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Abstract: Bacterial wilt (BW), caused by Ralstonia solanacearum, is one of the devastating diseases in
tomatoes (Solanum lycopersicum L.). The use of resistant cultivars and breeding for genetic resistance
is the most effective, economical, and environmentally friendly management strategy for this disease.
It is necessary to screen diverse germplasm and cultivated genotypes to identify resistant resources
and to develop resistant cultivars in tomatoes to combat the changing pathogen isolates. This
study evaluated 40 United States Department of Agriculture (USDA) tomato accessions for their BW
resistance to the R. solanacearum isolate P822 under greenhouse conditions. The tomato plants were
inoculated and visually assessed to observe their symptoms, and the disease severity was scored
on a scale of 0 to 4 (0 = no leaf wilted, 1 = 25% of leaves wilted, 2 = 50% leaves wilted, 3 = 75%
of leaves wilted, and 4 = 100% leaves wilted). Five accessions (PI 645370, PI 647306, PI 600993,
PI 355110, and PI 270210) were observed as BW resistance, with PI 645370 showing the greatest
resistance. The broad-sense heritability for BW resistance was estimated as 59.9% and 42.8% based
on a 0–4 scale of disease incidence and the disease severity index, respectively. Two distinct clusters
(sub-populations) were detected among 39 of the 40 accessions. The five identified BW-resistant
accessions were distributed in both clusters, suggesting a likely difference in the genetic base among
the five resistance accessions. The resistant accessions will contribute significantly to the tomato
breeding program to develop new cultivars with BW resistance.

Keywords: tomato; Solanum lycopersicum; bacterial wilt; Ralstonia solanacearum; germplasm; disease resistance

1. Introduction

Tomato (Solanum lycopersicum L.), a vital horticultural crop ranking second only to potato
in economic value, belongs to the Solanaceae family and is extensively utilized fresh or in
various processed forms [1]. With a rich nutritional profile, including vitamins, minerals, and
bioactive compounds, tomatoes are associated with the prevention of chronic degenerative
diseases [2], making tomatoes widely acknowledged as healthful foods, resulting in a substan-
tial global increase in the cultivation acreage, production, and consumption of these nutritious
fruits [3]. Globally, tomato production reached 182 million metric tons in 2018 [4], increasing
to 186 million metric tons in 2020, as cited by Collins et al. (2022) [5]. Despite their economic
importance, tomato cultivation faces challenges, such as cultivar selection, management
practices, pests, diseases, and abiotic stresses [6–9]. Bacterial wilt (BW), caused by the
soilborne bacterium Ralstonia solanacearum pathogen, stands out as a significant threat to
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tomato crops, causing a significant loss of tomato fruit worldwide [10]. The selection and
cultivation of tomatoes with inherent genetic resistance to BW are advocated to enhance
the quality and longevity of tomato crop yields [3,11].

Ralstonia solanacearum ranks among the top 10 bacterial species in terms of scientific
and economic importance in plant diseases [12]. It is a soilborne pathogen [13] causing
vascular wilt disease by entering plants through wounds or root tips [14]. Classified into
four phylogenic groups, this heterogeneous species complex includes strains with diverse
geographical origins, host ranges, and pathogenic behaviors [15,16]. The primary source
of infection is soil, where the pathogen can survive for several years in the absence of a
host plant and establishes latent infections in native weeds, adding to the challenge of
eliminating the pathogen [17,18]. Additionally, the pathogen can survive within a large
temperature range of 10 ◦C to 41 ◦C and in varied environments [19]. Spread occurs
through contaminated water, infested soil, and contaminated farming equipment [13].
R. solanacearum affects over 200 plant species, causing diseases like potato brown rot and
bacterial wilt in tomatoes, tobacco, eggplants, and ornamentals, as well as Moko disease in
bananas [14]. Symptoms include wilting during the day and recovery at night, progressing
to plant death under severe conditions [14]. Bacterial wilt disease results in significant
yield losses [20], impacting global crop productivity and causing annual losses exceeding
USD 1 billion [12,21,22]. Tomato bacterial wilt, induced by the soil-dwelling bacterium
R. solanacearum, is prevalent in the Southeastern United States. Under optimal conditions
for disease development, it results in significant economic losses [23].

Several management strategies for BW have been suggested, including chemical fumigants,
soil drainage, tillage practices, external nutrient supplements, and the use of resistant cultivars,
transgenic plants, and microbes. However, each strategy has its limitations, and reliance on a
single method often proves ineffective [24]. Chemical use, while temporarily effective, poses
threats to beneficial microorganisms and human health [13,20]. Strategies like soil fumigation
may not be economically feasible on a large scale, as quoted by Mcavoy et al. (2012) [25]. As
a result, it is essential to formulate strategies that are both effective and environmentally
friendly to decrease the incidence of this disease [26]. The development of resistant varieties
emerges as the most effective, economical, and environmentally friendly approach to BW
control [13,24,27].

Breeding for resistance involves identifying resistant sources and ongoing screening
against the pathogen, providing a sustainable and long-term solution to mitigate the impact
of BW [20,28]. The initial crucial step in any breeding program is germplasm collection,
which is vital for crop improvement and diversity [29,30]. Genetic resources, mainly found
in the wild due to natural selection, provide valuable materials for enhancing crops. In
the case of BW resistance, wild species like S. torvum, S. sisymbrifolium, and S. khasianum
contribute resistance resources for Solanum species like eggplants [29]. Additionally, some
wild potato species exhibit BW tolerance [31]. Regarding tomatoes, potential sources
of resistance to BW have been identified but are not extensively utilized, mainly due to
their small fruit sizes and poor horticultural characteristics, which may not align with
commercial tomato industry standards. These sources include L285 and selections from
wild tomato accessions, namely PI 263722, PI 126408, PI 196298 (Lycopersicon esculentum),
and PI 251323 (Lycopersicon pimpinellifolium) [32]. While specific BW-resistant genotypes
have been identified and released, they often exhibit region-specific resistance, and their
effectiveness may decline outside their regions of development due to environmental
factors and variability among R solanacearum strains [33].

The identification of resistance varieties against BW is imperative [34], and it involves
evaluating diverse genotypes from various regions for their responses to the pathogen.
Screening methods include the sick plot method and the artificial inoculation of tomato
plants with R solanacearum strains [29]. In the sick plot method, genotypes are planted in soil
containing R. solanacearum, but an uneven pathogen distribution across the soil necessitates
the use of artificial inoculation methods. These methods encompass soil drenching, where
bacterial suspension is injected into root incisions; leaf clipping, involving clipping leaves
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with bacterial suspension; and axil puncturing, where sterile needles are used to prick plant
axils with the inoculum. Soil drenching has been found to significantly record the greatest
BW incidences in screening tomatoes, brinjal, and chilies. Wilting symptoms are assessed
using a BW score to measure resistance. In a study, thirteen genotypes from the USA,
Taiwan, and Ghana were screened using the root dip technique, showing stable resistance
in the H7996, LA0442, and LA0443 genotypes [35]. Another study evaluated fifty-five
tomato genotypes and found seven greatly resistant genotypes, including RIL-118, Indam-
1004, Arka Samrat, PKM-1, PED, EC-802390, and EC-816105, using the root-sectioned
seedling dipping method [36]. This study aimed to identify tomato genotypes that are
resistant to the bacterial wilt (BW) pathogen, providing valuable resources for future
breeding initiatives. The goal is to incorporate these resistant genotypes into breeding
programs, including genome-wide association studies and genomic selection, to facilitate
the development of BW-resistant hybrids or cultivars. The specific objective was to evaluate
the BW resistance of tomato germplasm sourced from the United States Department of
Agriculture (USDA).

This paper presents insights drawn from a comprehensive evaluation presented in
a Master’s thesis by Makawa Phiri (2023) [37]. The research, conducted at the University
of Arkansas, explored the complexities of understanding and enhancing bacterial wilt
resistance in tomato crops. The results provide a foundation for the current study, which
seeks to build upon the existing knowledge and contribute to the ongoing efforts to develop
resilient tomato varieties.

2. Materials and Methods
2.1. Plant Materials and Bacterial Wilt Pathogen

Forty tomato accessions were obtained from the United States Department of Agriculture
(USDA) Agricultural Research Service (ARS) Germplasm Resources Information Network
(GRIN). The majority (77.5%), specifically 31 of the 40 accessions, were originally from the
United States; 2 were from Canada, and 1 each was from China, France, Guatemala, the
Russian Federation, the Former Soviet Union, Spain, and the United Kingdom, respectively.

Ralstonia solanacearum strain P822 phylotype II sequevar 7 was used to test the tomato
accessions for BW resistance. The R. solanacearum strain P822 was originally isolated from
blueberry in Florida [38], and it was provided by Ana Maria Bocsanczy and David J. Nor-
man at the University of Florida and stored at Alejandro Rojas’s laboratory at the University
of Arkansas, Fayetteville, AR for the bacterial growth, propagation, and preservation.

2.2. Greenhouse Experiment for Pathogen Tests

Screening of tomato accessions was conducted in a greenhouse at the Arkansas Agricul-
tural Research and Extension Center, Fayetteville, AR between January 2023 and February
2023. Throughout the study, the greenhouse temperature and humidity were maintained at
21/18 ◦C in a day/night cycle and 73%, respectively.

Five tomato seeds of each accession were sown in pots (8.5 cm high, 8.5 cm top
diameter, and 5.8 cm base diameter) placed in trays (52 cm long, 26 cm wide, and 6 cm
high) containing a commercial potting mix (Berger, berger.ca, BM 6). The experiment was
arranged in a completely randomized design (CRD) with three replicates. Immediately
following seed sowing, the pots were irrigated with 150 mL of water every day for 35 days
before exposure to the bacterium pathogen.

Additionally, 180 mL of liquid (0.5 teaspoons per gallon or 3.8 L) fertilizer (Miracle-
Gro Water Soluble All Purpose Plant Food 24-8-16) containing ammoniacal nitrogen (N)
(3.5%), urea nitrogen (N) (20.5%), available phosphate (P2O5) (8%), soluble potash (K2O)
(16%), boron (B) (0.02%), water-soluble copper (Cu) (0.07%), chelated iron (Fe) (0.15%),
manganese (Mn) (0.05%), molybdenum (Mo) (0.0005), and water-soluble zinc (Zn) (0.06%)
was applied in liquid form per pot 10 days after seed sowing and every 7 days in subsequent
applications before the plants were exposed to bacterium pathogen.
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During the experiment, thinning was carried out 20 days after planting to maintain
3 plants per pot and replicate. A total of 35 days after planting, seedlings were inoculated with
R. solanacearum strain P822. The pathogen was tested for its virulence before being applied in
this experiment. The pathogen was grown on Casamino acid–eptone–glucose (CPG) media
maintained at 30 ◦C [39], where the CPG medium constituents were 1 g casamino acid
(casein hydrolysate), 10 g peptone, 5 g glucose, and 17 agar for solid media (plates).

The substances were weighed and added to one cylinder jar, and 1 L of water was
added. The mixture was autoclaved at 121 ◦C for 20 min (2 cycles). After autoclaving, the
mixture was cooled down in a bath at 50 ◦C and then poured in Petri dishes. The colonies
were streaked into new Petri dishes to multiply the pathogen, and they were incubated at
30 ◦C. On a solid medium, colonies of R. solanacearum are usually visible after 48–72 h of
incubation at 28 ◦C.

A suspension of 106 CFU/mL was prepared using a virulent strain of isolate P822 of
R. solanacearum following the method by Kim et al. (2016) [3] and Singh et al. (2015) [13].
The task was to prepare sterile deionized (DI) water for dilution and to test the virulence of
R. solanacearum bacteria by reading the optical density (OD). To begin with, the laminar
flow hood was sterilized using 70% alcohol. Then, a 50 mL Eppendorf tube; an inoculum
loop, pipette, and tips; and a plate for OD reading were gathered.

Next, 1 mL of sterile DI water was poured into the Petri dish containing R. solanacearum
colonies. The colonies were lightly loosened using the inoculum loop and then poured into
the 50 mL Eppendorf tube. This process was repeated until almost all the colonies were
scrapped. Sterile water was added to the Eppendorf tube until it reached the 50 mL mark.
The bacterial suspension was prepared from the cultures where the inoculum dosage was
adjusted to an OD of 0.3 at 600 nm (106 cfu/mL) using a spectrophotometer and read on
GEN 5 software.

A soil-drenching inoculation method was followed, where a knife was used to injure
plant roots by cutting through the soil 1–2 cm away from the stem base before inoculation
(Figure 1). Before inoculation, the seedlings were kept without irrigation for a day, and
150 mL of the bacterial suspension was poured into the soil where the cut was made [40].
Following inoculation, the plants were watered with 150 mL of tap water daily.
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The degree of wilt in seedlings was evaluated on a scale of 0 to 4, with each seedling
being assessed individually (Figure 2). A score of 0 indicated the absence of symptoms
(no wilting), while a score of 1 indicated that 25% of the leaves were wilted. A score of
2 indicated that 50% of the leaves were wilted, and a score of 3 indicated that 75% of the
leaves were wilted. A score of 4 indicated that all leaves were wilted or that the plant was
dead [41,42].
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The disease severity index (DSI) was used to determine the BW reaction in each of
the 40 tomato accessions and calculated as follows: DSI = 100 × ∑ (frequency × score of
rating)/[(Total number of observations) × (maximal disease index)] [43].

2.3. Phenotypic Data Analysis
2.3.1. Statistical Model

The statistical model for the ANOVA analysis was as follows: Yij = µ + Gj +εij. I = 1, 2,
3 and j = 1. . .40, with µ representing the overall mean, Yij representing the response from
the jth accession (Gj) (fixed effect), and eij representing the random error associated with
the ijth observation.

2.3.2. ANOVA, Distribution, Descriptive Statistics, Pearson’s Correlation, and
Broad-Sense Heritability

The data were analyzed using JMP PRO 17. An analysis of variance (ANOVA) was
conducted using the general linear model (GLM) procedure. The distribution of the data
was visualized using ‘Distribution’; descriptive statistics were estimated using ‘Tabulate’;
and the Pearson’s correlation coefficients (r-value) and their p-values were calculated using
the ‘Multivariate Methods’ option of JMP PRO 17, respectively.

The broad-sense heritability (H2) was estimated as H2 = 100 × σ2
g/[σ2

g + (σ2
e/r)] [44],

with σ2
g being the total genetic variance, σ2

e being the residual variance, and r being the
number of replicates. The estimates for σ2

g and σ2
e were [EMS(G)-Var(Residual)]/r and

Var(Residual), respectively. EMS(G) and Var(Residual) were obtained from the ANOVA table.

2.4. Genetic Diversity Analysis
2.4.1. DNA Extraction: Genotyping by Sequencing (GBS) and SNP Discovery

DNA (genome) was extracted from fresh leaves of tomato plants using the CTAB/SDS
method. DNA sequencing was conducted using genotyping through the sequencing (GBS) ap-
proach [45] in pair-end sequencing, and libraries were sequenced using Illumina NovaSeq in
the Biotechnology Center at the University of Wisconsin-Madison (https://biotech.wisc.edu/,
(accessed on 22 December 2023)). The short-read sequences data were aligned to tomato
genome reference Solanum lycopersicum, ITAG_4.0 (https://phytozome-next.jgi.doe.gov/info/
Slycopersicum_ITAG4_0, (accessed on 22 December 2023)), and SNPs were postulated in a
pipeline using TASSE–GBS [46] and Stacks 2 [47] (https://catchenlab.life.illinois.edu/
stacks/, (accessed on 22 December 2023)). A total of 392,496 single nucleotide poly-

https://biotech.wisc.edu/
https://phytozome-next.jgi.doe.gov/info/Slycopersicum_ITAG4_0
https://phytozome-next.jgi.doe.gov/info/Slycopersicum_ITAG4_0
https://catchenlab.life.illinois.edu/stacks/
https://catchenlab.life.illinois.edu/stacks/
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morphism (SNP) markers were discovered across 287 tomato genotypes distributed on
12 chromosomes of tomato and provided by UWBC.

2.4.2. Principal Component Analysis (PCA) and Genetic Diversity

The principal component analysis (PCA) and genetic diversity analysis were performed
in 39 of the 40 tomato accessions (except PI 279565, listed in Table 1, because this accession
did not have DNA sequencing data through GBS) in GAPIT 3 (Genomic Association and
Prediction Integration Tool version 3) by setting PCA = 2 to 10 and NJ tree = 2 to 10 [48].
The phylogenetic trees were drawn using the neighbor-joining (NJ) method in GAPIT 3
and was also drawn using the Maximum Likelihood (ML) method in MEGA 7) [49] based
on 4847 single nucleotide polymorphism (SNP) markers distributed on 12 chromosomes.
The SNP set consisted of 4847 SNPs across the 39 accessions after filtering and keeping the
SNPs with a minor allele frequency (MAF) of >3.5%, a missing allele value of <15%, and a
heterogeneous rate of ≤30% in this study.

Table 1. List of 40 tomato (Solanum lycopersicum L.) accessions with their accession numbers (PI),
names, origins, clusters (sub-population), bacterial wilt (BW) resistant scales, and disease severity
index (DSI) values; significant difference at p = 0.05.

ACCESSION NAME ORIGIN 2_Cluster

BW_Score
(Order by Lower

Scale, Higher
Resistant)

BW Score
Significant at
p = 0.05 Level

BW_DSI %
BW DSI

Significant at
p = 0.05 Level

PI645370 Venus North Carolina, United
States Q2 0.0 I 0.0 G

PI600993 Liberator United States Q2 1.1 HI 27.8 FG
PI647305 Rosa o Monserrat Spain Q1 1.1 HI 27.8 FG
PI355110 Napoli United States Q1 1.2 GHI 30.6 EFG
PI270210 Sioux United States Q1 1.4 FGHI 36.1 DEFG
PI647184 Creole United States Q2 1.7 EFGH 41.7 CDEFG
PI636262 Favorite Wyoming, United States Q1 1.8 DEFGH 44.4 BCDEF
PI286255 Moneymaker United Kingdom Q1 1.9 CDEFGH 47.2 ABCDEF

PI339940 Chalks Early
Jewel United States Q1 2.0 BCDEFGH 50.0 ABCDEF

PI601136 Baxters Early
Bush Cherry Texas, United States Q1 2.0 BCDEFGH 50.0 ABCDEF

PI645390 CMVF 232 Nevada, United States Q1 2.0 BCDEFGH 41.7 CDEFG
PI311109 Tomate Jocotillo Guatemala Q1 2.1 BCDEFGH 44.4 BCDEF

PI636205 T039 Oklahoma, United
States Q1 2.3 ABCDEFGH 58.3 ABCDEF

PI644794 Winsall Illinois, United States Q1 2.3 ABCDEFGH 58.3 ABCDEF
PI645389 H 2990 Nevada, United States Q1 2.3 ABCDEFGH 58.3 ABCDEF
PI270234 Loran Blood United States Q1 2.4 ABCDEFGH 50.0 ABCDEF

PI270226 Early Santa Clara
Canner United States Q1 2.6 ABCDEFGH 63.9 ABCDEF

PI639208 Black from Tula Tula, Russian Federation Q1 2.8 ABCDEFG 61.1 ABCDEF

PI547073 NC 8276 North Carolina, United
States Q2 2.9 ABCDEF 72.2 ABCDE

PI109836 Precoce des
Halles France Q1 3.0 ABCDEF 66.7 ABCDEF

PI600930 Moran 3053 United States Q2 3.0 ABCDEF 75.0 ABCD

PI205041 P.A. Young T162
FS-1 United States Q1 3.1 ABCDE 69.4 ABCDEF

PI601449 Bealls Gourmet United States Q1 3.1 ABCDE 77.8 ABCD
PI647513 Red Pear United States Q1 3.1 ABCDE 77.8 ABCD
PI601118 VF 9209 California, United States Q2 3.2 ABCDE 61.1 ABCDEF
PI279565 Caro Red United States no data 3.2 ABCDE 63.9 ABCDEF
PI339914 Coldset Ontario, Canada Q1 3.2 ABCDE 80.6 ABC
PI254655 Ker-1-M United States Q1 3.3 ABCD 63.9 ABCDEF
PI270232 Homestead United States Q1 3.3 ABCD 83.3 ABC
PI647566 Flora-dade United States Q2 3.3 ABCD 83.3 ABC
PI647196 Rutgers United States Q1 3.4 ABC 66.7 ABCDEF
PI647445 Zhongza No. 4 China Q2 3.4 ABC 86.1 AB
PI601117 Peelmech California, United States Q2 3.5 AB 69.4 ABCDEF
PI279817 Scotia Canada Q1 3.6 AB 72.2 ABCDE

PI499370 Prevoskhodnyi
176 Former, Soviet Union Q1 3.6 AB 77.8 ABCD

PI601098 Indiana 812 Indiana, United States Q2 3.6 AB 88.9 A
PI645214 Floradel Florida, United States Q2 3.6 AB 88.9 A
PI645391 Florida MH-1 Michigan, United States Q1 3.6 AB 88.9 A

PI645398
466 Jungs
Improved
Wayahead

Wisconsin, United States Q1 3.6 AB 80.6 ABC

PI647523 VFNT Cherry United States Q1 3.8 A 72.2 ABCDE
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3. Results
3.1. Parameters and Distributions of Bacterial Wilt Resistance

The investigation focused on evaluating BW symptoms in tomato plants, employing
a 0-4 severity scale. An analysis of the data from 40 tomato accessions on day 11 post-
symptom onset revealed a rightward skew in the distribution, indicating an increased
susceptibility to BW (Figure 3a). Among the 40 accessions assessed, the PI 645370 accession
demonstrated the greatest resistance with a score of 0, while the other four accessions,
PI 647305, PI 600993, PI 355110, and PI 270210, exhibited scores below 1.5 (Table 1), sug-
gesting resistance to the BW pathogen R. solanacearum strains P822. These five accessions
emerge as promising candidates for BW resistance, providing valuable insights for the
prospective development of more robust tomato crops.

On the other hand, the seven accessions, namely PI 279817, PI 499370, PI 645391,
PI 645398, PI 645214, PI 601098, and PI 647523, showed scores of 3.6 or higher on a scale of
4 (Table 1), indicating that they are more susceptible to BW and may be used as suscepti-
ble controls to screen BW resistance in tomato germplasm and as susceptible parents in
genetic studies.

The recorded scores for BW resistance in the 40 tomato accessions had an average
value of 2.7, a standard deviation (Std Dev) of 0.9, a standard error (Std Err) of 0.14, and
a coefficient variation (CV) of 33.5% (Figure 3a). These statistics suggest that the popula-
tion had a large range (3.8) and variation (0.9 Std Dev and 33.5% CV) in BW resistance.
Among the 40 genotypes, the top five genotypes with a score of 0 or an average mean of
<1.5 demonstrated great levels of BW resistance, showing their potential to be used in
breeding programs targeting the development of new cultivars or lines with BW resistance.

For the DSI, an average value of 61.5, a standard deviation (Std Dev) of 20.06, a
standard error (Std Err) of 3.17, and a coefficient variation (CV) of 32.6% (Figure 3b) were
detected. These statistics suggest that the population had a large range (88.8) and variation
(20.06 Std Dev and 32.6% CV) in BW DSI. Among the 40 genotypes, PI 645370 had a 0 DSI
and demonstrated the greatest level of BW resistance, and both PI 600993 and PI 647305
had 27.8% DSI, showing mediate resistance (Table 1). The three accessions also had the
top greatest resistance, with 0 or 1.1 scores based on the 0–4 score scale (Table 1), thus
indicating the potential to be used in breeding programs to develop new cultivars or lines
with BW resistance.

Agronomy 2024, 14, x FOR PEER REVIEW 7 of 15 
 

 

PI547073 NC 8276 
North Carolina, United 

States 
Q2 2.9 ABCDEF 72.2 ABCDE 

PI109836 Precoce des Halles France Q1 3.0 ABCDEF 66.7 ABCDEF 

PI600930 Moran 3053 United States Q2 3.0 ABCDEF 75.0 ABCD 

PI205041 
P.A. Young T162 FS-

1 
United States Q1 3.1 ABCDE 69.4 ABCDEF 

PI601449 Bealls Gourmet United States Q1 3.1 ABCDE 77.8 ABCD 

PI647513 Red Pear United States Q1 3.1 ABCDE 77.8 ABCD 

PI601118 VF 9209 California, United States Q2 3.2 ABCDE 61.1 ABCDEF 

PI279565 Caro Red United States no data 3.2 ABCDE 63.9 ABCDEF 

PI339914 Coldset Ontario, Canada Q1 3.2 ABCDE 80.6 ABC 

PI254655 Ker-1-M United States Q1 3.3 ABCD 63.9 ABCDEF 

PI270232 Homestead United States Q1 3.3 ABCD 83.3 ABC 

PI647566 Flora-dade United States Q2 3.3 ABCD 83.3 ABC 

PI647196 Rutgers United States Q1 3.4 ABC 66.7 ABCDEF 

PI647445 Zhongza No. 4 China Q2 3.4 ABC 86.1 AB 

PI601117 Peelmech California, United States Q2 3.5 AB 69.4 ABCDEF 

PI279817 Scotia Canada Q1 3.6 AB 72.2 ABCDE 

PI499370 Prevoskhodnyi 176 Former, Soviet Union Q1 3.6 AB 77.8 ABCD 

PI601098 Indiana 812 Indiana, United States Q2 3.6 AB 88.9 A 

PI645214 Floradel Florida, United States Q2 3.6 AB 88.9 A 

PI645391 Florida MH-1 Michigan, United States Q1 3.6 AB 88.9 A 

PI645398 
466 Jungs Improved 

Wayahead 
Wisconsin, United States Q1 3.6 AB 80.6 ABC 

PI647523 VFNT Cherry United States Q1 3.8 A 72.2 ABCDE 

3. Results 

3.1. Parameters and Distributions of Bacterial Wilt Resistance 

The investigation focused on evaluating BW symptoms in tomato plants, employing 

a 0-4 severity scale. An analysis of the data from 40 tomato accessions on day 11 post-

symptom onset revealed a rightward skew in the distribution, indicating an increased 

susceptibility to BW (Figure 3a). Among the 40 accessions assessed, the PI 645370 acces-

sion demonstrated the greatest resistance with a score of 0, while the other four accessions, 

PI 647305, PI 600993, PI 355110, and PI 270210, exhibited scores below 1.5 (Table 1), sug-

gesting resistance to the BW pathogen R. solanacearum strains P822. These five accessions 

emerge as promising candidates for BW resistance, providing valuable insights for the 

prospective development of more robust tomato crops.  

 

(a) 

Figure 3. Cont.



Agronomy 2024, 14, 350 8 of 14
Agronomy 2024, 14, x FOR PEER REVIEW 8 of 15 
 

 

 

(b) 

Figure 3. (a) Distribution of scores (0–4) for bacterial wilt incidence in 40 tomato accessions. X-axile 

represents the 0–4 scale of bacterial wilt incidence; Y-axile represents the number of accessions; the 

bracket represents the peak of the distribution; and the green line represents the theoretical normal 

distribution. (b) Distribution of bacterial wilt disease severity index (DSI) % in 40 tomato accessions. 

X-axile represents the 0–4 scale of bacterial wilt incidence; Y-axile represents the number of acces-

sions; the bracket represents the peak of the distribution; and the green line represents the theoreti-

cal normal distribution. 

On the other hand, the seven accessions, namely PI 279817, PI 499370, PI 645391, PI 

645398, PI 645214, PI 601098, and PI 647523, showed scores of 3.6 or higher on a scale of 4 

(Table 1), indicating that they are more susceptible to BW and may be used as susceptible 

controls to screen BW resistance in tomato germplasm and as susceptible parents in ge-

netic studies. 

The recorded scores for BW resistance in the 40 tomato accessions had an average 

value of 2.7, a standard deviation (Std Dev) of 0.9, a standard error (Std Err) of 0.14, and 

a coefficient variation (CV) of 33.5% (Figure 3a). These statistics suggest that the popula-

tion had a large range (3.8) and variation (0.9 Std Dev and 33.5% CV) in BW resistance. 

Among the 40 genotypes, the top five genotypes with a score of 0 or an average mean of 

<1.5 demonstrated great levels of BW resistance, showing their potential to be used in 

breeding programs targeting the development of new cultivars or lines with BW re-

sistance.  

For the DSI, an average value of 61.5, a standard deviation (Std Dev) of 20.06, a stand-

ard error (Std Err) of 3.17, and a coefficient variation (CV) of 32.6% (Figure 3b) were de-

tected. These statistics suggest that the population had a large range (88.8) and variation 

(20.06 Std Dev and 32.6% CV) in BW DSI. Among the 40 genotypes, PI 645370 had a 0 DSI 

and demonstrated the greatest level of BW resistance, and both PI 600993 and PI 647305 

had 27.8% DSI, showing mediate resistance (Table 1). The three accessions also had the 

top greatest resistance, with 0 or 1.1 scores based on the 0–4 score scale (Table 1), thus 

indicating the potential to be used in breeding programs to develop new cultivars or lines 

with BW resistance.  

The ANOVA showed a significant genotype (accession) effect (p = 0.0003 < 0.001) for 

the disease scale and p = 0.0177 < 0.05 (Table 2), indicating that there were significant dif-

ferences for the BW resistance level (0–4 scale). Among the 40 accessions, the PI 645370, PI 

647305, PI 600993, PI 355110, and PI 270210 accessions had the lowest scores, ranging from 

0 to 1.5, showing that the five accessions were BW-resistant. 
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normal distribution.

The ANOVA showed a significant genotype (accession) effect (p = 0.0003 < 0.001)
for the disease scale and p = 0.0177 < 0.05 (Table 2), indicating that there were significant
differences for the BW resistance level (0–4 scale). Among the 40 accessions, the PI 645370,
PI 647305, PI 600993, PI 355110, and PI 270210 accessions had the lowest scores, ranging
from 0 to 1.5, showing that the five accessions were BW-resistant.

Table 2. ANOVA table for bacterial wilt incidence and disease severity index (DSI) among the
40 tomato accessions.

BW Source DF Sum of Squares Mean Square F Ratio Prob > F EMS H2%

BW Score
Genotype 39 92.584 2.374 2.493 0.0003 σ2

e + rσ2
G 59.9

Error 80 76.185 0.952 σ2
e

C. Total 119 168.769

BW_DSI
Genotype 39 47,138.31 1208.67 1.7507 0.0177 σ2

e + rσ2
G 42.8

Error 80 55,231.48 690.39 σ2
e

C. Total 119 102,369.79

The estimated broad-sense heritability (H2) values were 59.9% and 42.8% for the BW
resistance scale and DSI, respectively, indicating that genetic factors accounted for a signifi-
cant portion of the variation in BW resistance among the tomato genotypes (accessions)
tested, and demonstrating that BW resistance is inheritable (Table 2).

3.2. Principal Component Analysis (PCA) and Genetic Diversity Analysis

A PCA was conducted for 39 of the 40 tomato accessions (except PI 279565 listed in
Table 1). The 39 accessions were divided into two distinct clusters or sub-populations,
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represented by red (Q1) and blue (Q2) colors in both the PCA plot (Figure 4A) and phy-
logenetic tree (Figure 4B) based on the neighbor-joining (NJ) algorithm in GAPIT 3. The
Q2 sub-population was the majority with 28 accessions, accounting for 71.8% of the total
population, and Q1 had 11 accessions (28.2%) (Table 1, Figure 4).
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Figure 4. Population genetic diversity analysis in 39 of the 40 USDA tomato germplasm accessions
(except PI 279565 listed in Table 1 because it did have DNA sequencing data through GBS). (A) Three-
dimensional graphical plot of the principal component analysis (PCA) and (B) two sub-populations
of phylogenetic tree drawn using GAPIT 3.

Two distinct clusters were also observed among the 39 tomato accessions in the
phylogenetic tree postulated using the Maximum Likelihood (ML) method in MEGA 7
(Figure 5). The top five greatly BW-resistant accessions, namely PI 645370, PI 647305, PI
600993, PI 355110, and PI 270210, were arranged into the two clusters (Q1 and Q2) marked
red and square-shaped in Figure 5 and Table 1 with the accession information, indicating
a different genetic base (background). Interestingly, despite most of the accessions in the
study originating from the USA, the genotype diversity analysis revealed diverse genetic
differences among the USA accessions, among different countries, and among USA states
(Figure 5). Four of the five resistant accessions were originally collected from the United
States of America, while one was collected from Spain (Table 1 and Figure 5). This highlights
the availability of genotypes that are resistant to the R. solanacearum isolate P822, which
is common in the USA. The sup-population Q1 contains three BW-resistant accessions,
namely two from the USA and one from Spain, and the Q2 has two BW-resistant accessions
from the USA. This information can be used to identify and utilize BW-resistant genotypes
in breeding programs to develop more resilient tomato crops.
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Figure 5. Phylogenetic tree among 39 tomato accessions drawn using MEGA 7 through the Maximum
Likelihood (ML) method, where the accession number (PI), origin, cluster (Q1 and Q2), and bacterial
wilt (BW) scale are merged as each taxon name in the tree; the red square shapes are the 5 greatest
BW-resistant accessions with disease rates of less than 1.5; and two clusters (sub-populations) are
observed among the 39 accessions.

4. Discussion

Bacterial diseases triggered by R. solanacearum, a devastating pathogen causing a
threat to many plants worldwide [50], are among the major phytopathological problems of
solanaceous crops. Information on the sources of resistance and inheritance is necessary
to devise efficient and successful breeding strategies for developing resistant cultivars.
Resistant tomato accessions have been found in other studies that are specific to different
isolates of the pathogen. In this study, the use of a 0–4 scale and the DSI to assess disease
severity are a widely accepted methods for evaluating tomato genotypes’ resistance to
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BW [51]. Out of the forty genotypes (accessions) tested in this study, five genotypes were
found to be resistant to the R. solanacearum isolate P822, with many genotypes being
susceptible to the bacteria isolate. The discovery of many genotypes that are susceptible
to BW is consistent with previous studies that have reported a high degree of variability
in the resistance to the disease among tomato genotypes. In a previous study conducted
by Hai et al. (2008) [50], 252 wild tomato accessions were evaluated with Taiwanese race
1 strains, and five accessions were identified to be resistant to the Pss186 strain. In another
study that screened 285 tomato accessions screened, 4 showed high resistance against the
pathogen [3]. Consistent with prior research, including the current study, several tomato
genotypes (accessions) with resistance to BW were identified. Our result aligns with that
in Hai et al.’s (2008) [50] report, which highlighted the limited frequency of discovering
resistance resources in tomato germplasm. The identification of PI 645370 as an extremely
resistant genotype and promising candidate genotypes PI 647306, PI 600993, PI 355110, and
PI 270210 for BW resistance is particularly important, as it suggests that these genotypes
may possess genetic traits that make them more resilient to the disease. Previous studies
have documented the existence of BW-resistant genes in tomatoes, including the RRS1-R
gene [52]. As such, similar genes could probably be present in the current genotypes under
investigation. If the presence of resistance genes is verified in these genotypes through further
investigations, they would represent a significant addition to the collection of identified
resistant tomato genotypes, such as Hawaii 7996 [53]. This would expand the selection of
tomato cultivars with desirable traits, potentially enabling breeders to develop more effective
and sustainable strategies for controlling disease outbreaks and enhancing crop productivity.
The confirmation of resistance genes in this genotype would also contribute to a deeper
understanding of the molecular mechanisms underlying tomato–pathogen interactions, which
could inform the development of novel approaches for enhancing crop resilience and ensuring
food security. Future studies should strive to confirm the presence of resistance genes in this
genotype and to elucidate their functional significance. This is particularly important due to
the increasing prevalence of BW in many tomato-growing regions worldwide.

Broad-sense heritability is a critical parameter in quantitative genetics, reflecting the
proportion of phenotypic variance attributable to genetic differences among individu-
als [54]. In the context of this study on BW resistance in tomatoes, broad-sense heritability
estimates were calculated to assess the genetic basis of resistance. The study found that
BW resistance exhibited a broad-sense heritability of 59.9% based on a 0–4 scale and 42.8%
based on the DSI. These estimates suggest that BW resistance is a moderately heritable trait
in tomatoes, indicating that genetic factors play a significant role in determining resistance
levels. This aligns with previous findings by Boakye-Mensah (2020) [55] that have reported
high broad-sense heritability for BW incidence in tomatoes. It’s worth noting that heri-
tability estimates can be influenced by various factors, including the genetic complexity
of the trait, environmental conditions, and the methods used for estimation. Therefore,
while the estimated heritability provides valuable insights into the genetic control of BW
resistance, it’s essential to consider these factors when interpreting the results [56]. Overall,
the findings underscore the importance of genetic factors in determining BW resistance
in tomatoes and suggest that selecting for resistant crops could be an effective strategy
in breeding programs aimed at developing cultivars with enhanced resistance to this
destructive disease.

The clustering of genotypes in the principal component analysis (PCA) and in the
phylogenetic tree can have important implications for plant breeding and conservation [57].
For example, by identifying genetically diverse genotypes, breeders can develop tomato
cultivars with improved resistance to diseases and environmental stressors. Similarly,
conservation efforts can focus on preserving the genetic diversity represented by both
sub-populations to ensure the long-term viability of tomato production systems [57]. In
this study, a PCA and phylogenetic analysis identified two distinct sub-populations of
tomato genotypes (accessions) with different levels of genetic diversity, and the five BW-
resistant accessions distributed in the two sub-populations provide different genetic bases
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for breeders to choose from. These findings can inform breeding and conservation efforts
to develop more resilient and sustainable tomato production systems.

5. Conclusions

This study evaluated bacterial wilt (BW) resistance in 40 USDA tomato germplasm
accessions. Five accessions, namely PI 645370, PI 647306, PI 600993, PI 355110, and PI 270210,
were observed as being BW-resistant, with PI 645370 having the greatest resistance. The
broad-sense heritability was estimated as 59.9% based on a 0–4 scale of disease incidence
and 42.8% based on the DSI of disease severity for BW resistance. Two distinct clusters
(sub-populations) were shown among 39 of the 40 accessions, consisting of 3 and 2 BW-
resistant accessions in each cluster, respectively, suggesting the presence of different genetic
bases in the five resistant accessions. The identification of resistant tomato genotypes
for BW resistance provides valuable information for plant breeding programs to develop
BW-resistant tomato cultivars.
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