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Abstract: Accurate litchi identification is of great significance for orchard yield estimations. Litchi
in natural scenes have large differences in scale and are occluded by leaves, reducing the accuracy
of litchi detection models. Adopting traditional horizontal bounding boxes will introduce a large
amount of background and overlap with adjacent frames, resulting in a reduced litchi detection
accuracy. Therefore, this study innovatively introduces the use of the rotation detection box model to
explore its capabilities in scenarios with occlusion and small targets. First, a dataset on litchi rotation
detection in natural scenes is constructed. Secondly, three improvement modules based on YOLOv8n
are proposed: a transformer module is introduced after the C2f module of the eighth layer of the
backbone network, an ECA attention module is added to the neck network to improve the feature
extraction of the backbone network, and a 160 × 160 scale detection head is introduced to enhance
small target detection. The test results show that, compared to the traditional YOLOv8n model, the
proposed model improves the precision rate, the recall rate, and the mAP by 11.7%, 5.4%, and 7.3%,
respectively. In addition, four state-of-the-art mainstream detection backbone networks, namely,
MobileNetv3-small, MobileNetv3-large, ShuffleNetv2, and GhostNet, are studied for comparison
with the performance of the proposed model. The model proposed in this article exhibits a better
performance on the litchi dataset, with the precision, recall, and mAP reaching 84.6%, 68.6%, and
79.4%, respectively. This research can provide a reference for litchi yield estimations in complex
orchard environments.

Keywords: litchi detection; oriented bounding box; transformer module; eca attention mechanism;
small target detection

1. Introduction

Litchis (Litchi chinensis Sonn.) are a very popular tropical fruit that are widely grown
around the world, including Central and South America, parts of Africa, and regions
throughout Asia. Among them, China is the world’s largest producer of litchi [1,2]. In 2022,
the litchi planting area in mainland China was 7.8915 million acres, and the Litchi output
was approximately 2.2227 million tons [3]. Litchi fruit degradation impacts their flavor
as a result of the synthesis of lycheic acid triggered by prolonged exposure to elevated
temperatures [4]. Therefore, predicting orchard litchi yields in advance is a critical issue.
These predictions help farmers effectively plan their storage and harvesting schedules and
enable them to develop early supply strategies.

In actual production, orchard managers usually use random sampling and manual
counting to estimate orchard yields [5]. However, scattered litchi clusters, obstructions due
to leaves and branches, and the complex lighting conditions of the natural environment
lead to low-accuracy litchi identification [6,7]. Consequently, achieving real-time and
accurate litchi identification in natural dense scenes is one of the core issues in improving
the accuracy of litchi yield estimations.
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In recent years, researchers have conducted significant amounts of research on litchi
detection [8–10]. An improved linear discriminant analysis classifier was proposed for
distinguishing green litchis in similar color backgrounds. This model introduced the idea of
the “maximum margin” in SVM and optimized the threshold of the LDA classifier. The pre-
cision and recall rates of green litchi were 80.4% and 76.4%, respectively [11]. To solve the
litchi occlusion problem, a litchi detection method based on monocular machine vision
was introduced. This method separates single litchis under different occlusion conditions
based on a combination of contrast limited adaptive histogram equalization (CLAHE),
red/blue color mapping, the Otsu threshold, and morphological operations [12]. In [13],
a depth-camera-based method for litchi fruit recognition in the natural environment was
introduced. The above model design artificially introduces descriptors of litchi characteris-
tics to improve the recognition accuracy of litchi fruits under complex occlusion conditions.
However, dense litchi clusters are still challenging due to their scattered nature, leaf oc-
clusion, and complex lighting conditions. However, dense litchi clusters are still a big
challenge due to their scattered nature, leaf occlusion, and the complex lighting conditions.

With the rapid development of deep learning technology, excellent target detection
algorithms such as YOLO, SSD, and Faster R-CNN have been applied to fields such as
fruit and vegetable detection [14–19]. For example, the k-means++ clustering algorithm
has been used to optimize bounding box settings, reduce the number of network layers,
and improve litchi detection in dense scenes [20]. In [21], a convolutional block attention
module was added to each C3 module of the network backbone to enhance the network’s
ability to extract important feature information. Wang et al. [22] used ShuffleNetv2 as the
backbone network for litchi fruit detection. In the feature fusion stage, they introduced the
CBAM module to further refine the effective litchi feature information. The above work
has achieved good results in the identification of litchi fruits in dense scenes. However,
the following issues still exist:

1 Background interference: Since litchi often grow at an angle or in clusters, if horizontal
bounding boxes are used to select litchi, a large amount of background will appear in
the frame and adjacent frames will overlap, affecting the litchi detection accuracy.

2 Litchis growing in a natural environment exist in diverse and intricate backgrounds
and are often obscured by branches or leaves.

3 The multi-scale recognition accuracy is low. With a large viewing angle, the size of
litchi fruits varies greatly, and the litchi detection accuracy is low.

2. Related Work

At present, litchi detection methods can be roughly divided into two categories. One
is the traditional object detection method based on artificially designed features, including
color, shape, and contour characteristics; the other is a target detection method based on a
combination of deep learning [23].

Regarding traditional target detection methods, Guo et al. [12] introduced a combi-
nation of color chromatic mapping, morphology operation, and other strategies to extract
individual litchi from the litchi foreground region. Xiong et al. [2] used an improved
fuzzy clustering algorithm (FCM) to first remove the background of litchi images at night
and then used the Otsu algorithm to segment the fruits and main stems of litchi bunches.
Finally, the picking point was obtained using the Harris corner point. The experimental
results using this algorithm showed that the night recognition accuracy of litchi bunches
was 93.75%, and the average recognition time was 0.516 s. Moreover, a matching algorithm
to locate litchi based on a label template was discussed. In this method, litchi with a similar
label template was matched according to the preset threshold by traversing a litchi label
template of a left image in a right image to find optimal matching. The experimental results
showed that the proposed recognition method could be robust against the influences of
varying illumination and precisely recognizing litchi. The highest average recognition
rate for unoccluded and partially occluded litchi was 98.8% and 97.5%, respectively [24].
Yu et al. proposed that a red-green-blue depth (RGB-D) camera can be used to estimate
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fruit yield. In this method, depth images were introduced to segment redundant image
information that excludes the effective pickup range of the robotic arm. Secondly, color
and texture features were used to identify litchi fruits. The recognition accuracy of this
method for green litchi and red litchi was 89.92% and 94.50%, respectively [13]. Compared
with apples and pears, the detection results were easily affected by light changes due to
the uneven surface of the fruit. In addition, litchi detection methods based on traditional
target detection, such as color and texture features, have low robustness in dense scenes
and occlusions.

Regarding litchi detection research based on deep learning, Peng et al. [25] proposed
a novel network model that used the feature pyramid to retain the shallow features of
litchis and cut down the model size. Wu et al. [7] proposed a litchi detection algorithm
based on the YOLOv4 network, using the K-means++ algorithm to select the appropriate
size for litchis, and changed the feature map to account for the small and dense litchi
targets, but the improved algorithm still missed detection in large scenes. Furthermore,
a long-close distance coordination control strategy was proposed based on an RGB-depth
camera combined with a point cloud map. Compared with existing studies, this strategy
took into account the advantages and disadvantages of depth cameras. By experimenting
with the complete process, the density-clustering approach in long distances was used to
classify different bunches at a closer distance, while a success rate of 88.46% was achieved
from fruit-bearing branch locating [26]. Moreover, the attention mechanism was introduced
to improve the model’s ability to extract features. An improved fully convolutional single-
stage object detection (FCOS) network was used for litchi leaf disease detection. In this
method, the central moment pooling attention (CMPA) mechanism is introduced to enhance
the characteristics of litchi leaf diseases and insect pests. The test results showed that the
average detection accuracy of images of five kinds of litchi leaf diseases and insect pests
was 91.3%, and the model parameter size was 17.65 M [27]. The method based on HBBs can
realize the accuracy of litchi in complex lighting scenes. However, for occlusion between
litchi between litchi research, the annotation based on HBBs in practical application is
very limited.

Rotating frame detection is a novel object detection method. This method adjusts the
angle of the target frame so that the frame can better cover the target area, effectively avoid
interference from background features, and improve the network’s ability to learn target
area features. In this way, when the litchi is blocked or squeezed, the detection method
based on the rotating frame can reflect the shape of the litchi.

In order to achieve the accurate detection and yield estimation of litchis in natural
scenes, in this work, an innovative litchi detection model based on YOLOv8 and rotating
boxes is proposed, reducing the background image and adjacent boxes due to frame
selection. Regarding the impact of overlap on feature extraction, a transformer module is
introduced to avoid losing feature information in the network and solve the background
interference problem, and it is combined with the Efficient Channel Attention Network
(ECA) attention mechanism and then added to the algorithm model. Thus, the algorithm
model can more accurately identify litchis. In addition, an additional detection head is
introduced into the algorithm model, which has excellent small-target detection capabilities
for litchis.

3. Materials and Methods
3.1. Experimental Area and Data Acquisition

As in shown in Figure 1, all data in the experiment were collected at a litchi orchard in
Maoming City, Guangdong Province, China (23°15′08′′ N, 113°37′12′′ E), and at the Litchi
Garden of the Fruit Tree Research Institute at the Guangdong Academy of Agricultural
Sciences (21°78′15′′ N, 111°16′51′′ E). The studied litchi variety was Guiwei. In this study,
the imaging equipment was an industrial camera. Images were collected from 9:00 to
5:00 p.m. from mid-May to early June 2022. The image resolution was 4032 × 3024.
In particular, 43 litchi trees were selected; the height of the litchi trees ranged from 3 to
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5 m. In order to improve the model’s generalization ability, the distance between the
camera and the litchi tree was 0.5–5 m, and blurred images generated during motion were
removed. The final dataset contained 1228 images, and the dataset was divided into a
training set and a validation set in a ratio of 8:2. The image annotation methods and results
are shown in Figure 2. It can be observed that the rotated rectangular target box contains
fewer redundant details, and angle information is added to represent the orientation of the
original horizontal bounding box.

Figure 1. Experiment, (A) Aerial photo of collection location A, (B) Aerial photo of collection location
B area.

Figure 2. Data preprocessing and annotation.

3.2. Data Annotation

Litchi detection typically is achieved by determining objects of interest with HBB
annotation. However, the shape and size of litchi can influence their appearance in real-
world environments. If HBBs are utilized for the task of litchi detection, this approach
introduces a significant amount of background into the frame and may result in a high
number of overlapping adjacent frames [28]. The accuracy of the model is diminished.
Consequently, compared with HBB annotation, the OBB is suitable for litchi detection.
In particular, the data processing link is to use the interactive labeling tool rolabelimg
(https://github.com/cgvict/roLabelImg, accessed on 28 November 2023) to label the litchi
image, refer to the DOTA dataset type, and export the .json file.

3.3. Dense Litchi Detection Network Architecture

In view of the characteristics of litchis in the images, such as their small size, large res-
olution differences, and insufficient feature information, this paper proposes an improved
rotating box detection model for detecting litchi in natural dense orchards. In this model,
the detection head of YOLOv8 is replaced with rotating box object detection [29]. At the
same time, a transformer module and an ECA attention mechanism module are used in the

https://github.com/cgvict/roLabelImg
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backbone neural network [30–32]. As shown in Figure 3, the model proposed in this article
consists of three parts: a backbone, a neck, and a head.

Figure 3. Overall framework of litchi recognition. (A) The backbone of the model, (B) the neck of the
model, (C) the head of the model, and (D) the name corresponding to each module. Red oval dotted
boxes indicate areas for improvement.

3.3.1. Network Structure of YOLOv8

The traditional YOLOv8 network consists of a backbone network (backbone) for
feature extraction, a neck network (neck) for feature fusion, and a detection head (head)
for predicting. The backbone has a cross-stage local network structure to reduce the
calculation amount and enhance the gradient. A spatial pyramid pooling module is used
to better extract spatial features. In the neck, the convolution structure in the PAN-FPN
upsampling stage in YOLOv5 has been removed, and the downsampling operation is
performed first, followed by the upsampling operation. Replacing the C3 module with the
C2f module decreases the model weight and makes it more adaptable to different sized and
shaped targets [33–35]. In the head part, the current mainstream decoupled head structure
(decoupled head) is adopted, which effectively reduces the number of parameters and
computational complexity and enhances the model’s generalization ability and robustness.
Finally, the bounding box loss is calculated by the Conv2d block. Different from previous
versions of YOLO, YOLO-V8 uses Anchor-free instead of Anchor-base to directly predict the
position and size of the anchor box, thereby further improving detection speed and accuracy
of the model. The advantages of the YOLOv8 model can be summarized as follows:

• Backbone: The backbone is mainly composed of a CBS module, a C2F module, and an
SPPF module. The CBS module consists of a convolution, batch normalization, and nor-
malization SiLU functions. The main function of BN is to maintain the same distribu-
tion in each ANN layer to avoid gradient disappearance in network training; the CBS
module compresses and expands the feature information by changing the number of
feature channels, thereby improving and balancing the calculation speed and accuracy
of the ANN; the C2f module is a network component used to extract deep feature
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information. The latter can be embedded at any position or replace any convolutional
layer to enhance the backbone’s performance.

• Neck: The convolution structure in the PAN-FPN upsampling stage in YOLOv5
is removed, and the downsampling operation is performed first, followed by the
upsampling operation. Replacing the C3 module with the C2f module reduced the
weight and makes the model more adaptable to targets of different sizes and shapes.

• Head: The current mainstream decoupled-head structure is adopted to effectively
reduce the parameter number and computational complexity and enhance the model’s
generalization ability and robustness. The design of using anchor-base to predict the
position and size of the anchor box, as used previously in the YOLO series, has been
abandoned, and instead an anchor-free detection method is used to directly predict
the target’s center point, width, and height. Reducing the number of anchor boxes
further improves the model’s detection speed and accuracy.

• Loss function: The model uses CIOU Loss as the error loss function to further improve
the regression accuracy of the bounding box by minimizing the DFL. At the same
time, the model adopts the Task Aligned Assigner sample allocation strategy, using
the high-order combination of the classification score and the IOU as an indicator to
guide the selection of positive and negative samples. This successfully aligns the high
classification score and high IOU, effectively improving the model’s detection accuracy.

3.3.2. The Transformer Module

A transformer module is an architecture of the attention mechanism, which has
achieved great success in NLP, for example, in the currently famous artificial intelligence
ChatGPT. A transformer module can improve the reasonable distribution of attention
weights, so that the output of the attention layer contains representative information of dif-
ferent subspace encodings, and can also enhance a model’s representation ability. Secondly,
transformers’ multi-scale feature fusion capability helps comprehensively utilize infor-
mation at different scales and improves the performance and stability of target detection.
Through position encoding and spatial relationship modeling, a model can more accurately
locate targets and capture relative distance and angle information between targets [36,37].

A transformer module was introduced into the backbone of the YOLOv8 network
to enhance the target detection accuracy. In particular, the transformer module in this
study uses a multi-head self-attention mechanism instead of a single-head self-attention
mechanism in order to enhance the focus on the connection between global features and its
own position [38].

As shown in Figure 4, first, the litchi image feature information is input into the
BN layer to standardize the distribution of feature information to improve the training
speed, and it is then connected to a MHA module. This module is designed to enhance the
algorithm’s extraction of deep feature information from images and improve the model’s
accuracy when detecting images with multiple scales, small targets, and high noise levels.
In order to suppress network overfitting, a dropout layer is added after the MHA module.
At the same time, the input and feature information extracted through the MHA module is
weighted and combined to make the feature information clearer. A batch normalization
layer and a MLP are then connected to improve the neural network’s nonlinear fitting
and expression abilities and thus further improve its performance. Finally, all feature
information is weighted and output to ensure the integrity of the feature information,
thereby improving the detection accuracy of the neural network [24].
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Figure 4. transformer.

3.3.3. Increased ECA-Net Mechanisms

Attention mechanisms have been widely used in the field of computer vision, espe-
cially in target detection tasks. There are currently two main types of attention mechanisms:
channel attention mechanisms and spatial attention mechanisms. SElayer explicitly models
cross-dimensional interactions to extract channel attention [39]. CBAM utilizes the semantic
interdependence between spatial dimensions and channel dimensions in feature maps to es-
tablish cross-channel and cross-space information [40]. SGE groups the channel dimensions
into multiple sub-features, improving the spatial division of different semantic sub-feature
representations [41]. In the process of litchi recognition, in addition to branches or leaves
blocking the fruit, there is also a large amount of complex background information, which
is also one of the reasons for poor recognition accuracies [42].

In response to the above problems, in this study, the ECANet module is introduced
into the YOLOv8 model by adding it to the neck of the module in the algorithm model,
enhancing the model’s feature extraction capability and thus improving its recognition
accuracy. As is shown in Figure 5, the ECA module is used in front of 40 × 40 and 20 × 20
detection heads. In particular, in the experiment, the attention mechanism was not used
before all detection heads due to the accuracy was not improved.

Figure 5. ECA model architecture.
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In the ECA module, a local cross-channel interaction strategy is proposed without
dimensionality reduction, which considers each channel and its k nearest neighbors after
channel global average pooling (GAP) to capture local cross-channel interaction information.
The ECA module first performs spatial feature compression on the input feature map to
obtain a 1 × 1 × C feature map; secondly, it performs channel feature learning and captures
cross-channel interactive information through one-dimensional convolution of the dynamic
convolution kernel, which is adapted from the convolution kernel. The function formula is
adaptively selected to determine the coverage of local cross-channel interactions; finally,
the output feature channel weight vector generated by activation function calculation is
multiplied channel by channel with the original input feature map to output a feature
map with channel attention, thereby improving effective feature extraction. The ECA
module avoids channel dimensionality reductions, allowing the model to more effectively
learn channel attention. The module has a small number of parameters, which are only
determined by its convolution kernel size k. Its formula is:

k = φ(n) (1)

φ(n) = |
log2 (C)

γ
+

b
γ
|odd (2)

where k represents convolution kernel size of 1D convolution, n represents the classes
(n = 1), C represents channel dimension, and |t|odd indicates the nearest odd number of t.
In this paper, we set γ and b to 2 and 1 throughout all the experiments, respectively.

3.3.4. Head Prediction Branch Improvements

Occlusion and large distances of litchi in images often result in large differences in litchi
scales. Large targets at the front of images occupy most of the area, while individual small
targets, especially the head area, account for less than 1% of the image size, and feature
information is easily lost [43]. In [40], an additional transformer module detection head
was added to a detection model, achieving good results for high-speed and low-altitude
flights on datasets with densely packed objects with drastic scale changes. This provided
inspiration for the improvements proposed in this article.

The detection layer of the original YOLOv8 outputs three feature maps of different
sizes, namely 20 × 20, 20 × 20, and 80 × 80. When the litchi target is too small, it will
not be detected. Here, we added a 1600 × 160 small-target-detection head to the original
YOLOv8n model to enhance the sensitivity to smaller targets. We propose a model that
initially extracts features from the second layer of the backbone network, uses Concat
splicing to fuse the shallow feature context information extracted from the neck network
structure, and finally uses the fourth detection head output at Layer 18 as a small target
detection head. This improvement slightly increases the model’s calculation amount, but it
greatly improves the small-target-detection ability by obtaining more feature information
from small targets. False and missed detections of objects at different scales are effectively
reduced. The improved detection layer is shown in Figure 6. This study introduces a
prediction head for detecting small objects and combines it with the three other prediction
heads. This four-head structure helps mitigate the negative impact caused by changes in
object scale. As shown in Figure 6, our new prediction head extracts information from
low-level, high-resolution feature maps and is therefore more sensitive to small objects.
Although adding an extra detection heads results in increased computational and memory
costs, small-object detection is significantly improved.
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Figure 6. Improved detection layer.

4. Results and Discussion
4.1. Training Environment and Equipment Description

The algorithm was implemented on an Ubuntu 18.04 version system. The detailed
hardware parameters of the device are shown in Table 1. During the data enhancement pro-
cess of random affine transformations in the network, rotation and shear transformations
that modify the object’s angle were disabled before entering the network. The model param-
eters were initialized using weights pretrained on the COCO dataset and then fine-tuned.
The model’s hyperparameters were configured with a batch size of 16, a momentum factor
of 0.95, and an initial learning rate of 0.01. The training process consisted of 300 iterations.

Table 1. Training environment and equipment description.

Configuration Parameter

Image Resolution 4032 pixels × 3024 pixels (W × H)
Training framework Python programming language, Pytorch frame-

work
Pretrained model ImageNet model
Operating system Ubuntu18.04 version
Accelerated environment CUDA11 and CUDNN 7
Development environment Vscode
Computer configuration used in training
and testing

Intel I7-87700K Processor, Huawei, China 32 GB
RDIMM, 512 G Solid State Drive, 2 TB Mechanical
Hard Drive, Graphics Card RTX3080Ti

4.2. Evaluation Metrics

The precision and recall rates and the mAP were adopted to evaluate the effectiveness
of the litchi detection model in this paper [44–46]. The formulas are as follows:

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

AP =
∫ 1

0
Precision × Recalldr (5)

mAP =
AP
n

(6)

where n represents the classes, n = 1.
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4.3. Ablation Test

In order to evaluate the effectiveness of each improvement to the model proposed
in this paper and their interactions, ablation experiments were conducted to analyze the
causal relationship of each improved component. The experiment was divided into eight
groups, namely, M0–M7, for training: M0 is the YOLOv8n model; M1 is M0 with an added
transformer module behind the C2f module of the eighth layer in the backbone network of
the YOLOv8n model; M2 is M0 with the ECA attention mechanism embedded into the neck
network of the YOLOv8n model; M3 improves the head of the YOLOv8n model; M4–M6
are any two combinations of M0–M2, and M7 is the combination of all of the above three
improved parts. In this study, the precision, recall, and mAP were used as indicators under
the same experimental environment. The test results are shown in Table 2.

Table 2. Ablation test.

Classes C2fTRS ECA Change Head Parameters Precision Recall mAP

M0 - - - 3380646M 75.7% 65.1% 74.0%
M1 ✓ - - 3316390M 81.4% 63.6% 74.7%
M2 - ✓ - 3380652M 80.0% 64.2% 74.6%
M3 - - ✓ 3802728M 81.7% 67.4% 77.4%
M4 ✓ ✓ - - 82.9% 64.4% 76.1%
M5 ✓ - ✓ - 85.0% 66.0% 78.2%
M6 - ✓ ✓ - 84.1% 67.6% 78.5%
M7 ✓ ✓ ✓ - 84.6% 68.6% 79.4%

M0 = YOLOv8n. M1 = YOLOv8n + C2fTRS. M2 = YOLOv8n + ECA. M3 = YOLOv8n + changed head.
M4 = YOLOv8n + C2fTRS + ECA. M5 = YOLOv8n + C2fTRS + changed head. M6 = YOLOv8n + ECA +
changed head. M7 = YOLOv8n + C2fTRS + ECA + changed head. Where ✓ represents the use of this module,
- Indicates that this module is not used, the numbers with frames are optimal.

It can be seen from the ablation experiment results that, with the application of each
improved module, the overall performance of the model improves. When the transformer
module is added to the backbone network, the precision rate and mAP of the model increase
by 7.5% and 0.9%, respectively, and the recall rate decreases slightly, indicating that the
transformer module improves the precision of litchi detection; at the same time, the prob-
ability of missed litchi detections also increases. When the ECA attention mechanism is
introduced into the cross-layer connection part of the detection based on M1, the preci-
sion rate and mAP of the model are further improved. In addition, it is obvious that the
improved detection head has the highest contribution among the three improved mod-
ules, which inevitably slightly increases the amount of parameters and model calculations,
but greatly improves the precision rate, the recall rate, and mAP.

4.4. Performance Comparison of Different Models

Litchi detection in naturally dense scenes has always been a challenge. Insufficient
feature information, small litchi sizes, and occlusion can easily lead to missed and false
detections. Four different advanced backbone network models were chosen for comparison
in this paper, namely, MobilenetV3-Small, MobilenetV3-Large [39], ShuffleNetV2 [22],
and GhostNet [47]; the comparison results are shown in Table 3.
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Table 3. Performance comparison of different models.

Detector Backbone Precision Recall mAP

YOLOv8 mobilenetv3-small 76.9% 53.8% 67.5%
YOLOv8 mobilenetv3-large 80.2% 63.2% 73.8%
YOLOv8 shufflenetv2 78.8% 60.4% 71.4%
YOLOv8 GhostNet 80.8% 60.9% 73.3%
YOLOv8 proposed model 84.6% 68.6% 79.4%

Where, the numbers with frames are optimal.

According to the results in Table 3, we can see that, compared with other mainstream
backbone models, the precision rate, recall rate, and mAP of the model proposed in this
article can reach 84.6%, 68.6%, and 79.4%, respectively, an improvement compared to
MobilenetV3-Large. Compared to ShuffleNetV2, they increased by 7.3%, 13.5%, and 11.2%,
respectively; compared to GhostNet, they increased by 4.7%, 8.5%, and 8.3%, respectively.

In one study, a dependable model based on RGB-depth (RGB-D) cameras was used
to accurately and automatically detect and locate the fruit-bearing branches of multiple
litchi clusters simultaneously. The results showed that the detection accuracy of a litchi
fruit-bearing branch was 83.33%, and positioning accuracy was 17.29◦ ± 24.57◦. A depth
camera can obtain the distance information from the object to the camera, which alleviates
the impact of lighting changes on litchi detection [9]. However, compared to ordinary RGB
cameras, it is difficult to apply in high-resolution litchi recognition scenarios. In order to
highlight the advantages of the model in this article, a litchi scene with complex lighting
was randomly selected for a comparative analysis. As shown in the figure, it is obvious
that the central part of the picture is brighter and the sides are darker. Fragments from
three images were selected, including Figure 7b,c (blue and yellow areas). According to
the detection results, the method in this article demonstrates detection improvements in
complex lighting scenes.

Figure 7. Performance comparison of different models. (a) Main picture (b) Partial view-1. (c) Partial
view-2

In the occluded scene (Figure 7c blue frame area), when part of the litchi is blocked
by, e.g., leaves, the model with the attention mechanism shows a better performance,
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because the attention mechanism improves the litchi feature information and the extrac-
tion performance.

Figure 8 shows the detection effects of the model proposed in this article in different
scenarios, including sunny, rainy, and cloudy days. It can be concluded from the detection
results that the proposed model in this article has better performance in different conditions.

In addition, comparing the detection results of the other four models on this article’s
litchi dataset, the results based on MobileNetV3-Small contain a large number of missed
detections. Due to the sacrifice of detection accuracy and the pursuit of lightweight models,
GhostNet and shuffleNetV2 generally result in misdetections under occlusion. It should
be noted that, when the fruits and leaves are blocked at the same time, all models result
in misdetections. Due to the NMS selection problem, adjacent litchi are easily removed
because they are regarded as redundant frames.

Figure 8. Performance of different scenes. (a) sunny, (b) rainy, (c) cloudy.

4.5. Class Activation Graph Analysis

Grad-CAM is a traditional way to interpret CNNs [42]. In this method, the importance
of a convolutional neural network’s feature map is determined for the output category,
and the results are visualized as a heat map to explain the network’s predictions for the
input image. This helps explain the inner workings of convolutional neural networks,
thereby improving the network’s interpretability and reliability. Figure 9 shows YOLOv8
and the improved class activation map. The darker the red, the larger the value. The larger
the value, the more effective the feature is, indicating that the corresponding area of the
original image has a higher response and greater contribution to the network, and the more
important the feature is for network prediction results. It can be seen that the improved
network’s receptive field is increased and its red range is more accurate, which further
proves its high accuracy in extracting effective features.

Figure 9. Comparison of visualization feature maps. (A) Original litchi image. (B) Feature map of the
YOLOv8n model. (C) Feature map of the proposed model.

5. Conclusions

This paper proposes a litchi detection algorithm based on YOLOv8 and rotating
boxes to solve the problems related to the large amounts of background and overlap
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with adjacent frames introduced by traditional horizontal bounding boxes, small-target
detection, etc., which reduce the accuracy of litchi detection. Based on the traditional
YOLOv8n model, a transformer module is introduced after the C2f module of the eighth
layer of the backbone network, and an ECA attention module is added to the neck to
improve the feature extraction capability of the backbone network, which is then combined
with a 160 × 160 scale detection head to enhance small-target detection. The test results
showed that, compared to YOLOv8n, the model proposed in this article improved the
precision, recall, and mAP by 11.7%, 5.4%, and 7.3%, respectively. At the same time, four
state-of-the-art mainstream detection backbone networks were studied to compare their
litchi detection performance, namely, Mobilenetv3-small, Mobilenetv3-large, Shufflenetv2,
and GhostNet. The model proposed in this article exhibited a better performance, proving
its utility. The litchi detection algorithm has the potential to be applied in actual scenarios
and is an efficient and high-performance solution to dense litchi detection problems. It can
also be applied to other fields, such as the detection of palm fruit, the detection of rice or
maize tassels, and the detection of male and female flowers.

In addition, when fruits and leaves are occluded at the same time, due to the NMS se-
lection problem, adjacent litchi are easily removed because they are regarded as redundant
frames. This problem is a future research direction for litchi detection in natural scenes.
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YOLOV8n You Look Only Once Version eight -n scales
Otsu maximum inter-class variance method
LDA Linear discriminant analysis
C2f Cross Stage Partial Network Bottleneck with Two Convolutions
C3 Cross Stage Partial Network Bottleneck with Three Convolutions
ECA Spatial Pyramid Pooling - Fast
SVM Support vector machines
SPPF Spatial Pyramid Pooling - Fast
Faster R-CNN faster region-based convolutional network
SSD Single Shot Multibox Detector
CBAM Convolutional Block Attention Module
HHBs Horizontal bounding boxes
OBBs Oriented bounding boxes
ECA Efficient Channel Attention Network
MLP multilayer perceptron
FPN Feature pyramid networks

https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
https://pytorch.org/


Agronomy 2024, 14, 95 14 of 15

CBS Convolutional Bottleneck with SiLU
NMS non-maximum suppression
NLP Neuro-Linguistic Programming
MHA Multi-head attention
BN Batch normalization
ChatGPT Chatbot program Chat Generative Pre-trained Transformer
SiLU Sigmoid Linear Unit
IOU Intersection over Union
CIOU Complete intersection over Union
mAP Mean average precision
DFL Distribution Focal Loss
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