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Abstract: Invasive plant species pose significant biodiversity and ecosystem threats. Real-time
identification of invasive plants is a crucial prerequisite for early and timely prevention. While deep
learning has shown promising results in plant recognition, the use of deep learning models often
involve a large number of parameters and high data requirements for training. Unfortunately, the
available data for various invasive plant species are often limited. To address this challenge, this
study proposes a lightweight deep learning model called IPMCNet for the identification of multiple
invasive plant species. IPMCNet attains high recognition accuracy even with limited data and exhibits
strong generalizability. Simultaneously, by employing depth-wise separable convolutional kernels,
splitting channels, and eliminating fully connected layer, the model’s parameter count is lower than
that of some existing lightweight models. Additionally, the study explores the impact of different loss
functions, and the insertion of various attention modules on the model’s accuracy. The experimental
results reveal that, compared with eight other existing neural network models, IPMCNet achieves
the highest classification accuracy of 94.52%. Furthermore, the findings suggest that focal loss is the
most effective loss function. The performance of the six attention modules is suboptimal, and their
insertion leads to a decrease in model accuracy.

Keywords: deep learning; plant identification; in-field detection; convolutional neural network;
invasive plants

1. Introduction

Invasive alien plants are considered one of the most significant threats to biodiversity
and ecosystems worldwide [1,2]. Furthermore, economic globalization and other human
activities have exacerbated this threat [3]. A crucial prerequisite for early and effective
control of invasive plants is real-time identification of the species. Currently, invasive
plant identification relies primarily on manual identification. On the one hand, in-field
identification requires a high level of expertise from identifiers, leading to high labor
costs [4]. On the other hand, the sheer diversity of invasive plant species, along with the
morphological similarities between some species, can result in misidentification during the
recognition process. Therefore, there is a need for a more rapid, cost-effective and accurate
identification method.

The development of computer vision and image processing technologies has sig-
nificantly advanced plant recognition methods based on images [5]. Image recognition
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methods based on traditional machine learning techniques have achieved good results in
specific tasks. The authors of [6] developed an image processing system that can identify
and classify various paddy plant diseases using scale invariant feature transform features
and k-nearest neighbors. A rule-based semiautomatic system using the k-means concept
was designed and implemented to distinguish healthy leaves from diseased leaves, utilizing
three color features including color moments, color autocorrelogram, and HSV histogram,
as well as three textural features namely Haralick, Gabor, and 2D DWT [7]. However,
these methods rely heavily on handcrafted features, which are domain specific and lack
generality. Since the concept of deep learning was introduced by Hinton [8], convolutional
neural networks (CNNs) have shown strong feature extraction capabilities in image clas-
sification [9–11], detection [12–14] and segmentation [15–17], and have found extensive
applications in agriculture [18–20]. The authors of [21] presented a deep learning segmenta-
tion model that is able to distinguish between different plant species at the pixel level. The
authors of [22] developed convolutional neural network models to perform plant disease
detection and diagnosis using simple leaf images of healthy and diseased plants. The
authors of [23] designed an identification method for cash crop diseases using automatic
image segmentation and deep learning with an expanded dataset, and the system achieved
a correct recognition rate of more than 80% for 27 diseases of 6 crops.

Due to the large parameter count of many deep learning models, substantial data
quantities are required for training to achieve good results. However, extensive image
databases for many invasive plant species are scarce, increasing the susceptibility to overfit-
ting during the training process, which impacts recognition accuracies. Thus, there is a need
to reduce parameters to make the model more lightweight to address the impact of insuffi-
cient data. Invasive plant detection involves a multiclassification problem with a complex
data distribution. However, in some similar multiclassification tasks, existing lightweight
models perform poorly. The authors of [24] evaluated the classification performance of
35 deep learning models on 15 weed species, and the experiments showed that lightweight
neural networks like MnasNet [25] and MobileNetV3-large [26] performed less effectively
than models such as ResNet50 and ResNet101 [27]. The authors of [28] used deep learning
models to classify 6 tomato diseases, indicating poor accuracy with the lightweight models
used in the experiments. Therefore, this study constructed a lightweight neural network
called IPMCNet suitable for multiclassification tasks. This model has fewer parameters than
some existing lightweight neural networks, and exhibits better fitting and generalization
capabilities, can fit 34 invasive plant data in multi-class tasks, achieving higher accuracy
than eight other commonly used models. The application process of this algorithm involves
capturing plant images using a smartphone or a drone, uploading them to a workstation,
and classifying the images using the model trained on the invasive plant dataset to obtain
recognition results. This enables in-field detection of invasive plants.

The main research contributions of this paper are as follows: (1) Construction of a
lightweight deep learning model suitable for the identification of various invasive plant
species. (2) Exploration of the impact of different loss functions, and the use of different
attention modules on multiclass tasks. (3) Proposal of a method for in-field detection of
invasive plants using smartphones or drones. Section 2 introduces the dataset required for
the experiments, the structure of the new model, the six popular attention modules and the
loss function we used. Section 3 presents the experimental environment and results, and
Section 4 provides the conclusion.

2. Methods and Materials
2.1. Dataset

The in-field detection of invasive plants often involves two scenarios. On one hand, de-
tection personnel can capture photos of plants at close range, while, on the other hand, when
plants grow in locations inaccessible to personnel, the use of drones becomes necessary for
image acquisition. To ensure the identification model can address the requirements of both
scenarios, the dataset used to train the model is divided into two categories: images cap-
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tured manually and images captured by drones. For the first scenario, we selected 24 widely
distributed invasive plant species in China. These species have already caused greater
ecological harm and require urgent strengthening of management. Images for each species
were downloaded from the Plant Photo Bank of China (PPBC) (https://ppbc.iplant.cn/
(accessed on 1 June 2023)) to create the first category dataset. The Plant Photo Bank of China
was officially established in 2008 by the Institute of Botany, Chinese Academy of Sciences,
and serves as a dedicated repository for the management of plant images. These images
were expert-identified and manually captured in the field, encompassing different shooting
distances and angles, suitable for the first scenario. Data for the second application scenario
were collected by our laboratory using a drone, capturing 10 species. The drone is DJI
Matrice 600 Pro (DJI, Guangdong, China). The camera mounted on the drone is Nikon D850
(Nikon, Tokyo, Japan), and the focal length of the camera lens is 108 mm. Drone imagery
was acquired in regions with a concentrated distribution of the target species within China,
with a capture height of 30 m and a shooting angle directly overhead the plants. The photos
were cropped to a size of 224 × 224 to meet the data quantity requirements. The entire
dataset comprises 12,025 images from 34 different species. Table 1 presents an overview of
the dataset, including the labels, names and source of each species and the corresponding
number of images available. Figure 1 provides illustrative examples of each plant species.
Table 2 provides a comparison between the two types of datasets.

The dataset exhibits several noteworthy characteristics. First, the data downloaded
from PPBC were collected by different experts, and the images used varied in terms of plant
scale and size. Second, most of the data were captured in outdoor environments, resulting
in complex backgrounds that could potentially interfere with the recognition process.
Furthermore, the dataset comprises a wide range of plant species, with relatively low
sample sizes for each category, and the average number of images per plant species is only
354. A model trained with insufficient data lacks robust generalizability. Additionally, the
data distribution is imbalanced. For instance, the quantity of data for Mimosa bimucronata
(DC.) Kuntze is 600, while Oenothera rosea L’Hér. ex Aiton has only 53 instances, resulting
in the difference in the quantity of data being exceeded by tenfold. In such cases, the model
tends to prioritize species with larger proportions, while species with fewer data points are
treated as erroneous samples, potentially compromising the model’s overall performance.

Table 1. The labels, names, source, and number of 34 invasive plants. ‘P’ represents Plant Photo Bank
of China, and ‘D’ represents Drone.

Name Source Num Name Source Num

0 Bidens Pilosa L. D 400 17 Sonchus oleraceus L. P 389
1 Pistia stratiotes L. P 411 18 Lantana camara L. D 382
2 Eupatorium odoratum L. D 400 19 Sphagneticola trilobata (L.) Pruski P 400
3 Erigeron acris L. D 400 20 Galinsoga parviflora Cav. P 400
4 Oenothera rosea L’Hér. ex Aiton. P 53 21 Cabomba caroliniana A. Gray P 258

5 Eichhornia crassipes (Mart.) Solms P 400 22 Mikania micrantha
Kunth in Humb. et al. D 336

6 Mimosa bimucronata (DC.) Kuntze D 600 23 Amaranthus caudatus L. P 273
7 Mimosa pudica L. P 400 24 Ipomoea cairica (L.) Sweet P 400
8 Melinis repens (Willd.) Zizka D 400 25 Erigeron canadensis L. P 400
9 Myriophyllum verticillatum L. D 400 26 Euphorbia cyathophora Murr. P 81

10 Spartina alterniflora Loisel. D 400 27 Erigeron annuus (L.) Pers. P 400
11 Flaveria bidentis (L.) Kuntze P 89 28 Parthenium hysterophorus L. P 400
12 Ageratum conyzoides L. P 149 29 Cuscuta campestris Yunck. P 400
13 Nicandra physalodes (L.) Gaertn. P 400 30 Ipomoea purpurea (L.) Roth P 400
14 Synedrella nodiflora (L.) Gaertn. P 222 31 Tithonia diversifolia (Hemsl.) A. Gray P 400
15 Solanum aculeatissimum Jacquem. P 400 32 Crotalaria pallida Blanco P 400

16 Alternanthera philoxeroides (Mart.)
Griseb. D 400 33 Ageratina adenophora (Spreng.) R. M.

King and H. Ro P 382

Total 12,025

https://ppbc.iplant.cn/
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illustrated in Figure 2. In the presence of intricate image backgrounds, the features of
small target plants are susceptible to being overlooked by the models. Consequently, the
use of small-scale convolutional kernels becomes imperative. Additionally, deepening
convolutional neural networks enhances their fitting capabilities, thereby elevating the
recognition accuracy. Furthermore, the insertion of attention modules is considered to
heighten the focus on target regions while reducing interference from surrounding areas.
In cases where insufficient data lead to overfitting, the adoption of depthwise separable
convolutions, or the removal of fully connected layers, proves instrumental in significantly
reducing the number of model parameters, thus preventing overfitting. Simultaneously, the
segmentation of channels, followed by distinct convolutional operations, can also reduce
the number of parameters and the computational load. Addressing data distribution imbal-
ances involves considering loss functions that assign greater weights to underrepresented
classes, ensuring that the model better identifies species with fewer data. We designed
IPMCNet based on some of the solutions above. The overall structure of this neural network
is shown in Figure 3; it consists of modules such as the DWBlock and Stem.
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Figure 3. Overall structure of the IPMCNet model. (a) DWBlock and (b) Stem are the diagrams of the
two main modules in the model, (c) IPMCNet is the diagram of the entire model.

2.2.1. DWBlock

Within the DWBlock, we initially employ 1 × 1 convolutional kernels [29] to change the
channel numbers, ensuring effective feature extraction while reducing the computational
load. Batch normalization [30] is applied after each convolutional layer to standardize the
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output values, following a standard normal distribution with a mean of 0 and a variance
of 1. This accelerates network training and convergence, prevents gradient vanishing,
and mitigates overfitting. To avoid the issue of the ReLU function outputting zero in the
negative value range [31], a leaky ReLU [32] activation function is used. For simplicity, the
combination of convolutional layers, batch normalization layers and activation function
layers are collectively referred to as the CBR module. Next, inspired by depthwise separable
convolutions [33], we use a channel convolution with a 3 × 3 kernel size, followed by a
pointwise convolution. This approach effectively reduces the number of parameters,
enhances the local feature extraction capabilities, and facilitates the fusion and combination
of features from different channels. Finally, batch normalization and an activation function
are applied sequentially. The structure of the DWBlock is shown in Figure 3a.

2.2.2. Stem

In the Stem section, as shown in Figure 3b, a CBR module with a 1 × 1 convolutional
kernel is initially used, followed by the output branching into two paths. In this structure,
the branching is different from that of the ResNet shortcut [27], where ResNet directly
adds the input to the output. Instead, this branching is inspired by CSPNet [34], where the
feature map’s channel count is split into two parts, each undergoing different convolution
operations. One half is input to a CBR module with a 1 × 1 convolutional kernel size, while
the other half passes through another CBR module before entering several DWBlocks. Sub-
sequently, the results are concatenated with the results of the two convolution operations.
Finally, a CBR module with a 1 × 1 convolutional kernel is used to adjust the channel count.

2.2.3. Proposed Method

The overall structure of IPMCNet is shown in Figure 3c. This process begins with a
CBR module with a 7 × 7 convolutional kernel size, followed by the use of max pooling to
reduce the number of parameters, simplify the network complexity, alleviate the excessive
sensitivity of the convolutional layers to their position and increase the generalizability of
the model. Subsequently, a 1 × 1 convolutional module is used, and its output serves as
the input for two Stem modules. Stem0 is a Stem module that employs 3 DWBlocks, while
Stem1 utilizes 4 DWBlocks. The utilization of two Stem modules effectively deepens the
neural network model, thereby enhancing its feature extraction capabilities. Finally, global
average pooling replaces the commonly used fully connected layers as the ultimate output.
The global average pooling layer does not require parameters, avoiding overfitting [35]. It
also accumulates spatial information, enhancing the model’s robustness to spatial variations
in the input.

2.2.4. Attention Module

Attention modules are crucial tools utilized to enhance a model’s efficiency in process-
ing information and performing deep learning tasks. To mitigate the impact of complex
backgrounds on image model recognition capabilities, six different attention modules,
namely, the squeeze-and-excitation (SE) [36], efficient channel attention module [37] (ECA),
shuffle attention (SA) [38], normalization-based attention module (NAM) [39], coordinate
attention (CA) [40] and convolutional block attention module (CBAM) [41], are tested with
the model.

SE calculates the importance of each channel in the feature maps and assigns a weight
to each feature based on this importance, allowing the neural network to focus on specific
feature channels. ECA introduces a non-dimensional reduction local inter-channel inter-
action strategy, effectively avoiding the impact of dimensionality reduction on channel
attention learning. CBAM addresses the limitation of the SEs, which consider only channels
and neglect spatial information. CBAM first employs a structure similar to that of SE,
generating different channel weights. Then, all the feature maps are compressed into a
single feature map, and the spatial feature weights are calculated. The SA module divides
the input feature maps into multiple groups, integrating channel and spatial attention into
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a block for each group using Shuffle units and facilitating information communication
among different sub-features through the “channel shuffle” operator. CA encodes channel
relationships and long-range dependencies with precise positional information, enabling
the network to focus on significant regions with a lower computational cost. NAM re-
designs the channel and spatial attention sub-modules, utilizing the contribution factors of
weights to enhance the attention mechanism without the use of fully connected layers and
convolutional layers.

2.3. Loss Function

The loss function is employed to quantify the disparities or errors between the model’s
predicted outcomes and the actual results. In the realm of deep learning, the gradients
of the loss function, with respect to the model’s parameters, are computed through the
backpropagation algorithm. These gradients are subsequently utilized for parameter
updates to enhance model optimization. The loss function serves as a guiding framework
for the adjustment of the model parameters. The different choices of a loss function exert
varying impacts on the training and performance of the model. Depending on the problem’s
unique characteristics and requirements, the selection of an appropriate loss function can
greatly contribute to optimizing model performance.

The recognition of invasive plants constitutes a multiclass classification problem.
Typically, multiclass classification problems make use of the cross entropy loss function
and softmax is commonly used as the activation function.

Cross Entropy Loss = − log(pt), (1)

t represents the true class of the sample, and pt represents the probability value output
by softmax when the predicted class is the same as the true class.

However, a primary drawback of the cross entropy loss function is its underlying
assumption that all classes are equally learned. In cases of imbalanced class distributions
during training, species with fewer samples encounter challenges in feature extraction for
supervised algorithm learning, leading to subpar predictive performances for minority
classes. Given the varying distributions and quantities of invasive plants, imbalanced
dataset distributions are commonly encountered.

Consequently, in our experiments, we employ the focal loss [42] as the chosen loss
function. The focal loss excels in addressing the imbalanced sample classification issue.
It is capable of discerning samples based on their relative difficulty and assigns different
loss weights to each sample. Specifically, it assigns smaller weights to easily differentiable
samples and larger weights to those that are more challenging, thereby increasing the
recognition accuracy. The following is the formula for focal loss:

Focal Loss = −αt(1 − pt)
γ log(pt), (2)

t represents the true class of the sample, and pt represents the probability value output by
softmax when the predicted class is the same as the true class. αt is the weighting factor for
the true class, and γ is the hyperparameter for adjusting class weights.

2.4. In-Field Detection System

To achieve identification of invasive plants in the wild, we propose a method that com-
bines smartphones, drones, and cloud computing. The overall flowchart of the proposed
method is depicted in Figure 4. The first step involves training the model. The dataset is
sent to a computer workstation to undergo preprocessing, which includes resizing and
data augmentation. IPMCNet is trained by these processed data. Subsequently, the trained
model can be utilized for practical applications. When the target plants are in proximity to
the researcher, the researcher can use smartphones to capture photos of the target plants.
These photos are then uploaded to the workstation, where they undergo resizing and
normalization. When plants are situated in locations challenging for the researcher to reach,
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images are first collected using a drone. These images are uploaded to the workstation by a
smartphone or a laptop, then they undergo cropping and normalization. The preprocessed
images are fed into the pretrained model for prediction, and the results are transmitted
back to the researcher’s smartphone or laptop through the network. This allows researchers
to quickly determine the types of invasive plants present at a specific location within a
relatively short timeframe.
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3. Results and Discussion
3.1. Experimental Setup

The data were divided into three parts at a 7:2:1 ratio for training, validation, and
testing. The training set data were employed to determine the parameters of the model.
The validation set, independent of the training set, was used to assess the model during
training. This validation process aids in providing information that may be useful for
adjusting hyperparameters, particularly to assess the robustness of the model. Following
the training and validation of the model, we utilized the model to predict the outputs of the
data in the test set. Since the data are sourced from the internet and come in varying sizes,
it is necessary to resize the data to 224 × 224 before feeding it into the model to ensure that
each batch of data has a consistent size during deep learning training. Data augmentation is
employed to increase the diversity of the data, reduce the model’s dependency on specific
attributes and enhance its performance and generalization capability. In this study, random
horizontal flipping and random vertical flipping were used for data augmentation. The
images were then normalized.

The focal loss is used as the loss function for model training, with the setting αt = 1
and γ = 2 The Adam optimizer [43], known for its high efficiency and low memory
requirements, is used for model optimization. To prevent the learning rate from being
too large, causing the loss function to directly overshoot the global optimum and making
it difficult for the model to converge, the learning rate for the model is set at 0.0005. To
avoid the problem of model underfitting due to insufficient training, each experiment was
iterated 100 times, ensuring that all the models were fully trained. Due to the GPU memory
constraints, model training was carried out with a batch size of 16.

All the procedures mentioned above were implemented and developed using the
PyTorch (1.12.1+cu116) environment. The PC’s GPU is an NVIDIA GeForce GTX 1080
(NVIDIA, Santa Clara, CA, USA).
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3.2. Evaluation of the Proposed Model

In this section, we present the classification results of the IPMCNet model using images
from the test dataset. To assess the classification performance, we calculated the precision,
recall, specificity, and accuracy for each class separately. Precision is the proportion of
correctly predicted positive samples among all the instances predicted as positive. Recall
represents the proportion of correctly predicted positive samples among all the positive
samples. Specificity is the proportion of true negative samples among the samples that
were actually negative. The accuracy refers to the proportion of correctly predicted samples
among all the samples. Higher values suggest that the model has better classification
prediction capabilities. The formulas for the four evaluation indicators are as follows:

Precision =
TP

TP + FP,
(3)

Recall =
TP

TP + FN
, (4)

Specificity =
TN

TN + FP
, (5)

Accuracy =
TP + TN

TP + FN + FP + TN
(6)

TP represents the true positive samples, TN represents the true negative samples, FP
represents the false positive samples and FN represents the false negative samples.

The quantitative evaluation results of the IPMCNet model on the test set are presented
in Table 3 and Figure 5. It is evident that the IPMCNet model exhibits a remarkable
performance in identifying various invasive plants. The results indicate that most of the
samples in each category are accurately recognized. The average precision, recall, specificity,
and accuracy for all the species were 93.66%, 93.98%, 99.83%, and 99.68%, respectively.

Table 3. IPMCNet classification test results for 34 invasive plants.

Species Num Pr. (%) Re. (%) Sp. (%) Acc. (%)

Bidens Pilosa L. 80 98.77 100.00 99.96 99.96
Pistia stratiotes L. 83 96.25 92.77 99.87 99.62

Eupatorium odoratum L. 80 100.00 98.75 100.00 99.96
Erigeron acris L. 80 100.00 100.00 100.00 100.00

Oenothera rosea L’Hér. ex Aiton. 11 100.00 90.91 100.00 99.96
Eichhornia crassipes (Mart.) Solms 80 100.00 95.00 100.00 99.83
Mimosa bimucronata (DC.) Kuntze 80 100.00 98.75 100.00 99.96

Mimosa pudica L. 80 95.00 95.00 99.83 99.66
Melinis repens (Willd.) Zizka 80 100.00 100.00 100.00 100.00
Myriophyllum verticillatum L. 80 100.00 100.00 100.00 100.00

Spartina alterniflora Loisel. 80 100.00 100.00 100.00 100.00
Flaveria bidentis (L.) Kuntze 18 73.68 77.78 99.79 99.62

Ageratum conyzoides L. 30 75.76 83.33 99.66 99.45
Nicandra physalodes (L.) Gaertn. 80 96.25 96.25 99.87 99.75
Synedrella nodiflora (L.) Gaertn. 45 80.00 88.89 99.57 99.37

Solanum aculeatissimum Jacquem. 80 87.34 86.25 99.56 99.11
Alternanthera philoxeroides (Mart.) Griseb. 80 98.77 100.00 99.96 99.96

Sonchus oleraceus L. 78 92.50 94.87 99.74 99.58
Lantana camara L. 77 100.00 100.00 100.00 100.00

Sphagneticola trilobata (L.) Pruski 80 97.30 90.00 99.91 99.58
Galinsoga parviflora Cav. 80 96.25 96.25 99.87 99.75
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Table 3. Cont.

Species Num Pr. (%) Re. (%) Sp. (%) Acc. (%)

Cabomba caroliniana A. Gray 52 84.75 96.15 99.61 99.54
Mikania micrantha Kunth in Humb. et al. 68 100.00 100.00 100.00 100.00

Amaranthus caudatus L. 55 94.83 100.00 99.87 99.87
Ipomoea cairica (L.) Sweet 80 95.24 100.00 99.83 99.83

Erigeron canadensis L. 80 86.30 78.75 99.56 98.86
Euphorbia cyathophora Murr. 17 89.47 100.00 99.92 99.92

Erigeron annuus (L.) Pers. 80 98.75 98.75 99.96 99.92
Parthenium hysterophorus L. 80 78.57 96.25 99.08 98.99
Cuscuta campestris Yunck. 80 100.00 97.50 100.00 99.92
Ipomoea purpurea (L.) Roth 80 100.00 92.50 100.00 99.75

Tithonia diversifolia (Hemsl.) A. Gray 80 84.71 90.00 99.43 99.11
Crotalaria pallida Blanco 80 91.30 78.75 99.74 99.03

Ageratina adenophora (Spreng.) R. M. King and H. Ro 77 92.65 81.82 99.78 99.20

Avg (UAV) 78 99.75 99.75 99.99 99.98
Avg (Plant Photo Bank of China) 66 91.12 91.57 99.77 99.55

Avg (Total) 70 93.66 93.98 99.83 99.68
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Figure 5. A line chart of the classification results. The blue line represents precision, the orange
represents recall, the gray represents specificity, and the yellow represents accuracy.

Among the 24 plant species obtained from the PPBC, the average precision and
recall were 91.12% and 91.57%. This is notably lower than the 10 species collected by
drone. Furthermore, species with precision below 80% include Flaveria bidentis (L.)
Kuntze, Ageratum conyzoides L., Synedrella nodiflora (L.) Gaertn., Parthenium hysterophorus
L., and species with recall below 80% are Flaveria bidentis (L.) Kuntze, Erigeron canadensis
L., Crotalaria pallida Blanco. All data for these species are sourced exclusively from
the PPBC. The suboptimal performance of the PPBC data can be attributed to several
factors: (1) A lower quantity of images. (2) Diverse shooting locations for images. Under
insufficient data conditions, images of different organs of the same species may be
misclassified as different species. (3) Resizing of images of varying sizes to 224 × 224
during preprocessing, leading to varying degrees of deformation in recognition targets
and increasing the difficulty of identification.
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The confusion matrix depicted in Figure 6 compares the true class to the predicted
class. The vertical axis of the confusion matrix is the predicted label, and the horizontal axis
is the true label. The species names corresponding to the serial numbers in the images can
be found in Table 1. The number of predictions that accurately match the category level of
the test data is represented by the diagonal matrix values, while the off-diagonal elements
correspond to inaccurate predictions. Notably, accurately identifying plants belonging
within Asteraceae in the dataset is more challenging. For instance, 9 images of Erigeron
canadensis L. were identified as Parthenium hysterophorus L. Moreover, 5 images of Ageratina
adenophora (Spreng.) R. M. King and H. Rob. was misclassified as Parthenium hysterophorus
L., and 4 images of Sphagneticola trilobata (L.) Pruski were identified as Tithonia diversifolia
(Hemsl.) A. Gray. An additional solution involves training the model with more diverse
species of Asteraceae that share similar morphologies.
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In order to more visually display the training and validation process of the model,
Figure 7 shows the accuracy and loss curves. Before approximately the 50th epoch, both
the training and validation accuracies were relatively low and showed an upward trend,
indicating that the current model could not effectively fit the data and was in an under-
fitting state. After approximately the 60th epoch, the training accuracy curve surpassed
the validation accuracy curve with a slight upward trend, while the validation accuracy
curve exhibited a slight downward trend, suggesting that the model is in a mild over-
fitting state. In future training iterations of the model, limiting the number of epochs to
around 60 can help reduce the negative impact of overfitting on accuracy and conserve
computational resources.
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3.3. Comparative Analysis of the Different Models

We trained, validated, and tested four classic neural network models, EfficientNet_V2_S [44],
ResNet101, ResNet50 and ConvNext_Tiny [45], as well as four lightweight neural network models,
MobileNetV3, MnasNet1_3, SqueezeNet [46] and ShuffleNet_V2_X1_0 [47], using the same dataset
and training environment with identical parameters. We then compared the results with those of
the newly developed IPMCNet. Our experimental results demonstrate that the IPMCNet model
achieved a Top-1 accuracy of 94.52%, with the second-lowest number of parameters among all the
models (IPMCNet: 1.32 M, SqueezeNet: 1.25 M).

Notably, IPMCNet had 20.14 M fewer parameters than did the second-lowest parame-
ter count model, EfficientNet_v2_s, among the existing classic neural networks. Compared
with existing lightweight models, IPMCNet’s accuracy was 2.66% greater than that of the
second-best model, MnasNet1_3. This indicates that IPMCNet offers significant advantages
over the existing models in terms of both high accuracy and low parameter count. Figure 8
shows a comparison of the accuracy and parameters among the different models. The
higher the recognition accuracy of the model is, the closer its position is to the top in the
graph. The fewer model parameters there are, the closer the position is to the left side of
the image. IPMCNet is located at the top left of the chart.

The accuracy and loss curves for the training and validation of the nine models are
illustrated in Figure 9. The red line represents accuracy, the green line represents loss,
the solid lines denote the validation process and the dashed lines denote the training
process. As indicated by the red dashed lines, after approximately 50–60 epochs of
training, each model achieved an accuracy of more than 90% on the training dataset,
indicating a strong fitting capability to the training data. However, the solid red
lines are consistently below the red dashed lines, indicating that the accuracy during
the validation process is lower than that during the training process, indicating the
occurrence of overfitting. Comparing the nine plots, it is evident that IPMCNet exhibits
the least degree of overfitting and demonstrates the strongest generalization ability
among the models.
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3.4. Comparison of Results Using Different Loss Functions

To explore the impact of different loss functions on model training, in addition to the
focal loss, we trained the model using common loss functions such as cross entropy loss,
multi-margin loss and negative log likelihood loss (NLLLoss), which are equally suitable for
addressing class imbalances. The experimental results are presented in Table 4 below. The
Top-1 accuracies for cross entropy loss, NLLLoss and multi-margin loss were 93.38%, 89.75%
and 70.94%, respectively, which are lower than the 94.52% accuracy achieved with focal loss.
It is evident that the focal loss performs better in handling these multiclass, class-imbalanced
data in this experiment.
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Table 4. Top1-acc of IPMCNet trained using different loss functions.

Loss Function Top1-acc (%)

Focal Loss 94.52
Cross Entropy Loss 93.38

Negative Log Likelihood Loss 89.75
Multi-Margin Loss 70.94

To visually demonstrate the feature extraction capability of models trained with
different loss functions, we utilized gradient-weighted class activation mapping (Grad-
CAM) [48] to visualize the final feature extraction results. Grad-CAM is a technique that
shows which parts of a deep neural network contribute the most to the prediction results.
The output feature map of the last convolutional layer in the neural network has the greatest
impact on the classification results, Grad-CAM can calculate the weight of each channel by
performing global average pooling on the gradient of the last convolutional layer. These
weights are then multiplied by the feature map to generate a class activation map (CAM),
where each pixel represents the importance of that pixel region for the classification result.
Red indicates that the pixel area is the most important to the classification result and is
followed by yellow, the blue indicates that the pixel area has no impact on the classification
result. We compared the focal points of different models on the same images.

Figure 10a,b show two images with complex backgrounds from the Ageratina adenophora
(Spreng.) R. M. King and H. Ro and Erigeron canadensis L. datasets, the location of the target
plant is marked in red. Figure 10c–j show the class activation maps generated by models
trained with focal loss, cross entropy loss, NLLLoss, and multi-margin loss for IPMCNet.
In the CAM of Ageratina adenophora (Spreng.) R. M. King and H. Ro, trained with focal loss,
cross entropy loss and negative log likelihood loss, as shown in Figure 10c,e,g, respectively,
all the models successfully identified the position of Ageratina adenophora (Spreng.) R. M.
King and H. Ro; however, the model trained with focal loss focused more accurately on the
region. The model trained with the multi-margin loss focused on incorrect areas, as shown
in Figure 10i. In the CAM of Erigeron canadensis L., models trained with cross entropy loss
and NLLLoss mainly focused on background plants. Models trained with focal loss and
multi-margin loss assigned higher weights to the target plants, as shown in Figure 10d,j;
however, the model trained with multi-margin loss had more misidentified regions than
did the focal loss-trained model. In conclusion, the focal loss model exhibited the strongest
ability to extract features from images of these two different types of invasive plants.
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3.5. Comparison of Results Using Different Attention Modules

To mitigate the adverse impact of complex image backgrounds on classification accura-
cies, and to enable the model to focus on object recognition, we conducted six experiments
by incorporating six types of attention modules, SE, ECA, SA, NAM, CBAM, and CA into
IPMCNet. These modules were inserted after the last convolutional block of the DWBlock
so that they could assign different weights to the previously extracted feature maps before
output. Top1-acc and params of IPMCNet using different attention models are presented
in Figure 11. It is evident that the insertion of the NAM yields the highest Top-1 accuracy
(93.01%). However, this approach falls short of the performance of the model without
any attention modules. After the insertion of attention modules, there was no significant
increase in the model’s parameter count, and it is challenging to observe a clear correlation
between the changes in parameter count and Top-1 accuracy with the addition of different
attention modules.
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We also employed Grad-CAM to visually illustrate the feature extraction results of
the different models. Figure 12a,b present two images with complex backgrounds from
the Ageratina adenophora (Spreng.) R. M. King and H. Ro and Erigeron canadensis L., the
location of the target plant is marked in red. Figure 12c–p depict the class activation maps
generated by a trained IPMCNet and a trained IPMCNet with SE, ECA, SA, NAM, CA
and CBAM. In the CAM of Ageratina adenophora (Spreng.) R. M. King and H. Ro, only
the model without any attention modules accurately identified the position of Ageratina
adenophora (Spreng.) R. M. King and H. Ro. The model employing the NAM exhibited
more focus on the background, excluding the target plant. The IPMCNet model with the
inserted CA module exhibited attention across most areas of the image but focused on the
edges, as shown in Figure 12m. Models with the ECA, SA, SE, and CBAM modules showed
misaligned attention points. In the CAM of Erigeron canadensis L., IPMCNet achieved
higher recognition accuracy than IPMCNet with the inserted NAM, ECA, and SE modules,
focusing on fewer background plants. The model using the SA module concentrated only
on a small portion of the target plant. After the CA and CBAM modules were inserted,
the model’s attention shifted away from Erigeron canadensis L., highlighting other plants,
resulting in a recognition performance slightly worse than that of the former cases, as
shown in Figure 12n,p. In conclusion, models without attention modules demonstrated the
strongest feature extraction capabilities on images of these two different types of invasive
plants. This outcome may be attributed to the limited dataset size and excessive noise, with
attention modules excessively focusing on noise or irrelevant information, resulting in a
decline in recognition accuracy.
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3.6. Advantages and Improvements of IPMCNet

In summary, IPMCNet exhibits the following advantages in practical applications:
(1) Highest accuracy in identification. Given the rapid spread of invasive plants, the more
accurate in-field detection of invasive plants, the more timely control measures can be
implemented, and the fewer economic losses caused by the spread of invasive plants.
(2) Strong generalization ability of the model. In scenarios with insufficient data, a diverse
range of species, and varied image capture angles and distances with complex backgrounds,
the model demonstrates the lowest degree of overfitting. (3) Fewer parameters. This
characteristic makes the model’s training process less demanding on computer hardware
and enables fast identification. In the future, the model can be embedded in mobile phones
and other portable devices to automate the detection of invasive plants.

For further enhancement of the model’s performance, improvements can be explored
in two directions: model optimization and dataset optimization. In terms of model opti-
mization, considerations may include (1) utilizing more efficient and lightweight structures,
such as incorporating channel shuffle from ShuffleNet to reduce the number of model
parameters, and (2) designing a two-stage neural network for detection and classifica-
tion. Employing detection boxes of the same shape and integrating concepts from object
detection models like Faster R-CNN [49] can help identify core regions for classification,
reducing the adverse effects of varying image shapes and complex backgrounds. In terms
of dataset optimization, efforts could focus on collecting data with more diverse angles
and distances, capturing various organs of the same species. Additionally, gathering data
for more similar species, such as those challenging to identify within the Asteraceae in the
experiment, could be beneficial.

4. Conclusions

To mitigate the threats posed by invasive plants, timely and accurate identification of
these species is of paramount importance. Consequently, the development of a self-efficient,
cost-effective method for invasive plant detection holds significant practical significance.
In recent years, deep learning models have demonstrated remarkable image recognition
task performances. However, classical CNN models come with a substantial number
of parameters and require large datasets for training to ensure accuracy. Unfortunately,
most available invasive plant image datasets are limited in size, leading to suboptimal
recognition performance of existing models. Therefore, there is a need to develop a CNN
model that combines high recognition accuracies with lightweight characteristics.

In this study, we introduce a novel network architecture named IPMCNet for invasive
plant recognition, which exhibits a low parameter count. The experimental results indi-
cate that the proposed approach effectively identifies 34 different invasive plant species.
Compared with commonly used neural network models, including EfficientNet_V2_S
(90.09%), ResNet101 (90.81%), ResNet50 (92.53%), ConvNext_Tiny (81.65%), MobileNetV3
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(90.22%), MnasNet1_3 (91.86%), SqueezeNet (81.91%), and ShuffleNet_V2_X1_0 (87.22%),
it achieves the highest accuracy (94.52%). Additionally, the model has a parameter count
of 1.32 M, ranking as the second lowest among all models, surpassed only by SqueezeNet
(1.25 M). Furthermore, the model exhibits excellent generalization across various shooting
environments, different image sizes and varying vegetation scales.

To mitigate the adverse effects of data imbalances, four different loss functions, focal
loss, cross entropy loss, negative log likelihood loss and multi-margin loss were employed in
the experiments. It was observed that the model trained with focal loss achieved the highest
accuracy. To enhance the algorithm’s capability to handle complex background images, six
distinct attention modules including the squeeze-and-excitation block, efficient channel
attention module, shuffle attention, normalization-based attention module, coordinate
attention, and convolutional block attention module were incorporated into the model. The
results indicated that all six modules led to a decrease in the model’s accuracy.
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