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Abstract: The rhizosphere is a dynamic and highly interactive habitat where diverse microbial com-
munities are established, and it plays crucial roles in plant health and disease dynamics. In this study,
microbial communities and functional profiles in the rhizosphere of both asymptomatic and symp-
tomatic apple trees were investigated through amplicon sequencing and shotgun metagenomics. The
research was conducted at a location in the municipality of Cuauhtemoc, Chihuahua State, Mexico,
and a total of 22 samples were collected, comprising 12 for amplicon sequencing and 10 for shotgun
metagenomic sequencing. Symptomatic trees were identified based on reddish branches and internal
necrosis in the trunk and root, while asymptomatic trees exhibited a healthy physiology. The findings
showed that the dominant bacterial phyla included Proteobacteria, Actinobacteria, and Bacteroidetes,
with prevalent genera such as Streptomyces, Pseudomonas, and Rhodanobacter. The fungal communities
featured Ascomycota, Mortierellomycota, and Basidiomycota, which were dominated by Fusarium,
Penicillium, and Mortierella. In the fungal communities, Mortierellomycota, notably abundant in
asymptomatic trees, holds potential as a biocontrol agent, as seen in other studies on the suppression
of Fusarium wilt disease. The application of shotgun metagenomic sequencing revealed significant dif-
ferences in alpha and beta diversities in bacterial communities, suggesting a health-dependent change
in species composition and abundance. Functional profile analysis highlighted enzymatic activities
associated with lipid synthesis/degradation, amino acid biosynthesis, carbohydrate metabolism, and
nucleotide synthesis, which have been documented to participate in symbiotic relationships between
plants. These insights not only contribute to understanding the dynamics of rhizosphere microbial
activity but also provide valuable perspectives on the potential application of microbial communities
for tree health and implications for the management of apple orchards.

Keywords: Malus domestica; rhizosphere; bacteria; fungi; microbiome; metagenomics

1. Introduction

The rhizosphere, the soil region surrounding plant roots, is a dynamic and highly
interactive habitat where diverse microbial communities are established. These communi-
ties play a fundamental role in numerous ecological and agricultural processes, including
organic matter decomposition, nutrient cycling, and the promotion of plant growth [1–3].
Among the microorganisms present in the rhizosphere, bacteria and fungi stand out as
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key components of the microbial community. These microorganisms not only exist in close
proximity to plant roots but also interact intimately with them, influencing plant health
and productivity [1].

The apple tree (Malus domestica), a fruit species of great economic and agricultural
importance, heavily relies on the interaction between tree roots and the microbial com-
munities present in the rhizosphere. This microbial diversity and its functions have been
the subject of increasing interest in the rhizosphere of several agricultural crops [4–8].
For instance, certain bacterial species can fix atmospheric nitrogen, making it available
to plants, while others produce phytohormones that stimulate root development and en-
hance nutrient uptake [9–11]. Additionally, microbial communities can protect plants from
pathogens through resource competition or by producing antimicrobial compounds [12,13].
Understanding the composition and function of these microbial communities is crucial
to improving tree health, increasing the quality and quantity of apple production, and
developing sustainable agricultural practices [14,15].

Although numerous studies have been conducted on the microbiological aspects as-
sociated with apple trees, the generated data due to next-generation sequencing (NGS)
techniques are crucial for the generation of knowledge benefiting this agriculturally impor-
tant crop. The use of metagenomic analysis in research has been applied to solve existing
gaps by identifying new genetic variants and trying to explain emerging diseases or dis-
eases caused by various pathogens, as is the case in this study. In the same way, progress
in these matters has revolutionized our understanding of microbial communities in the
rhizosphere, providing insights into the taxonomic composition, functional potential, and
ecological roles of microbial communities [16,17].

Apple crown and root rot diseases have scarcely been studied in apple orchards in
the apple-growing region of Chihuahua, Mexico [18]. They induce symptoms such as
necrosis in the feeder root system and in the trunk, and finally, they lead to the death of
the tree. Around the world, fungi (e.g., Cylindrocarpon spp., Rhizoctonia spp., and Fusarium
proliferatum) and oomycetes (e.g., Phytophthora spp. and Pythium spp.) have been reported
as the pathogens causing apple root and crown rot diseases [19–21]. However, it has been
observed that in many instances, it is not just an individual pathogen but rather the in-
volvement of many other groups of microorganisms that affect the outcome of the infection
in plants [22]. In fact, the diseases known as apple replant disorders are associated with
various causal agents but differ among countries and remain unclear [23]. In Chihuahua,
Mexico, the incidence of root diseases in apple trees was assessed, revealing a rate of 17%.
Various isolates of fungi and oomycetes were identified, and their pathogenicity was subse-
quently determined. In in vitro antagonistic activity tests, Trichoderma and Bacillus emerged
as promising alternatives for biological control against the evaluated phytopathogens [18].
It is crucial to study the microbial community in the rhizosphere of both asymptomatic
and symptomatic trees affected by root and crown rot to gain a better understanding of the
possible microbial interactions that exist in the rhizosphere and, consequently, to enhance
our overall comprehension of the disease dynamics.

In light of the existing gaps in knowledge, our hypothesis suggests that changes in
the rhizosphere microbial community composition of symptomatic apple trees are struc-
tured by the presence and activities of pathogens and saprophytes, as well as beneficial
microorganisms exhibiting antagonistic properties against the pathogens. The aim of this
study was to characterize and compare the composition and diversity of the microbial
communities found in rhizosphere samples of both conditions at a location in the munici-
pality of Cuauhtemoc, Chihuahua State, Mexico. In pursuit of this objective, metagenomic
shotgun sequencing and amplicon sequencing targeting the 16S rRNA gene and internal
transcribed spacer (ITS1) region were employed to generate new knowledge. Additionally,
the functional profile was analyzed to elucidate the ecological functions of microbial com-
munities in the rhizosphere. Thus, this study significantly contributes to understanding
rhizosphere microbial dynamics, providing insights that could have potential implications
for the effective management of apple orchards.
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2. Materials and Methods
2.1. Site Description and Sample Collection

Soil samples from an apple orchard area containing asymptomatic and symptomatic
crown and root rot of Malus domestica trees (golden glory apples grafted onto Emla7
rootstock) were collected at a location in the municipality of Cuauhtemoc, Chihuahua
State, Mexico (28◦42′54.9′′ N, 106◦55′06.6′′ W; 2,018 masl). The first sampling took place
in June 2020, during the early summer, and involved collecting three rhizospheric soil
samples from both asymptomatic and symptomatic apple trees. These samples were
used for amplicon sequencing. A subsequent sampling was conducted in February 2022,
during late winter, where six asymptomatic and four symptomatic trees were sampled for
metagenomic sequencing.

Rhizosphere soil samples from 7-year-old trees under each condition were sampled:
first, rhizosphere soil samples from asymptomatic and symptomatic apple trees were
selected, with a minimum distance of 40 m between samples, based on visual symptoms
from the roots and foliage, such as dead areas at the base of the tree. These dead areas started
in the bark between the soil line and the crown roots, comprising darkened and collapsed
tissue. The foliage symptoms were reduced vegetative growth, small leaves, and little
budding. The uppermost 20 cm of soil was removed using a shovel, and approximately 10 g
of rhizosphere soil was collected per individual plant by employing a dry sterile toothbrush
to brush off the soil around the surface of the apple root, which was then placed into sterile
bags and stored on ice for transport to the laboratory, where the samples were then stored
in an ultralow temperature freezer at −80 ◦C until processing. In addition, the physical
and chemical properties of the soil at a depth of approximately 20 cm from asymptomatic
and symptomatic trees were as follows: soil texture = loam and sandy loam; pH = 6.24 and
2.91; electrical conductivity (EC) = 2.71 and 3.75 mS/cm; organic matter = 1.42 and 1.50%.

2.2. Total DNA Extraction and Sequencing

Total DNA was extracted from each sample using a ZymoBIOMICSTM DNA Miniprep
Kit (Zymo Research, Irvine, CA, USA) following the manufacturer’s instructions. The
DNA quality and quantity were determined by using a NanoDrop spectrophotometer
(Thermo Scientific, Wilmington, DE, USA) based on its A260/280 ratio, and the DNA was
observed with a 1.0% agarose gel electrophoresis. The preparation and sequencing of
amplicon libraries (16S rRNA gene and ITS1 region) and shotgun metagenomics, following
the manufacturer’s protocol, were carried out at Novogene (Beijing, China) and Illumina
(San Diego, CA, USA), respectively. For amplicons, the NovaSeq sequencing platform was
used alongside a paired-end 2 × 250 bp strategy carried out on an Illumina sequencer
(Illumina Inc., San Diego, CA, USA). In the case of bacteria, a fragment of the 16S rRNA
gene was amplified using the primers 341F (5′-CCTAYGGGRBGCASCAG-3′) and 806R (5′-
GGACTACNNGGGTATCTAAT-3′) flanking the V3 and V4 regions [24]. For fungi, the ITS1
region was amplified using the primer pairs ITS5-1737F (5′-GGAAGTAAAAGTCGTAACA
AGG-3′) and ITS2-2043R (5′-GCTGCGTTCTTCATCGATGC-3′) [25]. For metagenomic
library preparation and sequencing, the total DNA was shipped to Illumina (San Diego,
CA, USA). Briefly, 100 ng of total DNA was processed following the instructions of the
Illumina DNA prep (M) tagmentation kit (# Cat. 20018705). Because many samples were
run in the same flow cell, specific indexes were added to each DNA library with IDT
for Illumina DNA/RNA UD Indexes Set A Tagmentation (# Cat. 20027213). Library
concentration was quantified with the Qubit dsDNA HS Assay kit (Thermo Fisher), and
the integrity of the DNA libraries was assessed with the Bioanalyzer 2100 Agilent system
(NGS 1-6000 kit). Libraries were sequenced in an S4 flow cell using a 2 × 150 bp strategy
on an Illumina NovaSeq 6000 sequencer (Illumina Inc., San Diego, CA, USA).

2.3. Amplicon Data Analysis

Sequence data were obtained as fastq files in the CASAVA v1.8 paired-end demulti-
plexed format. Forward and reverse sequences were merged using FLASH v1.2.11 with
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default settings [26]. Merged sequences were imported into Quantitative Insights Into Mi-
crobial Ecology 2 v2020.2 (QIIME 2) [27]. Firstly, quality filtering, trimming, dereplication,
and denoising, as well as the removal of chimeric sequences from the merged data using
DADA2 v1.16, were performed [28] to obtain representative amplicon sequence variants
(ASVs). Each ASV was assigned a taxonomy with a trained naïve Bayesian classifier using
the Greengenes v13.8 database [29] for bacteria and the UNITE v8.99 database [30] for fungi.
Bar plots based on relative abundance were generated to show the taxonomic distribution.

A multiple sequence alignment and phylogenetic reconstruction were produced from
the ASVs using MAFFT v7 [31] and FastTree v2 [32], respectively, to generate a rooted phy-
logenetic tree and conduct subsequent analyses. In order to analyze the α- and β-diversity
of bacterial and fungal communities and conduct related statistical tests, the samples from
the library were rarefied with the lowest number of reads, and the metrics were calculated
using RStudio [33] with the packages vegan [34], tidyverse [35], and qiime2R [36]. To ex-
plore the α-diversity within these communities under both asymptomatic and symptomatic
conditions, the Chao1, Shannon, Simpson, and evenness indexes were estimated, and the
diversity was compared among groups using the Kruskal–Wallis test followed by the post
hoc Dunn’s test, considering the difference to be statistically significant at p-values < 0.05.

To assess differences in the bacterial and fungal communities’ composition between
the asymptomatic and symptomatic conditions, a principal coordinate analysis (PCoA)
was performed based on Jaccard distances. Then, a permutational multivariate analysis
of variance (PERMANOVA) with 999 permutations was used for testing, followed by the
post hoc Benjamini–Hochberg FDR test to determine significant differences in bacterial
and fungal communities. Additionally, a functional inference analysis was performed with
PICRUSt2 v2.5.1 [37] to explore the possible functional profiles of the microbial communities
through their enzymatic activities, and the accuracy of the analysis was assessed through
the weighted Nearest Sequences Taxon Index (NSTI).

2.4. Metagenomic Data Analysis

Raw fastq reads of each sample were quality filtered with FASTP v0.20.0 [38]. The
filtered quality scores were set to 25, and a trimming of the first and last five bases was
carried out. The taxonomic assignment of trimmed reads was performed with Kraken2
v2.1.2 [39] using the –download-library option from Kraken2-build to download the com-
plete bacterial and fungal genomes from the RefSeq database. In addition, fungal genomes
from Fusarium spp. and Pythium spp. were included. The Kraken2 files from all samples
were combined to generate a biom file with the Kraken-biom utility. Two main datasets
were generated from the biom file through filtering: Kingdom == “Bacteria” and Kingdom
== “Eukaryota”. Analysis of the microbial diversity, including measurements of α- and
β-diversity, was performed with the Phyloseq package v1.40.0 [40] for both datasets inde-
pendently. In addition, Venn diagrams were made to visualize which bacterial and fungal
genera were exclusive or shared between the symptomatic and asymptomatic conditions.
All metrics presented in this work are based on relative abundances and calculated using
RStudio [33] with the packages vegan [34], tidyverse [35], and qiime2R [36]. The statistical
analysis of α-diversity was evaluated with the Kruskal–Wallis test, and β-diversity was
determined using PERMANOVA with 999 permutations to test for significant differences in
bacterial and fungal communities, considering the difference to be statistically significant
at p-values < 0.05.

Finally, functional predictions for the shotgun metagenomic data were determined
using the MG-RAST pipeline v4.0.3 [41]. The sequences in fastq format were uploaded
to MG-RAST, and the default settings were used. MG-RAST classifies sequences into
subsystems, which are grouped into hierarchical categories and can be used to construct a
heatmap with the top 50 most abundant functions.

The datasets generated and analyzed during this current study are available in the
NCBI Bioproject database under the accession numbers PRJNA1003089 (amplicon se-
quences) and PRJNA1003562 (metagenomic sequences).
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3. Results
3.1. Composition and Abundance of Bacterial and Fungal Communities

A total of 837,294 (16S rRNA) and 1,074,605 (ITS1 region) high-quality sequences were
obtained from all rhizosphere soil samples under both asymptomatic and symptomatic
conditions (Table S1). The samples with the lowest number of sequences were rarefied,
homogenizing all bacterial samples to a total of 126,057 sequences and fungal samples to
a total of 166,349 sequences, which were the totals for subsequent analyses. In the case
of shotgun metagenomics, a total of 826,840,106 raw sequences were generated. After a
quality check analysis, 708,403,234 high-quality sequences were obtained and used for
further analysis.

The community composition derived from both amplicon and metagenomic sequences
exhibited robust similarity in relation to the most prevalent phyla. Nonetheless, metage-
nomic sequencing enabled a more comprehensive retrieval of information across all taxo-
nomic levels, but especially that related to the phyla. The amplicon sequences allowed for
the identification of a total of 51 phyla, 196 families, and 507 bacterial genera, as well as a to-
tal of 11 phyla, 143 families, and 268 fungal genera. The most abundant prokaryotic phyla in
the rhizosphere of apple trees consisted of Proteobacteria (48.91%), Bacteroidetes (11.19%),
Actinobacteria (10.46%), Acidobacteria (9.48%), Gemmatimonadetes (6.43%), Firmicutes
(3.93%), Verrucomicrobia (3.25), and Chloroflexi (3.11%), followed by 43 genera with <1.00%
relative abundance (Figure 1a). In the fungal communities, the phyla comprised Ascomy-
cota (77.69%), Mortierellomycota (9.32%), Basidiomycota (9.19), Rozellomycota (1.59%),
and Blastocladiomycota (1.47%), followed by eight genera with <1.0% relative abundance
(Figure 2a). At the genus level, the only bacterial genus that presented a relative abundance
>10% was Rhodanobacter (10.6%), followed by 25 genera (e.g., Kaistobacter, Streptomyces,
Rhodoplanes, Dechloromonas, and Pseudomonas) that had a relative abundance ranging be-
tween 1 and 10% and 481 genera that had a relative abundance of <1.00% (Figure 1b).
In fungi, at the genus level, Penicillium (28.62%) and Mortierella (11.14%) presented an
abundance >10%, 18 genera (e.g., Acremonium, Fusarium, Ilyonectria, Setophaeosphaeria, and
Apiotrichum) had a relative abundance ranging between 1 and 10%, and 248 genera had a
relative abundance of <1.0%. (Figure 2b).

On the other hand, in the metagenomic analysis, 39 phyla, 451 families, and 1741 bac-
terial genera were recovered. The most abundant bacterial phyla were Proteobacteria
(57.25%) and Actinobacteria (33.17%), followed by phyla with <5.00% relative abundance
such as Bacteroidetes (2.22%), Planctomycetes (1.88%), Acidobacteria (1.63%), and Firmi-
cutes (1.24%), and 33 phyla had <1.0% relative abundance (Figure 1c). At the genus level,
Streptomyces was the most abundant, with a relative abundance of 6.81%, followed by
Bradyrhizobium (3.87%), Pseudomonas (3.13%), Nocardioides (2.83%), Sphingomonas (2.67%),
Rhodanobacter (2.63%), and nine other genera with relative abundances of up to 1.0%; the
1726 remaining genera showed relative abundances of <1.0% (Figure 1d). For fungi, the
annotated sequences accounted for 0.10–0.30% of the total sequences, suggesting potential
annotation biases that resulted in the underestimation of eukaryotic communities and led
to the recovery of a total of 2 phyla, 32 families, and 55 genera. The phyla Ascomycota
(91.87%) was the most dominant, followed by Basidiomycota (8.13%) (Figure 2c); Fusarium
(30.00%) and Trichoderma (11.21%) were the most abundant genera, followed by Metarhizium
(5.73%), Beauveria (4.48%), Pseudozyma (3.58%), Pyricularia (3.52%), Clonostachys (3.22%),
Penicillium (3.11%), and 11 other genera with relative abundances of up to 1.00%, while
the remaining 36 genera exhibited a relative abundance of <1.0% (Figure 2d). In addition,
the comparison using Venn diagrams showed a core microbiome at the genus level. In the
case of bacteria, 198 genera were shared between both health conditions analyzed, while
12 genera were prevalent for both conditions in the case of fungi (Figure S1).
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3.2. α- and β-Diversity of Asymptomatic and Symptomatic Apple Trees

The taxonomic distinctiveness of the rhizosphere in asymptomatic and symptomatic
apple trees with regard to α-diversity was investigated. The analysis of amplicon sequences
from bacteria and fungi revealed no significant differences (p > 0.05) in the Chao1, Shannon,
Evenness, and Simpson indexes (Figures 3a and 4a). In the case of metagenomic data
for bacteria, with the exception of the Simpson index (p > 0.05), the Chao1, Shannon,
and Evenness indexes showed significant differences (p < 0.05) (Figure 3b). For fungi, no
significant differences were observed in any index (p > 0.05) (Figure 4b).
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nomic data.

The β-diversity, as determined through the variation in microbial communities be-
tween asymptomatic and symptomatic conditions, was examined using PCoA analysis
based on Jaccard distances. With bacterial and fungal amplicon data, the PCoAs showed
80.5% and 83.8% dissimilarity, respectively, and revealed that the microbial communities
did not differ (PERMANOVA; p > 0.05) (Figure 5a,b). In contrast, the metagenomic data
showed a dissimilarity of 81.11% and 90.18% in the PCoA analysis, unveiling significant
differences in the bacterial communities (PERMANOVA; p < 0.05) (Figure 5c) but not in the
fungal communities (PERMANOVA; p > 0.05) (Figure 5d).
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3.3. Functional Profiles of Microbial Communities

PICRUSt2 analysis of the amplicon data was applied to identify the possible functional
profiles of the microbial communities. A list of 2380 enzymatic functions was obtained, and
the top 50 dominating enzymes were displayed in a heatmap (Figure 6a). The average NSTI
value was 0.23, which is considered to be a low value; it indicates a satisfactory quality in
the functional predictions made due to its proximity to the nearest reference genomes in the
used database. In general, the top 50 enzymatic functions participate in essential processes
for cellular functioning and the regulation of numerous metabolic pathways, such as DNA
replication and transcription, protein synthesis and modification, lipid and carbohydrate
metabolism, energy generation through cellular respiration, the synthesis and repair of
nucleic acids, as well as the biosynthesis of secondary metabolites.

Based on the processed sequencing data from MG-RAST in 2019, genes/enzymes were
identified using KEGG pathway annotation. Among these genes, a heatmap was generated
for the top 50 most abundant enzymatic functions in the analyzed samples (Figure 6b). The
analysis revealed a significant abundance of enzymes involved in various processes, includ-
ing fatty acid, nucleotide, and protein synthesis, as well as amino acid biosynthesis, carbo-
hydrate metabolism, and lipid metabolism. Additionally, enzymes related to energy genera-
tion and the degradation of toxic compounds were also highly prevalent. When comparing
the top 50 enzymatic functions detected through PICRUSt2 and metagenomics, several
enzymatic activities were found to be exactly the same. These activities are associated with
various metabolic processes and biological functions related to lipid synthesis and degra-
dation, amino acid biosynthesis, carbohydrate metabolism, and nucleotide synthesis. The
enzymes involved in these processes were as follows: EC:1.1.1.100—3-oxoacyl-[acyl-carrier-
protein] reductase; EC:1.8.1.9—thioredoxin-disulfide reductase; EC:2.2.1.6—acetolactate
synthase; EC:2.3.1.9—acetyl-CoA C-acetyltransferase; EC:4.2.1.33—3-isopropylmalate de-
hydratase; EC:5.1.3.2—UDP-glucose 4-epimerase; EC:6.2.1.3—long-chain fatty acid CoA
ligase; and EC:6.3.5.3—phosphoribosylformylglycinamidine synthase.
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4. Discussion

In this study, a thorough analysis of the taxonomic and functional traits of microbial
communities in the rhizosphere of apple trees was conducted over two non-consecutive
years. By using both shotgun metagenomic and amplicon sequencing, our aim was to
enhance our understanding of the diversity and functional capabilities within these ecolog-
ically vital communities, which are linked to both asymptomatic and symptomatic trees.
While previous studies on apple tree microbial communities have predominantly utilized
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amplicon sequencing approaches [42–45], only a limited number of shotgun metagenomic
studies have been conducted on rhizosphere microbiomes [46].

In the current study’s orchard, the incidence of apple tree crown and root rot is less
than 10% (Omar Quintana, personal communication); however, it remains a persistent and
growing problem that has not been completely eradicated despite continuous monitoring
and management. Some studies have reported on the associated microorganisms inhabiting
the rhizospheric soil of apple trees affected by crown disease, mainly through cultivable
characterization [19] and non-cultivable techniques such as DGGE [47]. Therefore, explor-
ing this through NGS techniques such as amplicon and metagenomics represents a baseline
for further investigation.

Metagenomic shotgun sequencing provided greater depth in the analyses performed
(39 phyla, 451 families, and 1741 bacterial genera), whereas amplicon sequencing identified
a total of 23 phyla, 196 families, and 507 bacterial genera. It is important to note that
different factors can influence changes in the communities, such as sampling over two non-
consecutive years, different seasons, and possible variations in climatic conditions. Studies
on the soil rhizosphere have shown that, despite being different samplings, the composition
of microbial communities remains largely consistent when using either amplicon-based
or shotgun sequencing technologies [48]. However, it is important to emphasize that
understanding microbial communities and their functional capabilities provides an ad-
vantage and is a reason for choosing metagenomic technology over amplicon sequencing.
Furthermore, it is important to highlight that, despite using different technologies, the
most abundant phyla were successfully recovered with both high-throughput sequencing
approaches. These phyla, including Proteobacteria, Actinobacteria, and Bacteroidetes, have
been previously reported as the most abundant in the rhizosphere, particularly in some
studies on soil in which M. domestica is grown [49–51].

In fungi, as mentioned earlier, an underestimation in composition occurred when using
shotgun sequencing; however, two out of the three most abundant phyla (Ascomycota
and Basidiomycota) remained consistent in both analyses. A possible technical issue
could have been related to the Kraken database used, which contained 36,246 bacterial
species and 455 fungal species, resulting in a sub-estimation of fungal diversity. The
phyla Ascomycota, Basidiomycota, and Mortierellomycota have been reported in other
agriculturally important crops. Notably, the phylum Mortierellomycota was found to be
more abundant in asymptomatic trees; previous studies have reported the presence of
this phylum in vanilla orchards, highlighting its ability to produce antibiotics and act as a
potential antagonist against various plant pathogens [52]. Additionally, Basidiomycota is
another abundant phylum in the rhizosphere of both asymptomatic and symptomatic trees,
as it has been reported as the most abundant in apple orchard soils in China [53].

At the genus level, microbial diversity was high and heterogeneous, regardless of the
health conditions of the trees. The greater sequencing depth of the shotgun technology
allowed for the detection of more genera at a ratio of 1:3 compared to amplicon sequencing.
Genera such as Streptomyces, Pseudomonas, and Rhodanobacter were prevalent, regardless
of the sequencing technology used, and maintained a similar proportion despite health
status. In particular, Rhodanobacter exhibited a higher relative abundance in the rhizosphere
of symptomatic trees. While the available literature on Rhodanobacter is limited, it has
been reported that it has the capacity to act as a denitrifying bacterium, which, if it occurs
excessively, can result in the loss of nitrogen, an essential nutrient for plant growth, and
reduce nitrogen availability for crops in agricultural soils [54,55]. Furthermore, in the case
of Streptomyces and Pseudomonas, these genera have been widely reported in agricultural
soils due to their biocontrol properties and their ability to act as antagonists against plant
pathogens [56,57], their capacity to degrade and metabolize a wide range of organic com-
pounds [58–60], and their ability to produce substances that promote plant growth, such
as phytohormones, enzymes, and siderophores, which can enhance nutrient absorption
and stimulate plant growth [61–63]. In the case of less common genera, it is important to
highlight some low-abundance genera that, despite their scarcity, may play significant roles
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in the rhizosphere. One such is Hydrogenobaculum, a genus that participates in nitrate reduc-
tion and could be involved in modulating the distribution of microbial communities [64].
Another infrequent and low-abundance genus is Metakosakonia, which has been previously
reported as a promoter of plant growth through in vitro assays, demonstrating increases in
both the shoot and root growth of potatoes [65]. Therefore, it is of interest to investigate its
interactions with other rhizosphere microorganisms and with the plant, which may lead to
new discoveries for the development of biocontrol strategies and biostimulants for crop
production.

In the case of fungi, Fusarium and Penicillium were the most abundant genera, fol-
lowed by Mortierella, which was mainly abundant in samples from the rhizosphere of
asymptomatic trees. Different Fusarium species have been documented as saprophytes [66],
opportunists [67], and phytopathogens, meaning they are capable of causing diseases in
plants such as vascular wilting, root rot, and stem decay, which results in a negative impact
on the health and yield of crops [68–71]. Moreover, Penicillium is a common necrotrophic–
saprophytic genus that might play an important role in diseased roots since it has been able
to exhibit a variety of lifestyles, including mutualism, commensalism, and parasitism [72].
In fact, certain strains can also be phytopathogenic, leading to diseases and damage to
crops [73,74]. On the other hand, in the rhizosphere of asymptomatic trees, the Mortierella
genus presented the highest abundance, which was similar to the results reported by
Xiong et al. [52], who found that suppressive soil was dominated by the fungal Mortierella,
accounting for 37% of the total fungal sequences in a study of the suppression of vanilla
Fusarium wilt disease; it seems that Mortierella produces fatty acid ethyl esters that contain
arachidonic acid, which under greenhouse conditions reduced the development of tomato
late blight and rhizoctonoise of potato tubers [75].

Significant differences in α-diversity were detected only in bacteria, exclusively
through the shotgun metagenomic approach. Studies evaluating the α-diversity of rhi-
zosphere communities in agricultural crops have reported variations in diversity due to
different biotic factors (e.g., fungi, oomycetes, bacteria, and nematodes) and abiotic factors
(e.g., temperature, tree age, sampling season, and physical and chemical soil properties)
that influence the growth and distribution of microbes [76,77]. In fact, similar to the results
from this study, greater microbial diversity has been reported in the rhizosphere of healthy
plants, which decreases in diseased plants [78–80]. This was also demonstrated in sesame
rhizosphere soil, where a positive correlation was found between the alpha diversity of
the microbial community in the rhizosphere soil of crops and their health status. This
correlation led to alterations in the dynamics of bacterial communities and their associated
soil functions as part of a plant disease response mechanism [80].

The β-diversity results showed that the bacterial and fungal communities in the rhizo-
sphere of asymptomatic trees were grouped separately from those of symptomatic trees.
However, statistical analysis revealed no significant difference in the microbial community
structure. In contrast, shotgun analysis showed a statistically significant difference, indicat-
ing a health-dependent shift in community structure. Regarding the amplicon-sequenced
samples, several key observations were made when reviewing the β-diversity results,
which may be interconnected. First, there was genuinely no significant difference in the
analyzed samples, as observed in other studies evaluating microbial communities between
asymptomatic and symptomatic avocado trees affected by root rot [81]. Secondly, the
number of biological replicates used for amplicon sequencing is crucial. It is advised that
at least three biological replicates be performed to obtain a more accurate representation
of microbial diversity and reduce result variability. However, in some cases, additional
replicates may be required for more robust and reliable results [82]. Thirdly, sampling for
the first year was conducted in March 2020. Continuous monitoring was carried out in
the orchard to detect trees with disease symptoms and apply appropriate management. It
was found that out of the three rhizosphere samples collected from symptomatic trees, the
apple tree, from which the third biological replication of bacteria and fungi was obtained,
recovered, unlike the other two trees. This tree was treated with compost tea, which pos-
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sibly promoted greater competition among soil microorganisms [83] due to the exudates
produced by the roots and microorganisms and due to the self-regulation of microbial
communities [84].

On the other hand, the observed variations in microbial communities between asymp-
tomatic and symptomatic trees through the use of the two sequencing methodologies
employed should be interpreted in the context of the seasonal differences during sample
collection. Seasonal dynamics, such as temperature and moisture fluctuations, are known to
influence microbial composition in soil ecosystems [85]. Recognizing the potential influence
of seasonal variations on our results, it is crucial to emphasize that our data analysis utilized
rigorous statistical methods to identify patterns related to health conditions. Indeed, similar
to other studies such as those conducted by Bei et al. [86], despite the seasonal variations,
the overall diversity of the rhizosphere microbiome remained relatively stable, as observed
in the Venn diagrams. However, future studies with more frequent and extended sampling
across seasons could offer a more comprehensive understanding of the interaction between
seasonal dynamics and rhizosphere microbial communities.

Regarding the functional profiles of rhizosphere microbial communities, PICRUSt and
MG-RAST have been used in several studies to identify enzymatic activities involved in the
metabolic processes in the rhizosphere bacterial communities [87–89]. Considering the top
50 most abundant enzymatic functions from both approaches, several common metabolic
functions were identified, including some directly associated with genes/enzymes involved
in various metabolic processes and biological functions related to lipid synthesis and degra-
dation, amino acid biosynthesis, carbohydrate metabolism, and nucleotide synthesis. For
example, one of the important enzymes detected was 3-oxoacyl-[acyl-carrier-protein] re-
ductase, which has been reported as an enzyme that participates in symbiotic relationships
between plants and microorganisms, promoting the formation of nodules in plant roots [90].
In agricultural soil, the mentioned functions are of utmost importance as they perform
activities that involve soil nutrient cycling, organic matter degradation, chemical compound
transformation, secondary metabolite production, and interaction with plant roots [91,92].
Comprehending these metabolic profiles associated with the microbiome could serve as
evidence of dependence on environmental factors and provide valuable insights into the
interactions between the microbial community and the host plant [93].

Interestingly, shotgun sequencing allowed for the identification of the oomycetes
Phytophthora and Pythium, which were found in the rhizosphere of both asymptomatic and
symptomatic trees (Figure S2). It has been documented that this phytopathogen infects
approximately 200 plant species, including economically important plants such as straw-
berries, pears, walnuts, and apples [94]. A higher relative abundance of Phytophthora and
Pythium was observed in the rhizospheric soil samples from asymptomatic trees than those
from symptomatic ones. Phytophthora, despite being known to cause diseases in apple trees,
can also be present in healthy soil samples as part of its life cycle due to nutrient availability
or the presence of related non-pathogenic species. It is also important to consider that
the presence or abundance of a pathogen in soil does not always directly correlate with
disease in plants. Other factors, such as plant defense mechanisms, the susceptibility
of the host plants, or the interaction with other microorganisms present in the soil, can
influence disease expression [95]. In fact, in studies conducted on the soils of various
oak species showing nonspecific symptoms of branch death and canopy decline [96] and
on those of asymptomatic Eucalyptus coccifera [97], several species of Phytophthora were
recovered regardless of the health status of the trees, suggesting a possible ecological role
as saprophytes. It is important to note that further analyses involving the isolation of these
phytopathogens are required to understand the processes of pathogenicity or saprophytism.
On the other hand, Pythium species are extensively spread as plant pathogens, includ-
ing several apple pathogens [98]. However, other members of this genus are prevalent
as soil saprophytes [99] and have been identified as exhibiting saprophytic behavior in
soil samples, with distribution influenced by factors such as soil type, precipitation, and
temperature. Hence, it is crucial to emphasize that not every Pythium species is pathogenic.
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5. Conclusions

In summary, this study utilized amplicon sequencing and shotgun metagenomic se-
quencing to investigate the composition and diversity of bacterial and fungal communities
in the rhizosphere of apple trees, revealing dominant taxa with similar relative abundances
irrespective of the sequencing technology used. The findings showed significant variations
in alpha and beta diversities within bacterial communities, indicating a shift in species com-
position and abundance influenced by both biotic and abiotic interactions in the dynamic
ecological niche of rhizospheric soil, depending on tree health conditions. Additionally,
microorganisms and their enzymes, which were previously identified in other studies as
important agents of biological control due to their metabolic functions in the rhizosphere,
particularly those involved in plant–microorganism interactions, collectively form the
baseline for practical strategies in the development of sustainable agricultural practices.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy14020357/s1, Table S1: Summary of Illumina Data.
Figure S1: Venn diagrams depicting the shared and exclusive (a) bacterial and (b) fungal genera
under both asymptomatic and symptomatic conditions. Figure S2: Barplots of oomycetes community
composition at the genus level.
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