of cadmium stress in vegetables is of great significance in ensuring
food safety. Lettuce has high nutritional value and is rich in vitamin C. It has various
benefits, such as weight loss, cholesterol reduction, and promotion of blood circulation [2].
However, lettuce is highly sensitive to environmental conditions. Under high concentra-
tions of cadmium stress, it often exhibits slow growth, poor leaf development, wilting, and
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even death [3,4]. Chlorophyll, as an important biochemical parameter for photosynthesis
in plants, is closely related to plant photosynthetic rate, nitrogen levels, and plant health. It
serves as an indicator of plant growth, nutritional status, and photosynthetic activity [5,6].

Currently, methods for determining chlorophyll content include chemical methods,
relative chlorophyll content SPAD values, and spectral techniques. Traditional methods for
measuring chlorophyll content rely on chemical techniques, which involve field sampling
and subsequent laboratory analysis. These methods not only require significant human
and material resources but also have a certain degree of destructiveness. Additionally, it
is challenging to implement on a large scale and in real time [7,8]. Although the relative
chlorophyll content measured by SPAD values enables rapid and nondestructive detection,
it is only suitable for small-scale testing [9]. Spectroscopy has the advantages of high
resolution and abundant information [10], providing the possibility for real-time, rapid,
and nondestructive monitoring of vegetation chlorophyll content.

Currently, there is widespread attention among scholars toward using spectroscopic
techniques to detect chlorophyll content in plant leaves. Zhang et al. [11] utilized uni-
variate regression, stepwise multiple regression, and support vector machine regression
methods to construct a hyperspectral estimation model for chlorophyll content in cotton
canopy leaves. The results showed that the support vector machine regression method
can be considered to be the preferred approach for hyperspectral estimation of chlorophyll
content in cotton canopy leaves. Yao et al. [12] conducted a study on the quantitative rela-
tionship between visible–near-infrared reflectance spectroscopic features and chlorophyll
content in rapeseed leaves. The research indicated that visible–near-infrared reflectance
spectroscopy can achieve rapid and nondestructive detection of chlorophyll content in
rapeseed leaves. Shao et al. [13] utilized the least squares support vector machine, least
squares, and backpropagation neural network methods to establish a prediction model
for SPAD values based on visible–near-infrared spectral reflectance of rice. The results
indicated that the combination of visible–near-infrared spectroscopy and the least squares
support vector machine regression method can effectively estimate the SPAD values of
rice leaves. Vali et al. [14] suggested that visible–near-infrared spectroscopy has promising
applications in estimating chlorophyll content in winter wheat. Tan et al. [15] conducted
a study on the chlorophyll content and leaf spectral reflectance of alfalfa and established
an estimation model using optimized support vector regression. The results showed that
the optimized support vector regression models can be used for estimating the chlorophyll
content in alfalfa.

Therefore, this research uses lettuce as the test material and visible–near-infrared spec-
troscopy technology as the research method. Through the potting planting method with
externally added cadmium, it explores the effects of cadmium stress on the relative chloro-
phyll content and visible–near-infrared reflectance spectrum of lettuce. Additionally, a
visible–near-infrared reflectance spectroscopy estimation model for the relative chlorophyll
content of lettuce leaves under cadmium stress is developed. The purpose of this study is
to provide a new scientific tool for estimating plant chlorophyll under adverse conditions,
to provide a theoretical basis and technical support for lettuce growth monitoring, and to
have significant implications for ensuring lettuce yield and quality, as well as food safety.

2. Materials and Methods
2.1. Experimental Materials

The test material used was lettuce (Lactuca sativa L. cv. Grand Rapids) purchased
from Kuishou Agriculture and Technology Company (Langfang, China). The soil used
for the experiment was a full-price seedling substrate purchased from Changchun Saisei
Agricultural Development Co., Ltd. (Changchun, China). The organic matter content
was 12.59 g/kg, total nitrogen content was 0.727 g/kg, available phosphorus content was
0.007 g/kg, and available potassium content was 0.15 g/kg.



Agronomy 2024, 14, 427 3 of 11

2.2. Experimental Design

The experiment was conducted in July 2023 on the campus of Jilin Agricultural
University in Changchun, Jilin Province (125◦42′ E, 43◦82′ N) using a pot cultivation
method with externally added cadmium. The experimental design consisted of five
treatments: 0 (control), 1, 5, 10, and 20 mg/kg, each replicated three times, resulting in a
total of 15 pots. Within each pot, three lettuce plants were planted. First, the substrate
soil was sieved using a 2 mm mesh to remove impurities, and the sieved soil was left to
settle in a dry and well-ventilated area for three days. Next, distilled water was used as
the solvent, and cadmium nitrate was added as an external source of cadmium to prepare
a 200 mL solution. The solution with different concentrations of cadmium was sprayed
layer by layer onto the experimental substrate soil, mixed thoroughly, and aged for ten
days while maintaining a moisture content of 60% to 70%. After aging, the treated soil
was placed into 480 mm × 230 mm × 160 mm flowerpots [16,17], each containing 1.5 kg
of substrate soil. Finally, select lettuce seedlings with consistent growth and good health
to transplant into the flowerpots. At this stage, the lettuce has reached the stage of two
true leaves. Throughout the entire growth period, it is essential to ensure an adequate
water supply to promote the normal growth of lettuce. At the same time, it is necessary to
change the position of the flowerpots every other day to ensure even exposure to light. The
experiment was conducted under natural light conditions, with a day-night temperature
of 25 ◦C/18 ◦C ± 2 ◦C and a relative humidity of 60% to 70%. On the 45th day under
cadmium stress, various indicators of lettuce leaf were measured for each treatment.

2.3. Spectral Data Acquisition

The visible–near-infrared spectroscopy data were measured using the AvaSpec-ULS2048
versatile fiber spectrometer produced by Aventes, a company based in Apeldoorn, The
Netherlands. The wavelength range measured by the instrument is 200 nm–1100 nm, with a
spectral resolution of 0.05 nm–20 nm. The light source used is the AvaLight-DHc full-spectrum
compact light source produced by the Dutch company Aventes, with the deuterium lamp
covering a wavelength range of 200 nm–400 nm and the tungsten halogen lamp covering a
wavelength range of 400 nm–2500 nm.

During data acquisition, the weather was clear with light winds. Taking into account
the impact of light intensity and photosynthesis [18], the spectral collection time was chosen
to be between 12:00 and 14:00. First, connect the reflection probe fiber, respectively, to the
spectrometer and the light source. Then, use the reflection probe holder to fix the reflection
probe at a 45-degree angle to the leaf direction. Finally, select the deuterium-halogen lamp as
the light source, preheat for 8 min, and perform white balance correction and measurement.
During the entire experiment, a white balance correction is performed every 30 min.
During white balance correction, when the reflectance of the whiteboard reaches 100%,
it is considered that the spectrometer has been successfully calibrated. Due to the higher
physiological activity of the top leaves, they provide a better observation of the plant’s
physiological response to environmental stress. Additionally, cadmium is more prone to
migrate and accumulate in new leaves. The top 1 to top 3 leaves are considered the best leaf
positions for monitoring crop material content, showing better representativeness across
different growth stages compared to lower leaves [19,20]. Therefore, the top 2 or 3 leaves
were selected as the sample for measurement, avoiding the main leaf vein. Three spectral
data were collected for each lettuce leaf, with 5 treatments and 27 spectral curves measured
under each treatment, and a total of 135 spectral curves were obtained.

2.4. Determination of Relative Chlorophyll Content

The relative chlorophyll content (SPAD value) is determined using the handheld
chlorophyll meter SPAD-502 Plus, produced by KONICA MINOLTA in Tokyo, Japan.
Three SPAD values are measured at the same position on each leaf during spectral mea-
surements. The average value is then taken as the SPAD value for that leaf. The SPAD
values correspond one-to-one with the spectral data.
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2.5. Data Processing and Analysis

The spectral data are exported using AvaSoft 8 spectral acquisition software. The
exported raw data are inputted and analyzed using Excel 2010. The collected spectral data
are preprocessed using The Unscrambler X 10.4. The model is trained and validated using
MATLAB 2023b software. The plotting is performed using Origin2021.

2.5.1. Significance Analysis

The significance test is used to determine if there are significant differences in the
mean SPAD values of different groups of lettuce leaves. Typically, significance levels of 5%
and 1% are used as criteria for assessing significance. If the significance level is less than 5%
or 1%, it is considered to have a significant or extremely significant degree of difference.

2.5.2. Spectral Data Preprocessing

The original spectral data are susceptible to interference from factors such as stray light,
instrument noise, sample background, and baseline drift [5,21]. These factors can impact
the quantitative and qualitative analysis results of the spectrum. Therefore, it is necessary
to preprocess the raw spectral data. This study employed several data preprocessing
techniques to enhance the quality and accuracy of the spectral data. The Savitzky–Golay
(SG) smoothing method was utilized to eliminate noise interference, improve signal-to-
noise ratio, and enhance the quality of the spectra. Multiplicative Scatter Correction
(MSC) was applied to eliminate the influence of scattering and enhance the accuracy and
repeatability of the spectral data. Standard normal variable transformation (SNV) was
used to normalize the spectra and make them comparable at the same wavelength by
eliminating differences between samples. Mean Normalization (MN) was employed to
remove dataset offsets. Baseline Offset (B) was performed to eliminate baseline drift in
the spectra and restore their original shape. Detrending (D) was applied to remove trends
(linear or nonlinear) in the spectral data, reducing systematic errors and improving analysis
accuracy. Gap Derivatives—First Derivative (FD) and Gap Derivatives—Second Derivative
(SD) were calculated to enhance the spectral features and aid in identifying peaks and
valleys in the data.

2.5.3. Methods for Feature Band Extraction

The extraction of feature bands can effectively reduce the dimensionality of data and
mitigate the impact of redundant information. In this study, the feature band extraction was
conducted using the correlation coefficient method. The determination of feature bands
was carried out by calculating the correlation coefficient between the reflectance of each
spectral band and the SPAD values of lettuce leaves under cadmium stress. Among them,
the larger the absolute value of the correlation coefficient, the more effective information
is contained in the reflectance of that spectral band, and thus it is selected as a feature
band [22].

2.5.4. Machine-Learning Methods

Partial Least Squares Regression (PLSR) is a modeling method that combines the
advantages of Multivariate Linear Regression (MLR) and Principal Component Analysis
(PCA). Compared to traditional MLR methods, PLSR is suitable for regression modeling
with many spectral bands and high autocorrelation. It also effectively addresses multi-
collinearity issues. PLSR has been widely applied in the field of spectral inversion [23,24].
This study involved the establishment of nine PLSR models for different spectral data
treatments, aiming to determine the best spectral preprocessing method.

Support Vector Regression (SVR) is a machine-learning method based on statistical
learning theory, which utilizes a nonlinear transformation to map the input space into a
high-dimensional space and establishes an estimation model. Compared to traditional
learning methods, SVR demonstrates advantages in handling small sample sizes and
nonlinearity [15,25].
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The SVR model primarily achieves the modeling of nonlinear functions by selecting
different kernel functions. Choosing an appropriate kernel function can enhance the
model’s fitting ability, therefore improving its generalization capability and prediction
accuracy. The commonly used kernel functions include linear kernel function, polynomial
kernel function, radial basis kernel function (RBF), and sigmoid kernel function.

In the SVR model, both the penalty parameter c and the kernel parameter g are
crucial hyperparameters. The penalty parameter c controls the model’s complexity and
generalization capability. It reflects the degree of punishment for samples that exceed
the error. In other words, it represents the degree of punishment for errors. The kernel
parameter g influences the degree of nonlinear mapping of data in high-dimensional
space and controls the model’s fitting ability [26,27]. Therefore, in this study, the grid
search method (GS–SVR), genetic algorithm (GA–SVR), and particle swarm optimization
algorithm (PSO-SVR) were utilized to optimize the parameters (c, g) to achieve the best
estimation performance.

2.5.5. Model Accuracy Evaluation Methods

Evaluation of model accuracy was conducted using the coefficient of determination
R2 and root mean squared error (RMSE). When R2 is closer to 1, and RMSE is closer to
0, it indicates that the model has a higher degree of fit and accuracy. The formulas for
calculating R2 and RMSE are shown in (1) and (2), respectively.

R2 = 1 −

N
∑

i=1
(yi − ŷi)

2

N
∑

i=1
(yi − y)2

(1)

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)2 (2)

In the equations provided, N is the number of samples, yi is the actual value of the
i-th sample, ŷi is the predicted value of the i-th sample, and y is the mean value of all
actual values.

3. Results and Discussion
3.1. Effects of Cadmium Stress on the SPAD Values of Lettuce Leaves

Figure 1 shows the changes in SPAD values of lettuce leaves under cadmium stress.
Under cadmium stress, the SPAD values of lettuce leaves decrease with an increase in
cadmium concentration. Under cadmium stress at concentrations of 1 mg/kg and 5 mg/kg,
there was no significant change in the SPAD values of lettuce leaves compared to the control
group (CK), suggesting that lettuce may possess a certain level of resistance to cadmium
stress at these concentrations [28]. However, under cadmium stress at concentrations of
10 mg/kg and 20 mg/kg, there was a significant change compared to the control group
(CK), possibly due to the fact that cadmium stress at these concentrations can damage
chloroplast structure affects the synthesis of photosynthetic pigments, disrupt plant growth,
and thus cause a significant decrease in SPAD values [29,30].

3.2. Spectral Characteristics of Lettuce Leaves under Cadmium Stress

The reflectance of plant leaf spectra in the visible light range is primarily influenced
by vegetation pigments [31,32]. Therefore, in this study, the visible light range of 400 nm
to 780 nm was selected for analysis. The reflectance spectra of lettuce leaves under each
treatment were averaged to obtain the spectral characteristic curve of lettuce leaves under
cadmium stress, as shown in Figure 2.
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As shown in Figure 2, the spectral curve trends of lettuce leaves under different
concentrations of cadmium stress were basically the same. A reflectance peak and two
absorption valleys appeared at 550 nm, 430 nm, and 670 nm, respectively, known as the
“green peak”, “blue valley”, and “red valley” [33]. This may be because chlorophyll in
lettuce leaves has a certain reflection ability for green light, while it has a strong absorption
ability for blue and red light [31]. Between 680 nm and 750 nm, there was a significant
increase in leaf reflectance, indicating the presence of the typical “red edge effect”. This
could be attributed to the strong absorption capacity of chlorophyll for blue and red light
or multiple reflections and scattering within the leaf tissue structure [34].

A small absorption dip was observed around the vicinity of 760nm, possibly due to
the presence of a narrow absorption band of water in that region, the absorption caused by
water vapor [35]. There is a certain difference in the spectral reflectance of lettuce leaves
under different cadmium concentrations, which increases with the increase of cadmium
concentration in the visible light range. This may be attributed to the fact that cadmium
stress can affect chlorophyll synthesis, resulting in a decrease in chlorophyll content and
an increase in leaf spectral reflectance [4]. The above phenomenon indicates that utilizing
visible–near-infrared reflectance spectroscopy is a feasible approach for estimating the
relative chlorophyll content of lettuce leaves under cadmium stress.

3.3. Spectral Preprocessing

From Figure 3, it can be observed that the SG preprocessing effectively eliminates the
interference caused by noise during spectral information extraction. The MSC preprocess-
ing primarily reduces the scattering effect in the spectral curve and enhances the correlation
between the spectra and data. The SNV preprocessing is mainly used to eliminate spec-
tral errors caused by variations in light intensity. The MN preprocessing contributes to
the normalization of spectral intensity. The B preprocessing removes baseline drift and
reduces signal overlap. The D preprocessing eliminates trend terms in the spectral data
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and improves the signal-to-noise ratio. FD and SD preprocessing result in the amplification
of noise [5,36,37].
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3.4. The Optimal Choice of Preprocessing

Combining the original spectral data and various preprocessed spectral data with
partial least squares regression (PLSR) and using 10-fold cross-validation, different estima-
tion models of relative chlorophyll content in lettuce leaves under cadmium stress were
established, as shown in Table 1. The R2 and Rv

2 values of different models are all greater
than 0.80, indicating that the PLSR models established using the original spectral data and
various preprocessed spectral data can be used for estimating the SPAD values of lettuce
leaves under cadmium stress. Among them, the model established using the D preprocess-
ing has the highest accuracy. Compared to the model built using the original spectral data,
Rv

2 has increased by 0.02, and RMSEv has reduced by 0.11. Therefore, subsequent analysis
will be conducted using the spectra preprocessed with D.

Table 1. Comparative analysis of PLSR models using different preprocessing and original spec-
tral data.

Preprocessing
Method

Number of
Principal Components

Training Set Testing Set
R2 RMSE Rv

2 RMSEv

original
spectral 7 0.91 0.95 0.85 1.27

SG 10 0.90 1.00 0.81 1.41



Agronomy 2024, 14, 427 8 of 11

Table 1. Cont.

Preprocessing
Method

Number of
Principal Components

Training Set Testing Set
R2 RMSE Rv

2 RMSEv

MSC 10 0.90 1.03 0.82 1.39
SNV 11 0.94 0.81 0.84 1.31
NM 7 0.90 1.03 0.82 1.38

B 7 0.92 0.92 0.85 1.25
D 8 0.94 0.82 0.87 1.16

FD 10 0.90 1.00 0.82 1.37
SD 9 0.89 1.09 0.81 1.42

3.5. Feature Band Extraction

Correlation analysis between the D preprocessed spectral data and SPAD values of
lettuce leaves under cadmium stress can be conducted using the Pearson correlation coeffi-
cient, as shown in Figure 4. The correlation coefficients between the spectral reflectance of
different bands after D preprocessing and SPAD values range from −0.577 to 0.594. Among
them, there are 71 bands with correlation coefficients with absolute values greater than 0.4.
To reduce computational complexity and based on the significance results, the top 15 bands
with the highest absolute correlation coefficients are selected for analysis [37]. These bands
are 441 nm, 455 nm, 477 nm, 489 nm, 495 nm, 572 nm, 573 nm, 577 nm, 584 nm, 610 nm,
620 nm, 628 nm, 640 nm, 651 nm, and 721 nm.
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3.6. Feature Band Prediction Model Based on Support Vector Regression (SVR)

The feature bands extracted are used as input variables, and the SPAD values of lettuce
leaves under cadmium stress are used as output variables to build prediction models based
on support vector regression (SVR), including GA–SVR, POS–SVR, and GS–SVR. The
training set and test set are divided in a ratio of 4:1. The modeling results are presented in
Table 2. For the GA–SVR model, the best performance is achieved when using a sigmoid
kernel function with a penalty parameter c of 6.74 and a kernel parameter g of 3.53. At this
configuration, the R2 and RMSE of the training set are 0.98 and 0.27, respectively, while the
Rp

2 and RMSEp of the testing set are 0.77 and 1.66, respectively. In the POS–SVR model,
the best performance is obtained when using a radial basis kernel function with a penalty
parameter c of 5.86 and a kernel parameter g of 0.10. At this configuration, the R2 and
RMSE of the training set are 0.95 and 0.71, respectively, while the Rp

2 and RMSEp of the
testing set are 0.75 and 1.76, respectively. In the GS–SVR model, the best performance is
achieved when using a polynomial kernel function with a penalty parameter c of 4.00 and
a kernel parameter g of 0.25. At this configuration, the R2 and RMSE of the training set
are 0.69 and 1.77, respectively, while the Rp

2 and RMSEp of the testing set are 0.66 and 2.09,
respectively. For both the GA–SVR (linear kernel function) and PSO-SVR (polynomial
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kernel function) models, the negative Rp
2 values in the testing set indicate the presence

of overfitting.

Table 2. Comparison analysis of SVR models.

Models Kernel Functions Penalty
Parameter c

Kernel
Parameter g

Training Set Testing Set
R2 RMSE Rp

2 RMSEp

GA–SVR

Linear kernel function 4.84 82.40 0.98 0.27 −0.65 3.67
Polynomial kernel function 4.62 0.31 0.53 2.00 0.34 2.75
Radial basis kernel function 4.44 3.12 0.97 0.33 0.74 1.79

Sigmoid kernel function 6.74 3.53 0.98 0.27 0.77 1.66

PSO-SVR

Linear kernel function 5.86 0.10 0.68 1.78 0.60 2.25
Polynomial kernel function 5.86 0.10 1.00 0.14 −0.85 4.69
Radial basis kernel function 5.86 0.10 0.95 0.71 0.75 1.76

Sigmoid kernel function 5.86 0.10 −0.01 3.20 0.00 3.57

GS–SVR
Linear kernel function 4.00 0.25 0.66 1.84 0.61 2.24

Polynomial kernel function 4.00 0.25 0.69 1.77 0.66 2.09
Radial basis kernel function 4.00 0.25 0.67 1.81 0.63 2.15

Sigmoid kernel function 4.00 0.25 0.39 2.47 0.40 2.76

Among the GA–SVR, PSO-SVR, and GS–SVR methods, the best models were selected
for comparison, as shown in Figure 5. Different SVR models can be used to estimate the
SPAD value of lettuce leaves under cadmium stress. Among them, the GA–SVR model has
the highest accuracy.
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4. Conclusions

With lettuce as the research subject and a pot planting method with exogenous cad-
mium addition being employed, the SPAD values and visible–near-infrared reflectance
spectra of lettuce leaves under cadmium stress were measured and analyzed. A method
for predicting the relative chlorophyll content of lettuce leaves under cadmium stress using
visible–near-infrared reflectance spectroscopy was proposed. The following conclusions
can be drawn:

1. As the cadmium stress intensity increases, the SPAD values of lettuce leaves gradually
decrease while the spectral reflectance in the visible light range gradually increases.
Therefore, it is feasible to use visible–near-infrared reflectance spectroscopy to invert
the relative chlorophyll content of lettuce leaves.

2. By preprocessing the original spectra using SG, MSC, SNV, MN, B, D, FD, and SD
and then using PLSR to invert the SPAD values of lettuce leaves, it was found that
the spectral accuracy for predicting SPAD values improved when using the D prepro-
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cessed spectra compared to the original spectra. The Rv
2 and RMSEv were 0.87 and

1.16, respectively.
3. By combining the feature bands selected using the correlation coefficient method

with the SVR algorithm, it was found that the GA–SVR (sigmoid kernel function),
PSO-SVR (Radial basis kernel function), and GS–SVR (Polynomial kernel function)
models can estimate the SPAD values of lettuce leaves under cadmium stress. Among
them, the GA–SVR (sigmoid kernel function) model exhibits the highest accuracy.

This study has established a theoretical and technical basis for using spectral remote
sensing to monitor the growth status of lettuce leaves under cadmium stress. The use of
visible–near-infrared spectroscopy technology can provide a reference for safe production
and quality control of lettuce.
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