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Abstract: Cotton yield estimation is of great practical significance to producers, allowing them to
make rational management decisions. At present, crop yield estimation methods mainly comprise
traditional agricultural yield estimation methods, which have many shortcomings. As an ideal
“probe” for detecting crop photosynthesis, sun-induced chlorophyll fluorescence (SIF) can directly
reflect the dynamics of actual crop photosynthesis and has the potential to predict crop yield, in
order to realize cotton yield estimation based on canopy SIF. In this study, we set up field trials with
different nitrogen fertilizer gradients. The changes of canopy SIF and the physiological parameters
of cotton in different growth periods were analyzed. To investigate the effects of LAI and AGB on
canopy SIF estimation of cotton yield, four algorithms, Ada Boost (Adaptive Boosting), Bagging
(Bootstrap Aggregating), RF (Random Forest), and BPNN (Backpropagation Neural Network), were
used to construct cotton yield estimation models based on the SIF and SIFy (the normalization of SIF
by incident photosynthetically active radiation) for different time and growth periods. The results
include the following: (1) The effects of the leaf area index (LAI) and aboveground biomass (AGB) on
cotton canopy SIF and cotton yield were similar. The correlation coefficients of LAI and AGB with
cotton yield and SIF were significantly positively correlated with each other starting from the budding
period, reaching the maximum at the flowering and boll period, and decreasing at the boll period;
(2) In different monitoring time periods, the R2 of the cotton yield estimation model established
based on SIF and SIFy showed a gradual increase from 10:00 to 14:00 and a gradual decrease from
15:00 to 19:00, while the optimal observation time was from 14:00 to 15:00. The R2 increased with the
progression of growth from the budding period to the flowering and boll period and decreased at
the boll period, while the optimum growth period was the flowering and boll period; (3) Compared
to SIF, SIFy has a superior estimation of yield. The best yield estimation model based on the RF
algorithm (R2 = 0.9612, RMSE = 66.27 kg·ha−1, RPD = 4.264) was found in the canopy SIFy of the
flowering and boll period at 14:00–15:00, followed by the model utilizing the Bagging algorithm
(R2 = 0.8898) and Ada Boost algorithm (R2 = 0.8796). In summary, SIFy eliminates the effect of PAR
(photosynthetically active radiation) on SIF and can further improve the estimation of SIF production.
This study provides empirical support for SIF estimation of cotton yield and methodological and
modeling support for the accurate estimation of cotton yield.

Keywords: SIF normalized by photosynthetically active radiation (SIFy); machine learning; leaf area
index (LAI); aboveground biomass (AGB)
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1. Introduction

As an important cash crop in the world, cotton is the main raw material for the
textile industry and has important uses in the defense, pharmaceutical, and automotive
industries [1]. In agricultural production, crop yield forecasting is of great practical impor-
tance for producers, allowing them to make rational management decisions, for example,
decisions on crop insurance, storage requirements, and cash flow budgets [2]. Cotton’s
potential yield can be predicted by physiological parameters such as the leaf area index
(LAI) and aboveground biomass (AGB) during crop growth and development [3,4]. Since
the application rate of nitrogen fertilizer has a significant effect on both the cotton yield
and the physiological parameters [5], predicting the yield is also an important guide for
nitrogen application.

Currently, crop yield estimation methods mainly comprise traditional agricultural
methods as well as remote sensing technology. Traditional agricultural yield estimation
methods require many years of ground data sampling and a large amount of computational
processing to build a complete crop yield estimation model; they are time-consuming,
involve large survey tasks, high cost, poor timeliness, and other shortcomings, and cannot
be instantly applied to a wide range of crop growth monitoring projects [6]. With the
rapid development of remote sensing technology in recent years, it has become possible to
continuously monitor the growth of agricultural commodities and to extract or estimate
crop growth parameters that are closely linked to crop yields, such as the vegetation index,
leaf area index, biomass, and productivity [7,8]. This technology has thus become an
important tool for crop yield prediction at the regional scale [9,10]. Optical remote sensing,
such as hyperspectral techniques, inverts the main biometric and chemical parameters of
crops based on spectral profiles and the main parameters of the relevant characteristics,
and the reflectance signals characterize the dynamics of the biometric characteristics of the
plant [11,12]. Many studies use spectral band reflectance [13], vegetation indices (VIS) [14],
the fraction of absorbed photosynthetically active radiation (fAPAR) [15], and lidar-based
measurements to estimate crop yield [16]. However, many remote sensing variables have a
high correlation with yield, where the prediction accuracy of crop yield cannot fully meet
the demand [17–19]. Early in the plant’s exposure to external environmental stresses, such
as nitrogen stress [20], and before changes in leaf pigmentation and canopy structure occur,
the plant is able to adapt to environmental changes by regulating internal physiological
mechanisms, such as a decrease in the rate of photosynthesis [21], which leads to an increase
in chlorophyll fluorescence and heat dissipation [22]. Therefore, chlorophyll fluorescence,
which can directly reveal the internal physiological changes of crops [23], has become a hot
research topic in recent years.

Sun-induced chlorophyll fluorescence (SIF) is a spectral signal emitted by the pho-
tochemical system of plants between 650 and 800 nm under sunlight conditions [24]. As
an ideal “probe” for detecting crop photosynthesis, chlorophyll fluorescence can directly
reflect the dynamics of actual crop photosynthesis and is superior to “greenness”-based
vegetation indices in crop monitoring [25,26]. A strong linear relationship between crop
SIF values and gross primary productivity (GPP) has been observed [27–29], with GPP
being the main photosynthetic flux directly related to crop yield [30,31]. This relationship
therefore provides the basis for a model to estimate crop yield based on SIF [32,33]. In recent
years, SIF has offered unique potential for crop yield estimation. Guan et al. [34] presented
a framework for estimating hybrid crop yields using SIF and analyzed the correlation
between the net primary productivity (NPP) of crop yields and the NPP estimated by SIF.
It was found that the yield estimation model using only NIRv data had an accuracy of 64%,
while the addition of SIF data increased it to 69% [35].

It has been shown that crop SIF is affected by incident radiation, and since photo-
synthetically available radiation (PAR) is absorbed by the plants, a small portion of the
absorbed radiation is released in the form of SIF; therefore, SIF responds to changes in
PAR [36–38]. Since SIF photons emitted inside the canopy are reabsorbed by other leaves,
which depends not only on the optical properties of the leaf but also on the leaf area
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index (LAI) and canopy structure, the effect of canopy structure must also be considered
when using remotely sensed SIF data to estimate large-scale GPP [39,40]. For example,
seasonal variation in the leaf area index (LAI) affects the different peak times of SIF and GPP,
which in turn affects the relationship between far-red SIF and GPP [41]. Wang et al. [42]
explored the correlation between SIF and aboveground biomass (AGB) to assess the effects
of drought on grasslands. Previous studies have also pointed out that the time scale of
the observations can change the relationship between the observed SIF and GPP [43]. It
has been shown that time averaging can mitigate the noise in SIF observations, leading
to a tighter SIF–GPP relationship [44]. However, there is still a lack of direct evidence of
noise reduction to improve the relationship between SIF and yield. Most of the current
SIF studies are based on the satellite scale, which is highly affected by weather and has a
low resolution [45]. It is difficult to accurately assess the performance of SIF in crop yield
estimation, and ground-based sensors provide an ideal scale for experimental studies of SIF
yield estimation. Therefore, to quantify the use of SIF for yield estimation, it is necessary
to explore the effects of radiation and biometric parameters based on ground canopy SIF
and establish a mechanistic understanding of their relationship with yield and the effects at
different times.

Data optimization and model integration can improve the performance of crop yield
estimation models [46]. Machine learning methods are able to utilize empirical data to
characterize the relationships between variables, thereby potentially improving the accuracy
of the inversion of predictive models. Liu et al. [47] used SIF to predict wheat yield in the
Indo-Gangetic Plain and showed that machine learning outperformed two linear regression
methods and deep learning methods in predicting wheat yield. Wang et al. [48] used SIF to
predict county summer corn yields, and the machine learning algorithm predicted yields
with an overall accuracy of 90%. In recent years, various machine learning methods such as
Random Forest (RF), Artificial Neural Network (ANN), and Adaptive Boosting (Ada Boost)
have been successfully applied to explore the relationship between yields and predictors as
they are able to cope with the nonlinear laws between the independent variables and the
dependent variable, thus improving the performance of the models [49].

In order to realize cotton yield estimation based on canopy SIF, in this study, we set up
field trials with different nitrogen fertilizer gradients. The changes of canopy SIF and the
biometric parameters of cotton in different growth periods were analyzed. To investigate
the effects of LAI and AGB on canopy SIF estimation of cotton yield, four algorithms, Ada
Boost (Adaptive Boosting), Bagging (Bootstrap Aggregating), RF (Random Forest), and
BPNN (Backpropagation Neural Network), were used to construct cotton yield estimation
models based on the SIF and SIFy (the normalization of SIF by incident photosynthetically
active radiation) for different time and growth periods. This study provides methodological
and model support for the accurate estimation of cotton yield.

2. Materials and Methods
2.1. Overview of the Pilot Area

This study was conducted in Shihezi University Experimental Field, Shihezi City,
Xinjiang Uygur Autonomous Region, China (44◦ 27′ N; 85◦ 94′ E) from April 2022 to
October 2022. The test area is a temperate arid zone climate characterized by abundant
light and heat resources. The average annual sunshine hours are 2797.5 h. The annual
rainfall is 180–270 mm, and the annual evaporation is 1000–1500 mm. The average annual
temperature is 6.6 ◦C, the highest temperature occurs in July, the average temperature is
24–26 ◦C, the effective cumulative temperature of ≥10 ◦C is 3428.5 ◦C, and the average frost-
free period is 176 days. The monthly average temperature and irrigation volume are shown
in Table 1. The test soil texture in this area was mainly loamy and the basic physicochemical
properties were alkaline dissolved nitrogen (ADN) 60.88 mg·kg−1, organic matter (OM)
19.90 mg·kg−1, effective potassium (EK) 134 mg·kg−1, and effective phosphorus (EP)
17.95 mg·kg−1, with the previous crop being cotton. The irrigation quota is the local
average, 4050 m3·ha−1, divided into ten irrigation times.
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Table 1. Climate data for 2023 in the experimental area.

Month Average High
Temperatures

Average Low
Temperatures Total Rainfall

April 18 ◦C 4 ◦C 17.2 mm
May 24 ◦C 12 ◦C 10.7 mm
June 33 ◦C 18 ◦C 36.2 mm
July 35 ◦C 20 ◦C 11.7 mm

August 33 ◦C 18 ◦C 45.1 mm
September 25 ◦C 12 ◦C 25.3 mm

October 20 ◦C 6 ◦C 0.1 mm

A total of five nitrogen application levels were set up in this study: N0 (0 kg·ha−1),
N1 (120 kg·ha−1), N2 (240 kg·ha−1), N3 (360 kg·ha−1), and N4 (480 kg·ha−1). The cell
layout is shown in Figure 1. Nitrogen was applied in the form of urea (46% nitrogen
content) with water drops, and phosphorus and potash fertilizers (potassium dihydrogen
phosphate) were both applied at a rate of 150 kg·ha−1. The application timing of fertilizer
was synchronized with the drip application timing of local farmers. The cotton planting
date was April 25, 2022, and the tip pruning date was July 13. The planting pattern was
“one film, three tubes, and six rows”, and the plant spacing was 10 cm + 66 cm + 10 cm.
Each nitrogen treatment plot was replicated three times, with a total of 15 plots and a single
plot area of 150 m2. A randomized block design was used, with protective rows set around
the perimeter, and all other field management measures were carried out according to local
high-yield cultivation requirements. Sampling from the budding period occurred every ten
days. Three cotton plants with the same growth in each plot were collected each time; there
were fifteen plots in total, and the number of plants sampled each time was forty-five.
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Figure 1. Cell layout and instrument set up diagram.

2.2. Data Acquisition
2.2.1. Canopy Sun-Induced Chlorophyll Fluorescence (SIF) Acquisition

Continuous canopy SIF measurements were collected using the Auto SIF (Bergsun
Inc., Beijing, China) field spectroscopy system [50]. Basic parameters of Auto SIF are
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shown in Table 2. The sensor probe was placed vertically downward at a vertical height
of approximately 1.5 m from the top of the cotton leaves (Figure 1), and the measurement
time was from 10:00 to 19:00 (local solar time) with a time sampling interval of 4–7 min.
The instrument used the three-band Fraunhofer line depth (3FLD) fluorescence extraction
algorithm to extract the SIF value of vegetation [51], and the SIF value of each time period
represented the SIF value of the time period on average.

Table 2. Basic parameters of Auto SIF.

Parameters Presentation

Spectral range 640–800 nm, HR 200–1000 nm
Spectral resolution 0.39 nm, HR 1 nm

Spectral response Up to 70% quantum efficiency at 780 nm, up to 50%
quantum efficiency at 680 nm

Optical transmission mode Bifurcated fibers, prisms, multi-channel MPM

Temperature control system Temperature range 25 ± 1.00 ◦C, humidity level < 60%
(except under extreme conditions)

Fiber optics 600 µm, 1000 µm

2.2.2. Cotton Biometric Parameters and Yield Data Acquisition

Experimental data collection and measurements were taken at ten-day intervals start-
ing from the budding period for a total of seven collections. Three cotton plants with
uniform growth were collected as samples from each plot. The following biometric param-
eters were measured:

1. Leaf area index (LAI): The leaf area data were obtained by using an LI-3100c bench
leaf area instrument (LI-COR, Inc., Lincoln, NE, USA) to measure the leaf area of all
the leaves of each cotton plant. The formula for calculating LAI is as follows: m is the
number of plants measured; A is the leaf area of all leaves of plant m; p is the planting
density;

LAI = 0.75 ρ
∑m

i=1 A
m

(1)

2. Aboveground biomass (AGB) (g·m−2): Once the measured plants were collected, the
plants at the upper part of the cotyledon node were cut into pieces and packed in
bags. The plants were defoliated at 105 ◦C for 30 min and dried at 80 ◦C to a constant
weight. AGB is calculated by the following formula: B is the dry weight of a cotton
plant and S is the area occupied by a cotton plant;

AGB =
B
S

(2)

3. Seed cotton yield (kg·ha−1): Yield estimation using sample method harvesting. Dur-
ing the cotton fluffing period, representative sample squares (2.28 m × 1 m) were
selected from each plot for yield determination; the number of plants, number of bolls
per plant, and single boll weight were determined, and the weight of seed cotton was
weighed in each sample square. The formula is as follows:

Seed cotton yield (kg·ha−1) = Harvest density (number of plants·ha−1) × Number of bolls per plant (number
of individuals·plants−1) × Single boll weight (g)/1000 × Measurement yield correction factor (90%)

(3)

2.3. Data Processing
2.3.1. SIF Data Preprocessing

The determination of the instantaneous intensity of SIF throughout the day using
the sun-induced chlorophyll fluorescence (Auto SIF) is susceptible to the influence of the
intensity of the effective solar radiation. Normalization of SIF by PAR can reduce the impact
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of incident radiation intensity on canopy SIF intensity, and improve the effectiveness and
accuracy of SIF spectrum detection of crop biometric information [52].

PAR =
∫ λ=700

λ=400
Iλdλ (4)

SIFy =
SIF

PAR
(5)

2.3.2. Correlation Analysis

All 45 sets of data collected in each period were used for the application of Pearson
correlation analysis. The correlation coefficient is an indicator of the closeness of the
correlation between the corresponding variables. It is derived by the product-difference
method, which is based on the deviation of two variables from their respective mean values,
and the degree of correlation between the two variables is reflected by multiplying the
two deviations. The formula for calculating the correlation coefficient is as follows: xi and
yi denote the ith corresponding value of the two parameters, x and y denote the mean
value of the two parameters, and n is the number of samples. The higher the value of the
correlation coefficient of the samples, the higher the degree of similarity, and vice versa, the
lower the degree of similarity.

r =
∑n

i=1 (xi − x)(yi − y)√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2

(6)

2.3.3. Model Building Methodology

The Ada Boost (Adaptive Boosting) algorithm, proposed by Freund et al., in 1996 [53],
is an ensemble learning technique that constructs a robust classifier by combining multiple
weak classifiers to achieve higher accuracy and mitigate the risk of overfitting. One notable
advantage of Ada Boost lies in its adaptive selection of iteration coefficients, which enhances
convenience and usability. Moreover, this algorithm serves as a versatile framework for
integrating various other algorithms, making it widely adopted in practice.

Bagging (Bootstrap Aggregating) is an integrated learning algorithm commonly used
to reduce the variance of predictive models [54]. In the Bagging method, a random sample
of data is selected from the training set using the substitution method, allowing for multiple
selections of a single data point. Subsequently, these weak models are individually trained
and their predictions are aggregated to yield more accurate estimates based on the task
type (e.g., regression or classification). Bagging integrates ridge algorithms to improve their
accuracy and stability while reducing the variance of the results and avoiding overfitting.

RF (Random Forest) is to build a forest in a random way, and the forest is composed of
many decision trees, and each decision tree in the Random Forest is not related to each other.
After obtaining the forest, when a new input sample comes in, let each decision tree in the
forest make a judgment to see which category the sample should belong to. Then, see which
category is selected the most, and predict this sample to be that category. By sampling
data sets, multiple different data sets are generated, and a classification tree is trained on
each data set. Finally, the prediction results of each classification tree are combined as the
prediction results of Random Forest. Random Forest improves the prediction accuracy
without a significant increase in computation [55].

BPNN (Backpropagation Neural Network) can learn and store a large number of
input–output mode mapping relationships without revealing the mathematical equations
describing those relationships. The calculation process consists of a forward calculation
process and a reverse calculation process. The forward propagation process is where the
input pattern is processed layer by layer from the input layer to the hidden unit layer
and shifted to the output layer, where the state of the neurons in each layer only affects
the state of the neurons in the next layer. If the desired output cannot be obtained at the
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output layer, it is transferred to backpropagation, which returns the error signal along the
original connection pathway and minimizes the error signal by modifying the weights of
each neuron [56].

In this study, the above algorithms are implemented using a machine learning library
in the Python language, and the entire data set is randomly divided into a training set and
a test set in a ratio of 2:1 to fit the four algorithms.

2.3.4. Evaluation of the Model

The present study employed coefficient of determination (R2), root mean square error
(RMSE), and relative percentage difference (RPD) as evaluation metrics. R2 is utilized to
assess the correlation between the predicted and actual values of a sample. The closer R2 is
to 1, the stronger the correlation between these two values. The RMSE value is expressed in
the same unit as the original observation. The RMSE can quantify the average magnitude
of prediction errors produced by the model, and a smaller value indicates a closer match
between the predicted values and actual observations, thus indicating a better fit of the
model. The RPD is employed to assess the stability performance of the model. A higher
RPD indicates a superior stability performance, typically with an RPD value greater than
3 being suitable for practical applications. The specific calculation is determined by the
following formula: xi is the simulated value, yi is the actual value, n is the number of
samples available for validation, and SD is the standard deviation.

R2 = 1 − ∑n
i=1(xi − yi)

2

∑n
i=1(yi − yi)

2 (7)

RMSE =

√
∑n

i=1(xi − yi)
2

n
(8)

RPD = SD/RMSE (9)

3. Results
3.1. Diurnal Variation in Canopy SIF and Biometric Parameter Responses of Cotton for Different
Growth Periods

The analysis showed that the fluctuation of diurnal variation in cotton canopy SIF
showed a single-peak state of first rising and then decreasing on sunny days (Figure 2a),
and reached the maximum value around 14:00–15:00. The diurnal variation trends of
photosynthetically active radiation (PAR) and SIF were consistent, indicating that PAR
affected the change in SIF, and the peak value appeared around 14:00–15:00 (Figure 2b). The
diurnal variation in SIFy showed a horizontal linear fluctuation (Figure 2c). Cotton yield
showed a trend of first increasing and then decreasing under different nitrogen application
treatments, reaching the maximum value under N3 treatment, and the differences among
different treatments reached significant levels (Figure 2d).
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Figure 2. Diurnal variation in canopy SIF and significant analysis of cotton yield under different
treatments. (a–c) represent the diurnal variation in cotton canopy SIF, PAR, and SIFy, respectively;
(d) represents the significant analysis of cotton yield under different treatments. (d) (a–e) indicates
that at the significant level of 0.05, different letters represent significant differences, and the same
letters represent significant differences.
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The variation trends of cotton AGB and LAI during the growing period were basically
the same, increasing from the budding period, reaching the maximum value in the flow-
ering and boll period, and decreasing during the boll period (Figure 3). At each growth
period, cotton AGB and LAI showed a trend of first increasing and then decreasing with the
increase in nitrogen application, and reached the maximum value under the N3 treatment.
Cotton canopy SIF increased from the budding period, reached the maximum value at the
flowering and boll period, and began to decrease at the boll period (Figure 3). With the
increase in nitrogen application, cotton canopy SIF showed a trend of first increasing and
then decreasing, and reached the maximum value under the N3 treatment. The change
trend of SIF was basically consistent with that of AGB and LAI. These results indicated that
AGB and LAI influenced the changes of SIF during the growth period of cotton.

Agronomy 2024, 14, x FOR PEER REVIEW 10 of 22 
 

 

treatment. Cotton canopy SIF increased from the budding period, reached the maximum 

value at the flowering and boll period, and began to decrease at the boll period (Figure 3). 

With the increase in nitrogen application, cotton canopy SIF showed a trend of first 

increasing and then decreasing, and reached the maximum value under the N3 treatment. 

The change trend of SIF was basically consistent with that of AGB and LAI. These results 

indicated that AGB and LAI influenced the changes of SIF during the growth period of 

cotton. 

 

Figure 2. Diurnal variation in canopy SIF and significant analysis of cotton yield under different 

treatments. (a–c) represent the diurnal variation in cotton canopy SIF, PAR, and SIFy, respectively; 

(d) represents the significant analysis of cotton yield under different treatments. Figure 2d (a–e) 

indicates that at the significant level of 0.05, different letters represent significant differences, and 

the same letters represent significant differences. 

 

Figure 3. Significance analysis of AGB, LAI, and SIF of cotton at different growth periods and under 

different treatments. (a–e) indicates that at the significant level of 0.05, different letters represent 

significant differences, and the same letters represent significant differences. 

3.2. Correlation Analysis between Canopy SIF and Cotton Yield at Different Growth Periods 

3.2.1. Correlation Analysis of Cotton Yield with AGB and LAI at Different Growth 

Periods 

The correlation between cotton yield and biometric parameters was analyzed, and 

the results are shown in Table 3. In the four key growth periods, cotton yield was 

significantly positively correlated with AGB and LAI. The correlation coefficient increased 

first and then decreased with the progress of growth periods and reached the maximum 

10:12 13:36 17:00 20:24

0.00

0.06

0.12

0.18

10:12 13:36 17:00 20:24

1×10−5

2×10−5

3×10−5

4×10−5

5×10−5

10:12 13:36 17:00 20:24

2000

4000

6000

8000

e
c

b
a

d

 N0

 N1

 N2

 N3

 N4

S
IF

 (
µ

W
·c

m
−

2
·n

m
−

1
·s

r−
1
)

Time (Day)

(a) (b) (c) (d) N0

 N1

 N2

 N3

 N4

S
IF

y
 (

n
m

−
1
·s

r−
1
)

Time (Day)

 N0

 N1

 N2

 N3

 N4

P
A

R
 (

µ
W

·c
m

−
2
)

Time (Day)

N0 N1 N2 N3 N4

4000

5000

6000

7000

Y
ie

ld
 (

k
g

·h
a−

1
)

Treatment

ab ab
a a

b

d
b b

a
b

e
d

b a
c

c

ab ab

a

b

c
ab a a

bc d

bc b a
c c c

b
a

c
c

b
b

a

bc

d
b b

a
c

e
c

b
a

d
d

c
b

a

d

c b
c

a
c

0

1000

2000

3000

4000

A
G

B
 (

g
·m

−2
)

 N0  N1  N2  N3  N4

0.0

0.9

1.8

2.7

3.6

4.5

L
A

I

Budding period Flowering period Flowering and boll period Boll period
0.0

0.1

0.2

0.3

0.4

S
IF

 (
µ

W
·c

m
−2

·n
m

−1
·s

r−1
)

Growth stages

Figure 3. Significance analysis of AGB, LAI, and SIF of cotton at different growth periods and under
different treatments. (a–e) indicates that at the significant level of 0.05, different letters represent
significant differences, and the same letters represent significant differences.

3.2. Correlation Analysis between Canopy SIF and Cotton Yield at Different Growth Periods
3.2.1. Correlation Analysis of Cotton Yield with AGB and LAI at Different Growth Periods

The correlation between cotton yield and biometric parameters was analyzed, and the
results are shown in Table 3. In the four key growth periods, cotton yield was significantly
positively correlated with AGB and LAI. The correlation coefficient increased first and then
decreased with the progress of growth periods and reached the maximum value during the
flowering and boll period. The correlation coefficient between yield and AGB reached the
maximum value of 0.868 during the flowering and boll period, followed by 0.858 in the
flowering period and 0.556 in the boll period. In these three periods, there were significant
correlations at the p < 0.05 level. The correlation coefficient between yield and LAI reached
the maximum value of 0.819 in the flowering and boll period, followed by 0.691 in the
flowering period, while the lowest value was observed during the budding period. The
results showed that cotton yield was significantly correlated with both AGB and LAI from
the flowering period to the boll period.
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Table 3. Correlation analysis of cotton yield with AGB and LAI in different growth periods.

Budding Period Flowering
Period

Flowering and
Boll Period Boll Period

Yield and AGB 0.420 * 0.858 ** 0.868 ** 0.556 **
Yield and LAI 0.494 * 0.691 ** 0.819 ** 0.690 **

*, significant correlation at the 0.01 level; **, significant correlation at the 0.05 level.

3.2.2. Correlation Analysis of Cotton Canopy SIF with AGB and LAI at Different
Growth Periods

As can be seen from Figure 4, the correlation between cotton canopy SIF, AGB, and
LAI was the best in the flowering and boll period, followed by the flowering period and the
budding period, and it was the smallest during the boll period. In terms of the correlation
between cotton canopy SIF and AGB, the correlation first increased and then decreased
with the increase in time. The correlation coefficient between SIF and AGB reached the
maximum value (r = 0.80) at 14:00–15:00 in the flowering and boll period, followed by
that in the flowering period (r = 0.79). In terms of the correlation between cotton canopy
SIF and LAI, the correlation first increased and then decreased with the increase in time.
The correlation coefficient between SIF and AGB reached the maximum value (r = 0.85)
at 14:00–15:00 in the flowering and boll period, followed by that in the flowering period
(r = 0.71). The results showed that canopy SIF was significantly correlated with AGB and
LAI during the four key reproductive periods, with the highest correlation at 14:00–15:00.
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Figure 4. Correlation graph of cotton canopy SIF, AGB, and LAI in different time periods. (a): budding
period; (b): flowering period; (c): flowering and boll period; (d): boll period. *, significant correlation
at the 0.01 level.

3.3. Construction of the Cotton Yield Estimation Model
3.3.1. Construction of the Cotton Yield Estimation Model Based on Canopy SIF

The variation in canopy SIF with respect to the cotton yield estimation model R2 is
shown in Figure 5. In the four key growth periods, the effect of the cotton yield model
constructed with RF is the best, and the R2 is basically 0.90 in each period. The R2 of the
cotton yield model constructed using Ada Boost and Bagging had a significant peak at
14:00–15:00, and the range of R2 was 0.70–0.80. The model of cotton yield based on BPNN
had the worst effect, with R2 less than 0.5. In the flowering and boll period (Figure 5c),
the constructed models gave better results for all models except BPNN. In the boll period
(Figure 5d), none of the models worked very well. This indicates that time variation had an
effect on the SIF cotton yield model.
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Figure 5. Variations in the yield estimation model R2 values of canopy SIF for cotton in different time
periods. (a): budding period; (b): flowering period; (c): flowering and boll period; (d): boll period.

According to the correlation analysis between LAI, AGB, and canopy SIF, canopy
SIF with good correlation on 14:00–15:00 was selected. A cotton yield estimation model
based on canopy SIF from 14:00 to 15:00 was established. Figures 6–9 show the yield
estimation model of canopy SIF based on 14:00–15:00 at different growth stages of cotton.
By comparing the four modeling methods, it was concluded that the cotton yield model
constructed with RF had the best effect (Figure 7). The best modeling using the RF algorithm
was achieved during the flowering and boll period (R2 = 0.9336, RMSE = 75.16 kg·ha−1,
RPD = 3.668, Figure 7c), followed by the flowering period (R2 = 0.9256, Figure 7b), while
the worst modeling was achieved during the boll period (R2 = 0.8919, Figure 7d). The
results of utilizing the BPNN algorithm were unsatisfactory for all growth periods, with a
maximum R2 value of 0.6138 (Figure 9a). The Ada Boost algorithm was used to achieve the
best modeling effect in the flowering and boll period (R2 = 0.8572, RMSE = 107.5 kg·ha−1,
RPD = 2.331, Figure 6c). The Bagging algorithm was able to achieve the best modeling
effect in the flowering and boll period (R2 = 0.8830, RMSE = 119.7 kg·ha−1, RPD = 2.236,
Figure 8c). In summary, the best modeling was achieved for the flowering and boll period,
followed by the flowering period, in the yield estimation model based on 14:00–15:00
canopy SIF. The optimal model was RF modeling in the boll period.
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Figure 6. Yield estimation model of cotton based on canopy SIF from 14:00 to 15:00 using Ada Boost
for different growth periods. (a): budding period; (b): flowering period; (c): flowering and boll
period; (d): boll period. Black samples represent the results of the training set, and blue samples
represent the results of the verification set.
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Figure 7. Yield estimation model of cotton based on canopy SIF from 14:00 to 15:00 using RF for
different growth periods. (a): budding period; (b): flowering period; (c): flowering and boll period;
(d): boll period. Black samples represent the results of the training set, and blue samples represent
the results of the verification set.
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Figure 8. Yield estimation model of cotton based on canopy SIF from 14:00 to 15:00 using Bagging for
different growth periods. (a): budding period; (b): flowering period; (c): flowering and boll period;
(d): boll period. Black samples represent the results of the training set, and blue samples represent
the results of the verification set.
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Figure 9. Yield estimation model of cotton based on canopy SIF from 14:00 to 15:00 using BPNN for
different growth periods. (a): budding period; (b): flowering period; (c): flowering and boll period;
(d): boll period. Black samples represent the results of the training set, and blue samples represent
the results of the verification set.

3.3.2. Construction of Cotton Yield Estimation Model Based on Canopy SIFy

The variation in canopy SIFy with respect to the cotton yield estimation model R2 is
shown in Figure 10. In the four key growth periods, the effect of the cotton yield model
constructed with RF was the best, and the R2 was basically 0.90 in each period. The R2 of
the cotton yield model constructed using Ada Boost and Bagging had a significant peak at
14:00–15:00, and the range of R2 was 0.75–0.85. The model of cotton yield based on BPNN
had the worst effect, with an R2 of less than 0.5. The model R2 was at its maximum during
all four reproductive periods at 14:00–15:00. This indicates that the canopy-based cotton
yield model utilizing SIFy at 14:00–15:00 worked best.
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Figure 10. Variations in the yield estimation model R2 of canopy SIFy for cotton in different time
periods. (a): budding period; (b): flowering period; (c): flowering and boll period; (d): boll period.

Yield estimation models for constructing cotton canopy SIFy were based on 14:00–15:00
in the different growth periods (Figures 11–14). Comparison of the four modeling methods
demonstrated that the cotton yield model constructed using RF was the most effective
(Figure 12). The best modeling effect was achieved by using the RF algorithm in the
flowering and boll period (R2 = 0.9612, RMSE = 66.27 kg·ha−1, RPD = 4.264, Figure 12c),
followed by the flowering period (R2 = 0.9590, Figure 12b). The modeling effect of the
BPNN algorithm in each growth period was not very good (Figure 14), with the maximum
R2 value being 0.4377 (Figure 14a). The Ada Boost algorithm was used to achieve the
best modeling effect in the flowering and boll period (R2 = 0.8796, RMSE = 110.1 kg·ha−1,
RPD = 2.452, Figure 11c), along with the Bagging algorithm which also achieved the best
modeling effect in the flowering and boll period (R2 = 0.8898, RMSE = 102.7 kg·ha−1,
RPD = 2.760, Figure 13c). In the cotton yield model constructed by the four algorithms, the
modeling effect was the best in the flowering and boll period, followed by the flowering
period, and was the worst in the boll period. A comparison of the modeling results of
the different algorithms for the different growth periods revealed that the optimal model
was the one that was applied during the cotton flowering and boll period using the RF
algorithm.
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Figure 11. Yield estimation model of cotton based on canopy SIFy from 14:00 to 15:00 using Ada
Boost for different growth periods. (a): budding period; (b): flowering period; (c): flowering and
boll period; (d): boll period. Black samples represent the results of the training set, and blue samples
represent the results of the verification set.
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Figure 12. Yield estimation model of cotton based on canopy SIFy from 14:00 to 15:00 using RF for
different growth periods. (a): budding period; (b): flowering period; (c): flowering and boll period;
(d): boll period. Black samples represent the results of the training set, and blue samples represent
the results of the verification set.
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Figure 13. Yield estimation model of cotton based on canopy SIFy from 14:00 to 15:00 using Bagging
for different growth periods. (a): budding period; (b): flowering period; (c): flowering and boll
period; (d): boll period. Black samples represent the results of the training set, and blue samples
represent the results of the verification set.
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Figure 14. Yield estimation model of cotton based on canopy SIFy from 14:00 to 15:00 using BPNN for
different growth periods. (a): budding period; (b): flowering period; (c): flowering and boll period;
(d): boll period. Black samples represent the results of the training set, and blue samples represent
the results of the verification set.

3.4. Model Validation

To verify the applicability of the model, the cotton yield estimation model based
on SIF was validated in the flowering and boll period. The model was validated using
data from 2023. Among them, the RF model had the best verification effect (R2 = 0.6407,
RMSE = 243.0 kg·ha−1, RPD = 0.7547, Figure 15), followed by the Bagging model (R2 = 0.4234,
RMSE = 290.8 kg·ha−1, RPD = 0.4600, Figure 15). The model validation effect was the worst
in the BPNN model. The cotton yield estimation model based on SIFy was validated. The
RF model had the best verification effect (R2 = 0.7381, RMSE = 162.0 kg·ha−1, RPD = 1.833,
Figure 16), followed by the Bagging model (R2 = 0.6563, RMSE = 180.3 kg·ha−1, RPD = 1.391,
Figure 16).
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Figure 15. Yield estimation model verification of cotton based on canopy SIF during the flowering
and boll period.
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Figure 16. Yield estimation model verification of cotton based on canopy SIFy during the flowering
and boll period.

4. Discussion

The results of this study showed that AGB and LAI, which were significantly correlated
with cotton yield, were also significantly correlated with canopy SIF. At present, AGB and
LAI have been proven to be important biometric indices affecting cotton yield [57,58]. Cui
et al. [59] found that the fluorescence relationship between the leaves and canopy at 740 nm
was mainly affected by LAI. Yuma Sakai et al. [60] showed that SIF increases with LAI;
then, it is saturated at LAI > 2–4 depending on the spectral wavelength. Wang et al. [42]
concluded that SIF had a good relationship with aboveground biomass (R2= 0.65–0.82).
These results indicate that SIF is indirectly related to the cotton yield through LAI and AGB.
However, some studies have concluded that canopy SIF can be used as a crop monitoring
indicator to directly estimate crop yield [23,61]. The mechanisms and indicators of SIF
change in response to yield before the cotton fluffing periods are currently unclear. LAI
and AGB, which represent vegetation canopy structure and organic matter accumulation,
respectively, are dynamic at various periods of cotton growth. Therefore, it is important
to study the relationship between cotton canopy SIF and dynamic change indicators for
cotton yield estimation.

The optimal observation time for the model to estimate cotton yield based on canopy
SIF was 14:00–15:00. The diurnal variation in cotton canopy SIF was basically consistent
with that of photosynthetically active radiation (PAR), which reached the maximum value
from 14:00 to 15:00. The R2 of canopy SIF and yield model during the day basically showed
a gradual increase from 10:00 to 14:00 and a gradual decrease from 15:00 to 19:00. This may
be due to the fact that 14:00–15:00 is the midday period in Xinjiang when the light intensity
is the highest. PAR drives photosynthesis and excites chlorophyll fluorescence [62]. SIF
mainly responds to changes in PAR rather than actual changes in photosynthetic efficiency,
and thus, photosynthetically active radiation is a key driver of SIF [63,64]. It has been
shown that PAR is one of the main sources of SIF inversion errors [65,66]. Therefore, in this
study, PAR was used to normalize SIF to mitigate the effect of light intensity on SIF. The
optimal time for the R2 for the canopy-based SIFy estimation yield model for cotton with
PAR effects removed was also 14:00–15:00.

The optimum growth period for yield estimation using both SIF and SIFy was during
the flowering and boll period with R2 values of 0.9422 and 0.9671. The effects of LAI
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and AGB on cotton canopy SIF and cotton yield were similar. During the whole growth
period, LAI and AGB increased from the budding period to the flowering and boll period
but decreased in the boll period. The correlation of LAI and AGB with cotton yield and
SIF was elevated from the budding period, reached a maximum during the flowering
and boll period, and declined during the boll period. The trend of the R2 of the cotton
yield model based on SIF and SIFy basically follows the pattern of LAI and AGB. It
shows that LAI and AGB are factors that influence the SIF and yield models. This may be
because when LAI and AGB increase, cotton is in a vigorous growth period, and due to
the scattering and reabsorption effects inside the leaves and canopy [67], the SIF obtained
from the canopy will also increase with the increase in light area. When LAI and AGB
decreased, some cotton leaves fell off, resulting in a decrease in light area and AGB. In
the boll period, cotton approaches maturity, leaves gradually age, and non-photochemical
quenching (NPQ) increases [68], leading to a decrease in the correlation between SIF and
yield, which increases the uncertainty of the SIF yield model in the later growth period.
The photosynthetic area of cotton reaches its maximum in the flowering and boll period,
and the accumulation of photosynthetic substances at this stage may be a key factor in
determining cotton yield [69].

Compared with SIF, SIFy can better estimate the cotton yield. In the estimation of
cotton yield by SIFy, the RF model had the best effect (R2 = 0.9612, RMSE = 66.27 kg·ha−1,
RPD = 4.264), followed by Ada Boost, whereas BPNN had the worst effect. The model was
verified with the data of 2023, and the applicability of the model was proved. Cai et al. [70]
estimated the yield of a major crop (wheat) in Australia using satellite SIF data based on
machine learning (ML) methods such as RF and SVM, and the Random Forest algorithm
achieved high-performance yield prediction (R2 = 0.75). Many studies have shown that
RF outperforms other machine learning methods for crop yield estimation [71]. Cao
et al. [72] estimated rice yield using three methods: linear, ML, and deep learning. Among
these, the best results were obtained using a Random Forest model with R2 = 0.76–0.82 and
RMSE = 366.0–723.3 kg·ha−1. PAR data can eliminate the effect of SIF due to light instability.
This method can extract a more accurate and reliable SIF data set from long-term field
observations for studying the relationship between SIF and vegetation photosynthesis [73].
SIF can better estimate yield after PAR normalization [74,75].

The relationship between SIF and yield is complicated. In this study, SIF was used to
directly estimate cotton yield, and although AGB and LAI, which are significantly correlated
with cotton yield and canopy SIF, were utilized for interpretation, other indicators, such as
chlorophyll content, canopy leaf structure, and other biometric parameters, also influenced
SIF production. Therefore, it is necessary to analyze the interaction process between incident
light and vegetation in detail, to identify the reasons affecting SIF and photosynthesis, and
better explain the relationship between SIF and yield from the mechanism. In this study, the
PAR-normalized SIF was used to eliminate the effect of PAR on SIF, resulting in improved
accuracy of yield estimation models for cotton. In this study, the normalization of SIF
was used to eliminate the effect of PAR on SIF so that the accuracy of the yield estimation
model for cotton was improved. However, environmental factors such as solar zenith angle,
moisture, air temperature, and vapor pressure difference (VPD) affect the process of SIF
generation, and further study is required to eliminate the effects of environmental factors
on SIF and thus improve the quality of SIF data. In this study, cotton yield was estimated
based on the hourly scale of cotton in the ground canopy. Different time and spatial scales
create uncertainty in the relationship between SIF and cotton yield, where the optimal
observation requires further investigation.

5. Conclusions

In this study, we analyzed the biometric parameters affecting the correlation between
cotton canopy SIF and yield, clarified the optimal time and growth period for yield esti-
mation by cotton canopy SIF, and established and screened the optimal model for yield
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estimation by using cotton canopy SIF parameters. Our conclusions based on this research
are as follows:

1. The effects of LAI and AGB on cotton canopy SIF and cotton yield were similar.
Throughout the reproductive period of cotton, the LAI, AGB, and canopy SIF all
gradually increased from the budding period to the flowering and boll period and
began to decline in the boll period. The correlation coefficients of LAI and AGB
with cotton yield and canopy SIF both increased from the budding period, reached
a maximum during the flowering and boll period, and decreased in the boll period,
all of which were significantly positively correlated. The trend of the R2 of the cotton
yield model based on SIF and SIFy closely follows the pattern of LAI and AGB;

2. At different monitoring time periods, the R2 of the cotton yield estimation model
based on SIF and SIFy showed a gradual increase from 10:00 to 14:00 and a gradual
decrease from 15:00 to 19:00, and the optimal observation time for the cotton canopy
SIF to estimate the yield was 14:00–15:00. The R2 of the cotton yield model based on
SIF and SIFy increased with the course of fertility from the budding period to the
flowering and boll period and decreased in the boll period, and the optimal growth
period for the estimation model was the flowering and boll period;

3. Compared to SIF, SIFy has a superior estimation of yield. The best yield estimation
model based on the RF algorithm for canopy SIFy parameters at 14:00–15:00 during
the flowering and boll period (R2 = 0.9612, RMSE = 66.27 kg·ha−1, RPD = 4.264) was
followed by the model utilizing the Bagging algorithm (R2 = 0.8898) and the Ada
Boost algorithm (R2 = 0.8796). Through verification, the applicability of the model is
proved.
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