
Citation: Zhang, H.; Li, X.; Wang, L.;

Liu, D.; Wang, S. Construction and

Optimization of a Collaborative

Harvesting System for Multiple

Robotic Arms and an End-Picker in a

Trellised Pear Orchard Environment.

Agronomy 2024, 14, 80. https://

doi.org/10.3390/agronomy14010080

Academic Editor: Baohua Zhang

Received: 1 December 2023

Revised: 25 December 2023

Accepted: 27 December 2023

Published: 28 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agronomy

Article

Construction and Optimization of a Collaborative Harvesting
System for Multiple Robotic Arms and an End-Picker in a
Trellised Pear Orchard Environment
Hewen Zhang 1, Xiaoguang Li 1, Ling Wang 2, Dian Liu 2 and Shubo Wang 1,*

1 School of Automation, Institute of Intelligent Unmanned System, Qingdao University, Qingdao 266071, China;
lixiaoguang@qdu.edu.cn (X.L.)

2 College of Engineering, China Agricultural University, Beijing 100083, China;
wangling2017068@cau.edu.cn (L.W.); sy20213071447@cau.edu.cn (D.L.)

* Correspondence: shubowang@qdu.edu.cn

Abstract: In order to meet the needs of intensive mechanized picking in trellised pear orchards, this
paper designed a pick-place integrated end-picker based on the analysis of agronomic characteristics
of trellised pear gardens and fruit. In order to realize the accurate positioning of pears in picking,
based on the kinematic analysis of robot arms and the construction of a private dataset, the YOLOv5s
object detection algorithm was used in conjunction with a depth camera to achieve fruit positioning.
The hand–eye system calibration was carried out. Aiming at solving the problems of redundancy,
inefficiency, and uneven distribution of task volume in the conventional multiple robot arms algo-
rithm, a simulated annealing algorithm was introduced to optimize the picking sequence, and a
task allocation method was proposed. On the basis of studying several key parameters affecting the
performance of the algorithm, the picking efficiency was greatly optimized. And the effectiveness
of the proposed multi-robot collaborative picking method in a trellised pear orchard environment
was demonstrated through experiments and simulation verification. The experiments showed that
the picking efficiency of the integrated end-picker was increased by about 30%, and the success rate
was significantly higher than that of the flexible grippers. The results of this study can be utilized to
advance robotic pear-picking research and development.

Keywords: fruit picking; multiple robotic arms; end-picker; target detection; task planning

1. Introduction

The trellised pear orchard, which originated in Japan, was introduced to China in
the 1990s and was popularized rapidly. The trellised pear orchard has the following five
advantages: good fruit quality; convenient operation and management; easy to implement
standardized cultivation; being convenient for mechanized operation; and preventing wind
and bird damage. The harvest time of pear, the target crop in the trellised orchard in
this study, is affected by a variety of characteristics and climatic conditions, so it is very
important to harvest fruits at the right time according to specific requirements. Since the
efficiency of a single robot arm is low, it is not enough to meet the demand of fruit harvest,
and thus this study used multiple-robot-arm cooperative picking to improve efficiency
and avoid the problems of quality degradation and low picking efficiency caused by not
picking in time.

In general, picking work is divided into three aspects: perception, decision making,
and control execution. The environment and fruit information are perceived by sensors. The
decision system judges the picking target, and the execution system is driven to complete
the picking action. The whole system is known as the “hand–eye–brain” picking system.
This research direction has had wide concern worldwide in recent years.

Agronomy 2024, 14, 80. https://doi.org/10.3390/agronomy14010080 https://www.mdpi.com/journal/agronomy

https://doi.org/10.3390/agronomy14010080
https://doi.org/10.3390/agronomy14010080
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com
https://orcid.org/0000-0002-4932-5338
https://doi.org/10.3390/agronomy14010080
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com/article/10.3390/agronomy14010080?type=check_update&version=1


Agronomy 2024, 14, 80 2 of 30

Visual perception target detection in fruit and vegetable picking research is mainly
divided into one-stage detection algorithms and two-stage detection algorithms. One
stage detection algorithms, such as YOLO, SSD, SqueezeDet, and DetectNet, can directly
extract features from the network to predict the classification and position of objects, thus
eliminating the need for regional candidate networks (PRNs). The outstanding feature
is that the detection speed is fast and only requires one step. On the contrary, two-stage
detection algorithms, such as RCNN, FasterR-CNN, and MaskR-CNN, need to first create a
proposal box that may contain the object to be detected and then perform further detection
based on the object characteristics to complete the recognition and positioning of the target,
which is more accurate. Mu et al. [1] used FasterR-CNN to identify kiwifruit, wherein they
input the image and depth image obtained by a Kinectv2 camera (Microsoft, Redmond,
WA, USA) into the convolution neural network to detect and locate the kiwifruit in the
picture. Yang et al. [2] proposed a citrus fruit and branch recognition model based on
MaskRCNN for fruit recognition and location under different occlusion conditions, and
they constructed training datasets under a variety of complex conditions, including single
fruit, multiple fruits, covered fruits, branches, and trunks. Qian et al. [3] proposed a method
for mushroom detection and location based on SSD that optimizes the backbone network
of the original SSD model to improve the real-time detection performance in embedded
devices. The model has good detection performance for Pleurotus ostreatus. For apple
fruit and branch segmentation, Kang et al. [4] adopted the Dasnet network model. Peng
et al. [5] used the DeepLabV3+ semantic segmentation model based on the Xception_65
feature extraction network to detect litchi fruit. The experimental results showed that the
model had 0.765 MIoU, which is 0.144 higher than the original DeepLabV3+ model. In
order to adapt to the complex growth environment of litchi and simultaneously detect
and locate the fruit branches of multiple litchi clusters, Li et al. [6] proposed a semantic
segmentation method based on Deeplabv3 to segment the fruit, branches, and background
in RGB images. However, due to the large differences in agronomic characteristics between
fruits, we need to develop semantic segmentation and a target detection algorithm for the
trellised pear orchard scene on the basis of the above fruit recognition algorithm.

In order to meet the needs of recognition and location of litchi fruit and stem at night,
Liang et al. [7] proposed a litchi fruit detection method based on YOLOv3. In order to
verify whether different classification modes will affect the detection effect of the kiwifruit
detection model, Suo et al. [8] collected and classified 1160 kiwifruit images according
to picking strategy and occlusion conditions, and they inputted them into YOLOv4 and
YOLOv3 network models for training and testing. The experimental results showed that the
tagging and classification of datasets in a way that is as detailed as possible can effectively
improve the detection accuracy of the network model. Xiong et al. [9] developed a faster
and more accurate system for the real-time vision detection, tracking, and locating of
strawberries by combining YOLOv4, DeepSORT, and color threshold. In view of the
low accuracy and poor robustness of the traditional green pepper detection methods,
Li et al. [10] proposed an improved green pepper target detection algorithm based on
Yolov4_tiny. Based on the backbone network of the classical target detection model, the
algorithm introduces adaptive feature fusion and feature attention mechanism to improve
the accuracy of the small-target recognition of green pepper while ensuring the accuracy of
classification. Aiming at the characteristics of the small size and dense growth of plums,
Wang [11] proposed a lightweight model named improved YOLOv4, based on YOLOv4.
The experiments showed that the improved YOLOv4 model had higher average accuracy
(mAP); in addition, compared with YOLOv4, the size was compressed by 77.85%, and
the detection speed was accelerated by 112%. Yan et al. [12] proposed an apple detection
algorithm based on improved YOLOv5s that can effectively identify graspable apples and
ungraspable apples, and the average detection time for a single image was found to be
only 0.015 s. In order to meet the requirements of accuracy, lightweight model, and fast
response during picking in a trellised pear orchard, on the basis of optimizing the YOLO
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fruit detection algorithm, a pear detection algorithm based on improved YOLOv5s was
developed, combined with a depth camera.

The terminal execution modes of agricultural picking robots usually include negative
pressure adsorption, shear, mold cavity-sleeve, and flexible grasping. The Xiong team [13,14]
of the Norwegian University of Life Sciences is devoted to the research of strawberry picking
robots. The end-effector of the picking robot developed is a new cable-driven non-contact
picking fixture with sensing function, which is composed of three active fingers, three passive
covering fingers, and a cutter mechanism. The robot uses a collision-free motion planning
algorithm to make picking safer and more convenient. For the picking of the cluster-shaped fruit
of litchi, the Zhou team [15] of South China Agricultural University developed a picking robot
whose end effector is mainly composed of an end-holder and a rotating cutter head. The robot
uses a collision-free motion planning algorithm to make picking safer and more convenient. For
the picking of cherry tomato, which is also a cluster fruit, Feng et al. [16] developed a scissor-like
end-effector, with two cutters used to cut the stalk. By closing or opening the grip fixed to the
cutter, the fruit can be cut and processed reliably.

For tomato picking, Yurni Oktarina et al. [17] in Indonesia designed a tomato picking
robot. The end effector is a pair of scissors, sharp and flexible, which is driven by a servo
motor. The strawberry-picking robot developed by Xiong’s team [14] opens its mold cavity
to “swallow” the fruit when picking, and it cuts the fruit stem with a blade to complete
strawberry picking. For apple mold cavity-sleeve picking, the team designed a spherical
two-finger structure gripper that can effectively reduce the fruit damage rate [18]. The
team also developed a flexible gripper composed of two curved flexible fingers, and they
improved and optimized it so that it could not only pick apples, but also pick pomegranates,
grapefruits, and other fruits [19]. In order to further reduce the damage rate of apple picking,
the team studied a bionic three-finger flexible gripper inspired by the octopus tentacle [20].
The end-effector of the pneumatic finger clip structure developed by Hohimer et al. [21] can
pick apples flexibly and with high precision. Yu et al. [22] designed three-finger grippers
made of flexible materials from an ergonomic point of view, being beneficial to protect
apples from damage and achieve non-destructive picking. Due to the large difference
in agronomic characteristics between fruits, the use outside the scope of the application
scenario will greatly affect the integrity and picking efficiency of the fruit. Therefore, based
on the above fruit pickers such as strawberry and tomato, an integrated end-picker for the
trellised pear garden scene was developed.

The development of multiple robotic arms provides new ideas for picking research.
The cherry-picking robot based on multi-joint robot arms developed by the ArimaS team
utilizes a visual system to identify obstacles in the environment and perform path planning
for a single robot arm [23,24]. Wageningen University developed a six-degree-of-freedom
cucumber-picking robot that uses an identification device on the end effector to identify
fruit stems and picks cucumbers by clamping the fruit stems and cutting them at high
temperatures [25]. DanSteere developed an apple-picking robot in 2015 that is fast, efficient,
and has a wide working range. It uses a four-degree-of-freedom robot arm and an air-
suction end-effector [26]. Due to the limitation of picking efficiency of a single robot arm,
the advantages of collaborative picking by multiple robotic arms are particularly prominent.

In order to improve the efficiency of apple picking, FFRobotics developed a parallel
multiple robot arm apple-picking platform that adopts the way of grouping and dividing
the working area [27]. In order to improve the efficiency of apple picking, FFRobotics
developed an apple-picking platform based on a parallel multiple robot arm, which adopts
the working mode of grouping and work area division [27]. This method can improve the
picking efficiency and avoid the interference and collision between robot arms. Williams
et al. [28] explored a kiwifruit-picking robot with four three-degree-of-freedom serial robot
arms. The robot can collaboratively pick while effectively avoiding collisions between
the robot arms. On the other hand, Fu et al. [29] developed a system containing four
three-degree-of-freedom rectangular coordinate robots and applied it to the collaborative
picking of kiwifruit. For strawberries, a fruit that is difficult to harvest, Harvest CROO
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developed a strawberry-harvesting robot for high-ridge cultivation that uses four parallel
picking units. Each ridge of strawberries is equipped with an independent picking unit,
thus improving work efficiency [30]. AGROBOT Robotics developed a robot suitable for
elevated cultivation, using a solution of 24 parallel robot arms. The linear module utilizes
mechanical isolation in the forward direction to avoid interference between robot arms,
while robot arms on the same unit adopt a control strategy to achieve isolation [31].

As the process of population aging intensifies, a labor-intensive industry like picking
urgently needs to be replaced by more efficient multiple robot arm systems. This paper
focuses on the collaborative picking of multiple robotic arms in a trellised pear orchard.
Taking the trellised pear garden as the object of research, the environment, agronomy,
and physical characteristics of the fruit and the identification and positioning method of
the pear were investigated. Based on the physical characteristics of pears, a pick-place
integrated end-picker was designed. Based on kinematic analysis of robot arms and the
construction of a private dataset, the YOLOv5s object detection algorithm was utilized in
conjunction with a depth camera to achieve fruit positioning, and the hand–eye system
calibration was carried out. It meets the research and development needs of an efficient
picking robot in a pear orchard. In order to solve the optimal picking sequence, as well
as reduce the scheduling time and the energy consumption, a task allocation method for
a multiple robotic arms system was proposed, and the picking sequence was optimized
through the simulated annealing algorithm, and finally, the experimental environment
was set up for the robot arm picking experiment. The comparison experiment between
different end-pickers and the comparison experiment before and after picking sequence
optimization were conducted to test the efficiency of different end-pickers. On this basis, the
task allocation method and optimal configuration were analyzed and verified by simulation
experiments. This research can be utilized to advance robotic pear-picking research and
development.

2. Pick-Place Integrated End-Picker

Kinematic analysis of the picking robot arm is the basis for trajectory planning and
motion control in picking actions. Picking kinematics analysis mainly includes forward
kinematics analysis and inverse kinematics analysis. Kinematics analysis describes the
mapping relationship between the robot arm joint coordinate system and Cartesian space.
Forward kinematics analysis is based on the rotation angle of each joint of a robot arm
combined with the adjacent connecting rod coordinate system transformation matrix to
obtain the mapping relationship between the robot arm picking end and base coordinate
system. Inverse kinematics analysis is used to calculate the angle of each joint of a robot
arm based on the mapping relationship between the picking end of the robot arm and the
base coordinate system, and this solution often has several groups. At the same time, for
the trellised pear garden, a pick-collect integrated end-picker was designed, the 3D model
was established, and the physical processing was completed by 3D printing technology.

2.1. Kinematics of Robot Arm
2.1.1. Kinematic Analysis of the Robot Arm

In this paper, the improved D-H modeling method was utilized in kinematic modeling.
The implementation steps are as follows:

To determine the coordinate system position between the connecting rods of a robot
arm, the coordinate system was established according to the following criteria:

1. The Zi axis coincides with the axis of the joint i; if the Zi axis and Zi+1 axis intersect,
the intersection point of the two axes is the origin of coordinate system, and if not, the
origin is the intersection of the common perpendicular of the two axes and Zi axis.
The Xi axis is perpendicular to the Zi axis and Zi+1 axis. If the Zi axis and Zi+1 axis
do not intersect, Xi axis points from the Zi axis to the Zi+1 axis. After the Zi axis and
Xi axis are determined, the Yi axis can be determined according to the right-hand rule.
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The connecting rod coordinate systems of a robot arm can be determined through the
above steps. To simplify the transformation of a coordinate system, the third and fourth
coordinate systems are offset (Figure 1).
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2. Transforming the coordinate system of two adjacent connecting rods by translation
and rotation. The implementation steps in the improved D-H modeling method are
as follows: (1) Rotating the coordinate system (Xi−1, Yi−1, Zi−1) around the Xi−1 axis
so that the Zi−1 axis is parallel to the Zi axis. (2) Translating the coordinate system
(Xi−1, Yi−1, Zi−1) along the direction of the Xi−1 axis until the Zi−1 axis coincides with
the Zi axis. (3) Rotating the coordinate system (Xi−1, Yi−1, Zi−1) around the Zi axis
so that the Xi−1 axis is parallel to the Xi axis. (4) Translating the coordinate system
(Xi−1, Yi−1, Zi−1) di along the Zi axis so that the Xi−1 axis coincides with the Xi axis.
After the coordinate systems coincide, we determined the D-H parameters (Table 1).

Table 1. D-H parameter table.

Connecting Rod
Number Torsion Angle (◦) Length of

Connecting Rod (m) Joint Angle (◦) Setover of
Connecting Rod (m)

1 0 0 180 0.122
2 −90 0 90 0.1215
3 180 0.408 0 0
4 180 0.376 −90 0
5 −90 0 0 0.1025
6 90 0 0 0.094

The calculating formula for the transformation matrix between the adjacent connecting
rod coordinate systems is expressed in Equation (1):

i−1
i T = R(Xi−1, αi−1)T(Xi−1, αi−1)R(Zi, θi)T(Zi, di)

=


cos(θi) − sin(θi) 0 ai−1
cos(ai−1) sin(θi) cos(ai−1) cos(θi) − sin(ai−1) −di sin(ai−1)
sin(ai−1) sin(θi) cos(θi) sin(ai−1) cos(ai−1) di cos(ai−1)
0 0 0 1

 (1)
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3. Obtaining the transformation matrix 0
1T,12 T,23 T,34 T,45 T,56 T between the connecting rods

from the D-H parameter table.
4. Obtaining the transformation matrix between any two connecting rods by continuous

multiplication from the transformation matrix between the adjacent connecting rods.

n
mT = n

n+1Tn+1
n+2Tn+2

n+3T . . . m−1
m T , where n < m.

2.1.2. Analysis of forward and Inverse Kinematics

The forward kinematics of a robot arm can calculate the position and attitude of the
end-picker relative to the base coordinate system through the known angle information of
each joint. The process is obtained by successive multiplication the transformation matrices
of adjacent connecting rod coordinate systems:

0
6T = 0

1T1
2T2

3T3
4T4

5T5
6T =


r11 r12 r13 px
r21 r22 r23 py
r31 r32 r33 pz
0 0 0 1

 (2)

The inverse kinematics of a robot arm means obtaining the rotation angle of each robot
arm joint based on the given transformation matrix of the end-picker relative to the base
coordinate system. That is to say, on the premise of known 0

6T, seeking the solution of
angles θ1 − θ2. In order to solve the six angles, we multiply the above equations on the left
by 0

1T−1:

1
6T = 0

1T−10
6T =


cos(θ1) sin(θ1) 0 0
− sin(θ1) cos(θ1) 0 0

0 0 1 −d1
0 0 0 1




r11 r12 r13 px
r21 r22 r23 py
r31 r32 r33 pz
0 0 0 1

 =


R11

′ R12
′ R13

′ Px
′

R21
′ R22

′ R23
′ Py

′

R31
′ R32

′ R33
′ Pz

′

0 0 0 1

 (3)

Among them, each parameter can be calculated as

R11
′ = r11 cos(θ1)− r21 sin(θ1)

R21
′ = r21 cos(θ1)− r11 sin(θ1)

R31
′ = r31

R12
′ = r12 cos(θ1) + r22 sin(θ1)

R22
′ = r22 cos(θ1)− r12 sin(θ1)

R32
′ = r32

R13
′ = r13 cos(θ1) + r23 sin(θ1)

R23
′ = r23 cos(θ1)− r13 sin(θ1)

R33
′ = r33

Px
′ = px cos(θ1) + py sin(θ1)

Py
′ = py cos(θ1)− px sin(θ1)

Pz
′ = pz − d1

(4)

In addition, it can be obtained by direct successive multiplication of the transformation
matrices of the adjacent connecting rod coordinate systems:

1
6T = 1

2T2
3T3

4T4
5T5

6T =


R11 R12 R13 Px
R21 R22 R23 Py
R31 R32 R33 Pz
0 0 0 1

 (5)

According to the principle that corresponding elements of the matrix are equal, six
angle values can be calculated:

Solving θ1:
Let matrix elements R23

′ and R23 be equal, and elements R24
′ and R24 be equal, as

follows:
r23 cos(θ1)− r13 sin(θ1) = cos(θ5)
py cos(θ1)− px sin(θ1) = d2 + d6 cos(θ5)

(6)

The above results imply that

(py − d6r23)× cos(θ1) + (d6r13 − px)× sin(θ1) = d2 (7)
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Let py − d6r23 = r sin(φ) = B, d6r13 − px = r cos(φ) = A, r =
√

A2 + B2, and then
we have from a triangular replacement:

sin(θ1 + φ) = d2/r
cos(θ1 + φ) = ±

√
1 − d2/r2 (8)

When 1 − d2/r2 ≥ 0, θ1 has a solution, which is

θ1 = a tan 2(d2,±
√

r2 + d22)− a tan 2(B, A) (9)

Solving θ5:
After θ1 is calculated, we obtain the following according to Formula (6):

sin(θ5) = ±
√

1 − (r23 cos(θ1)− r13 sin(θ1))
2

θ5 = a tan 2
(
±
√

1 − (r23 cos(θ1)− r13 sin(θ1))
2, r23 cos(θ1)− r13 sin(θ1)

) (10)

Solving angle θ6:
Let matrix elements R21

′ and R21 be equal, and elements R22
′ and R22 be equal, as

follows:
r21 cos(θ1)− r11 sin(θ1) = − sin(θ5)× cos(θ6)
r22 cos(θ1)− r12 sin(θ1) = sin(θ5)× sin(θ6)

(11)

The above results imply that

cos(θ6) =
r11 sin(θ1)−r21 cos(θ1)

sin(θ5)

sin(θ6) =
r22 cos(θ1)−r12 sin(θ1)

sin(θ5)

(12)

When sin(θ5) ̸= 0, θ6 has a solution, which is

θ6 = a tan 2
(

r22 cos(θ1)− r12 sin(θ1)

sin(θ5)
,

r11 sin(θ1)− r21 cos(θ1)

sin(θ5)

)
(13)

Solving θ2:
Let matrix elements R13

′ and R13 be equal, and elements R33
′ and R33 be equal, as

follows:
r13 cos(θ1) + r23 sin(θ1) = cos(θ2 − θ3 + θ4)× sin(θ5)
r33 = − sin(θ2 − θ3 + θ4)× sin(θ5)

(14)

The above results imply that

cos(θ2 − θ3 + θ4) =
r13 cos(θ1)−r23 sin(θ1)

sin(θ5)

sin(θ2 − θ3 + θ4) =
−r33

sin(θ5)

θ2 − θ3 + θ4 = a tan 2
(

−r33
sin(θ5)

, r13 cos(θ1)−r23 sin(θ1)
sin(θ5)

) (15)

Let matrix elements Px
′ and Px be equal, and elements Pz

′ and Pz be equal, as follows:

px cos(θ1) + py sin(θ1) = a2 cos(θ2)− d5 sin(θ2 − θ3 + θ4) + a3 cos(θ2 − θ3) + d6 sin(θ5) cos(θ2 − θ3 + θ4)
pz − d1 = −a2 sin(θ2)− d5 cos(θ2 − θ3 + θ4)− a3 sin(θ2 − θ3)− d6 sin(θ5) sin(θ2 − θ3 + θ4)

(16)

By transposition, it follows that

a2 cos(θ2) + a3 sin(θ2 − θ3) = px cos(θ1) + py sin(θ1) + d5 sin(θ2 − θ3 + θ4)− d6 sin(θ5) cos(θ2 − θ3 + θ4)
a2 sin(θ2) + a3 sin(θ2 − θ3) = d1 − d6 sin(θ5) sin(θ2 − θ3 + θ4)− d5 cos(θ2 − θ3 + θ4)− pz

(17)

Given
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px cos(θ1) + py sin(θ1) + d5 sin(θ2 − θ3 + θ4)− d6 sin(θ5) cos(θ2 − θ3 + θ4) = C
d1 − d6 sin(θ5) sin(θ2 − θ3 + θ4)− d5 cos(θ2 − θ3 + θ4)− pz = D

(18)

we obtain

C cos(θ2) + D sin(θ2) =
C2 + D2 + a2

2 − a3
2

2a2
= E (19)

Let
sinβ =

C√
C2 + D2

, cosβ =
D√

C2 + D2
, (20)

and then we have from triangular replacement the following:

sin(β+ θ2) =
E√

C2+D2

cos(β+ θ2) = ±
√

1 − E2/(C2 + D2)

θ2 = a tan 2(E,±
√

C2 + D2 − E2)− a tan 2(C, D)

(21)

When C2 + D2 − E2 ≥ 0, θ2 has a solution.
Compute θ3:
After solving θ3, compute θ2 − θ3:

θ2 − θ3 = a tan 2(D−a2 sin(θ2)
a3

, C−a2 cos(θ2)
a3

)

θ3 = θ2 − (θ2 − θ3)
(22)

Solving θ4:
θ4 = (θ2 − θ3 + θ4)− (θ2 − θ3) (23)

All joint angles have been solved. A total of eight groups of inverse solutions can be
solved, and a group of the most suitable solutions can be selected according to the size of
the angle spinor.

2.2. The Design of the Executive Mechanism

In this study, the mold cavity-sleeve structure was used for pear picking. The active
cutting mode will greatly increase the structural complexity of the end actuator, and the
mold cavity sleeve itself will occupy a larger volume. If the cutting device is added, the
volume and weight of the actuator will be increased. Therefore, a passive cutting mode
for which the end actuator cooperates with the robot arm to complete the picking action
was adopted to realize the miniaturization of the end-picker. By rational design of the
opening and closing mechanism above the end-picker and cooperating with the robot arm,
the crown pear stems can be cut. Figure 2 shows the overall assembly diagram of the
end-picker.

Figure 3a shows the three-dimensional structure of the blade. The cutting mechanism
of the end-picker designed for mold cavity picking is the key to separating pears from
stems. There are two connecting holes on both sides of the structure that are connected to
main body of the mold cavity. Two blades are arranged symmetrically, wherein opening
and closing are controlled by the steering engine. After the fruit enters the mold cavity, the
steering engine drives blades to clamp the stem and reset after picking is completed.
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Figure 3. End-picker assembly diagram: (a) blade; (b) mold cavity; (c) connecting mechanism;
(d) fruit-collecting mechanism; (e) transmission mechanism and assembly figure.

Figure 3b shows the mold cavity of the picker. The main body is cylindrical. The fruit
entrance and exit of the mold cavity is a connecting tube with an inner diameter of 100 mm.
After fruit enters from the inlet, it will directly enter the fruit-collecting tube from the outlet.
As long as the fruit enters the mold cavity, there will be no damage to the fruit due to the
robot arm not grasping it firmly. The bottom of the cavity of the picker is closed and exists
as a buffer structure in the internal structure. A slope channel is formed in the cavity with
foam and other buffering materials so that the fruit can be buffered and enter the collection
tube along the ramp. Therefore, the mold cavity-sleeve method can protect the fruit well
and avoid damage to the fruit during the picking process.
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Figure 3c shows the connection mechanism, which is used to connect the end-picker
and the end flange of the robot arm. The four mounting holes correspond to the four
threaded holes of the end flange of the robot arm.

Figure 3d shows the collecting mechanism. The diameter of the collecting tube is
100 mm. And the tube is made of rubber to prevent pears from being damaged by friction
with the tube inner wall during the collecting process. The deceleration mechanism is set
in the middle of the collecting tube. When the fruit passes through, its kinetic energy will
be reduced, thereby reducing the speed in the tube and the loss of fruit.

Figure 3e shows the transmission mechanism and photos illustrating the installation of
each element. The transmission mechanism mainly has three gears, for which the module
is 1, the number of teeth is 20, and the inner diameter of the hole is 6 mm. Two metal gears
are fixed at the two blade mounting holes and mesh with each other. The driving mode of
the steering gear is PWM control, which can accurately control the predetermined rotation
angle. It is mainly used to drive the meshing gear fixed on the blade and then drive the
opening and closing of the two blades for picking.

3. Target Detection and 3D Location
3.1. Dataset Construction

At present, there are few open-source pear datasets in the field of agricultural picking,
and especially the data of the natural unpicked state and fruit under a trellised orchard are
very scarce. The experimental dataset was collected by the orchard and the trellised pear
orchard environment built in the laboratory. The image format was JPEG with a resolution
of 3024 × 4032, and the video format was MP4 with a resolution of 4K. And the diversity
of the dataset was improved by collecting datasets in two scenes of natural light during the
day and filling light at night.

The visual equipment used for target detection and calibration in this paper was
an Intel RealSense D435i depth camera, which was composed of an rgb camera, infrared
camera, infrared transmitter, and IMU (depth resolution: 1280 × 720; RGB sensor resolution:
1920 × 1080).

The performance of deep learning models strongly depends on the quantity and
quality of input data. Many deep learning projects fail to obtain enough data in practical
applications, resulting in the underfitting of the model. In order to improve the model
generalization ability, that is, the ability to predict new data, data augmentation techniques
are widely used. Currently, supervised data augmentation schemes are commonly used,
which operate the dataset through known image transformation rules to make the model
learn more features and increase the richness of the dataset, thereby improving the per-
formance and stability of the model. The data augmentation methods used in this article
include (1) random cropping; (2) mirror image; (3) Gaussian noise; (4) grayscale image; and
(5) rotating 90◦.

Each image collected was manually screened and classificatorily annotated by a label
using LabelImg software (v1.8.1) as shown in Figure 4. In the annotation process, a rectangle
annotation method is used to draw the minimum bounding rectangle of the pear object in
the image, and the categorical attribute of the rectangle frame is set to “pear”. After the
annotation is completed, the generated xml format label file is automatically saved, and the
xml format text contains the height, width, and categorical information of the rectangular
box. According to the VOC2007 dataset format, the trellised pear orchard dataset was
made, wherein the dataset has a total of 2574 images, and the ratio of the training set to
validation set was set to 7:3.
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3.2. Yolo-v5s Detection Model

Experimental running environment: CPU: i7-12700H, 16GB running memory; GPU:
GTX 3060, 6 GB graphic memory; running system: Windows11; depth framework: PyTorch,
GPU1.10.1, with CUDA11.6 and cudnn7.6.5. Running software: Pycharm2021.3 community
edition, Python3.8.16.

Considering the experimental hardware platform conditions and model detection
accuracy, the choice of network depth and width is very important. Under the condition of
the minimum depth and width of the model, the YOLOv5s model is a very excellent object
detection model that can achieve high-precision object detection with a smaller memory
footprint and computing resources. The input layer of the YOLOv5s model is used to
receive the original image data, and the Backbone layer can extract feature information
from the original image, with the Neck layer being able to further compress the feature
information. Finally, object detection and classification are performed in the Detect layer.
The structure of the Yolov5s model used in this project is shown in Figure 5.
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Based on the collected dataset above and the model, the results of network training by
setting parameters are shown in the figure. Figure 6a shows the confusion matrix, which
is a commonly used method to evaluate the performance of classification models and is
usually used to calculate precision, recall, F1 score, and other indicators of classification
algorithms. The horizontal axis of the confusion matrix represents the real label, the vertical
axis represents the predicted label, and the value of each cell represents the number of
samples that the real label matches to the predicted label. The probability of the pears in
Figure 6a being correctly classified is 0.99. In Figure 6b, there is shown a certain relationship
between F1 score and confidence thresholds. F1 score can help to comprehensively consider
the performance of the model in the classification task, with neither too much emphasis



Agronomy 2024, 14, 80 12 of 30

on precision, nor too much emphasis on recall, so that the detection results of models are
more balanced and reliable. Typically, the top of the curve is close to 1, indicating that the
model performs well on the training dataset. Figure 6c shows the precision–confidence
threshold curve. The higher confidence is, the higher the precision of the classification
detection is. But, it is possible to miss some real samples with low probability of judgment.
Figure 6d shows the precision–recall curve (PR curve), which is also a commonly used
performance evaluation tool for evaluating the classification performance of the model in
multiple categories. As can be seen from the figure, the higher precision is, the lower recall
is. It is hoped that all categories can be detected as far as possible under the premise of
high precision. Therefore, the area of the mAP curve should be as close to 1 as possible.
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3.3. Hand–Eye System Calibration

In the process of camera calibration and hand–eye calibration, the transformation
relationship of four coordinate systems is involved, which are the pixel coordinate system,
image coordinate system, camera coordinate system, and world coordinate system, as
shown in Figure 7. For this study, the world coordinate system was the robot arm base
coordinate system.
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Figure 7. Coordinate transformation.

Hand–eye calibration mainly finds the relationship between the camera coordinate
system and the robot arm base coordinate system. By deriving the transformation matrix
between these two coordinate systems, the 3D coordinates of the detected target in the
camera coordinate system can be converted to the robot arm base coordinate system. There
are mainly two hand–eye calibration methods, as shown in Figure 8, which can be divided
into “eyes in hand” and “eye to hand”, depending on the setting position of the camera.
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Figure 8. Setting position of the camera. (a) Eyes in hand; (b) eye to hand.

For the “eyes to hand” method of hand-eye calibration, during the movement of
the robot arm, the camera coordinate system and the robot arm base coordinate system
are fixed, and the transformation matrix between them is also unchanged. Hand–eye
calibration is used to solve the transformation relationship between these two coordinate
systems, as shown in Figure 9.
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Figure 9. Calibration diagram.

We set the robot arm base coordinate system to {Base} and the camera coordinate
system to {Camera}. If the coordinates of several fixed points Pi under these two coordinate
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systems are known, the corresponding transformation matrix of these two coordinate
systems can be derived according to the coordinate transformation formula. The imple-
mentation steps are as follows:

(1) We set the coordinate of a spatial point Pi under {Base} to Pi(x′i , y′i, z′i) and the coordi-
nate under {Camera} to Pi(x′i , y′i, z′i). On the basis of the relationship between these
two coordinates and the homogeneous matrix form, the following formula can be
derived: 

r11xi + r12yi + r13zi + a = x′i
r21xi + r22yi + r33zi + b = y′i
r31xi + r32yi + r33zi + c = z′i

1 = 1

(24)

(2) We derive the pixel coordinates of the spatial point Pi by the object detection algorithm,
and the specific coordinates of the point in the camera coordinate system by combining
the camera internal parameters and the depth information of the depth camera. The
coordinates in the robot arm base coordinate system could be read out directly by the
robot arm teach pendant.

(3) We select twenty different points to fit the optimal results, solving the following param-
eters: r11, r12, r13, r21, r22, r23, r31, r32, r33, a, b, c, as well as listing the overdetermined
linear equations of these points in the camera coordinate system.

(4) We solve the overdetermined equations by the least squares method. We obtain the
rotation matrix and translation vector between the camera coordinate system and the
robot arm base coordinate system.

4. The Picking Task Planning of Multiple Robot Arms
4.1. The Task Allocation Method of Multiple Robot Arms

In this paper, the Monte Carlo method based on random probability was utilized to
solve the working space of a robot arm. Figure 10 shows the working space of a single
AUBO-i5 robot arm and the projection of the working space on xoz. The working space is
approximately a sphere, and the picking area is divided based on this.
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Figure 10. The working space of AUBO-i5.

It can be seen from Figure 11 that when the picking plane was 0.4009 m away from the
unmanned vehicle plane, the radius of the picking plane was 0.8703 m; when the picking
plane was 0.923 m away from the unmanned vehicle plane, the radius of the picking plane
was 0.4696 m. As picking height increases, the picking range will decrease. The projection
of the workspace on xoy, the circular area, decreased as the Z-axis absolute value increased.
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Figure 12. The analysis diagram of a picking range with multiple robot arms (Different colors 

represent different work areas). (a) the projection of a two-robot-arm workspace; (b) the projection 

Figure 11. The analysis diagram of a picking area with a single robot arm. (a) z = 0.4 m, x = 0.87 m;
(b) z = 0.55 m, x = 0.81 m; (c) z = 0.60 m, x = 0.80 m; (d) z = 0.71 m, x = 0.70 m; (e) z = 0.80 m, x = 0.61
m; (f) z = 0.92 m, x = 0.47 m.

The distance between robot arms was set to 1 m. The projection of a multiple robot
arm workspace on xoy can be obtained using the Monte Carlo method (Figure 12).
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Figure 12. The analysis diagram of a picking range with multiple robot arms (Different colors
represent different work areas). (a) the projection of a two-robot-arm workspace; (b) the projection of
a three-robot-arm workspace; (c) the projection of a four-robot-arm workspace; (d) the projection of a
six-robot-arm workspace.
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It can be seen from Figure 12 that for the trellised pear orchard environment, at
different heights from the unmanned vehicle plane, the picking area of each robot arm
was approximately a circle. As picking height increased, the overlap of the picking area
between adjacent robot arms was approximately an ellipse, wherein the area decreased as
picking height increased.

The height of an unmanned vehicle is 1.1 m. The robot arm performs picking oper-
ations on a picking plane 0.6 m away from the unmanned vehicle plane. The operating
area of the robotic arm is approximately a circle with a radius of 0.8 m. On the basis of
the solution of multiple robot arm workspace in the previous section, the picking area of a
robot arm was divided (Figure 13). Collaborative picking task allocation of multiple robotic
arms can be described as the problem of multiple robotic arms cooperating to complete
the picking task. The ultimate goal is to increase picking efficiency, and at the same time,
tending to divide the task volume of each robot arm evenly and improve the utilization
rate of each robot arm.
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Figure 13. The diagram of a picking area with multiple robot arms. (a) The picking area of a two-
robot-arm workspace; (b) the picking area of a three-robot-arm workspace; (c) the picking area of a
four-robot-arm workspace; (d) the picking area of a six-robot-arm workspace.

The collaborative picking task allocation model of multiple robotic arms is specifically
described as follows:

(1) A set of multiple robotic arms is represented by R = {R1, R2, R3, R4, . . . , Ra}, where
a represents the number of robot arms and Ri represents the robot arm, 1 ≤ i ≤ a. (2) The
picking area is represented by P = {P1, P2, P3, P4, . . . , Pb}, where b represents the number
of picking areas and Pj represents the picking sub-regions, 1 ≤ j ≤ b. (3) The task volume
in each sub-regions is represented by G = {G1, G2, G3, G4, . . . , Gb}, where Gk represents
the picking task volume in a sub-picking area k, 1 ≤ k ≤ b. (4) Each robot arm is set in
different positions, and the picking sub-regions are also different. The set of tasks that the
robot arm can pick is TRi = {TR1, TR2, TR3, TR4, . . . , TRa}, where i represents the i-th robot
arm, TRi ∈ G. The task process is shown in Figure 14.
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Firstly, the number of robot arms, the spacing between the robot arms, and the height
of the picking plane are determined. Then, the Monte Carlo method is utilized to analyze
the workspace of multiple robot arms and divide the picking area.

After the picking area is divided, the picking area that can only be picked by the only
robot arm is first matched with its corresponding one. Then, for other areas that can be
picked by two or more robot arms, first, we arrange them from small to large according to
the number of robot arms that can pick in this area. Then, we take them out in the order
from small to large and select the robot arm with the least task volume until all the areas
are allocated. This allocation strategy is mainly to distribute tasks evenly while avoiding
collision interference between multiple robotic arms. The purpose of the picking robot arms
in this area being taken out in order from small to large is to better balance the task volume
of robot arms. This is because as the allocation process gradually proceeds, the number
of robot arms corresponding to the picking area increases, and the algorithm can further
balance the robot arms with a large difference of task volume assigned at the last time. At
the same time, the picking area becomes smaller, and the probability of few fruits in the
area becomes greater. So, it will not cause the task volume of robot arm with the fewest
tasks to become much higher than that of other robot arms after the allocation. Taking
two robot arms as an example, due to uneven fruit distribution in most cases, when the
difference of the fruit number between P1 and P2 is large, according to the task allocation
strategy, the public picking area P3 will be assigned to the robot arm with a smaller task
volume, so that task volume of the two robot arms tends to be evenly allocated, with little
difference. The same method will be utilized in the common picking area of three, four,
and six robot arms.

4.2. Picking Sequence Optimization

In this paper, in a trellised pear orchard environment, the heights of pears were
basically the same. The Z-axis coordinate was ignored, and the multi-fruit picking path
optimization problem was converted into a two-dimensional traveling salesman problem.
The coordinates of each pear can be given by the depth camera, and then the distance
between each two pears can be obtained. The picking path optimization problem is to find
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the shortest path that can traverse all the fruits and does not repeat [32]. The TSP model of
picking path optimization can be expressed by a mathematical model.

The requirement of the picker design is to complete the most picking in the shortest
path. If the simple algorithm is used to pick across the region, the picking path will have
great redundancy, and it is more time-consuming to schedule the manipulator back and
forth. Therefore, we used the simulated annealing algorithm for optimization, to solve the
optimal picking sequence, to reduce the scheduling time of the robot arm, and to reduce
energy consumption at the same time.

We set the weighted graph as G = (V, E), and all pear coordinate-sets as V =
{1, 2, 3, . . . , n − 1, n}. E is a set of path weights or lengths, and Dij represents the distance
between each pear, where Dij > 0, i, j ∈ V.

xij =

{
1, (i, j) ∈ L
0, (i, j) /∈ L

(25)

L is the solution sequence. The TSP mathematical model can be expressed in the
following form:

mins =
n
∑

i=1

n
∑

j=1
dijxij

s.t.



n
∑

i=1
xij = 1, j ∈ V

n
∑

j=1
xij = 1, i ∈ V

n
∑

i,j∈S
xij ≤ |S| − 1, ∀S ⊆ V, 1 < |S| < n

(26)

The distance between adjacent fruits is set as dij. S is a non-empty subset of the vertex
set V, and |S| is the number of vertices of the set S in the weighted graph G.

This project utilized a simulated annealing algorithm that can avoid falling into local
optimality to a certain extent, in order to optimize the picking sequence. The algorithm
mainly consists of two parts: one is the Metropolis algorithm, and the other is the annealing
cooling process, which corresponds to the internal cycle and the external cycle, respectively.

The algorithm steps are as follows (Figure 15):
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(1) Initialize the temperature, and set the current temperature T = TS, the termination
temperature Tf, and the maximum number of iterations M. Randomly generate an initial

solution x and then calculate the objective function value f (x) =
n
∑

i=1

n
∑

j=1
dij. (2) At a certain

temperature, the current solution is perturbed by insertion, exchange, reversal, and other
ways to generate a new solution. (3) Solve the objective function value f (x′), and calculate
∆ f = f (x′)− f (x); if ∆ f < 0, then the new solution x′ is accepted. If not, the new solution
x′ is accepted according to the probability. (4) At a certain temperature T, the perturbation
and acceptance process is repeated for a certain number of times, that is, steps 2 and 3 are
repeated. (5) Lower the temperature T. (6) Repeat steps 2–5 until convergence conditions
are met.

The simulated annealing algorithm has three important parameters: initial temper-
ature Ts, internal loop iteration number M, and cooling coefficient α, which determine
the optimization capacity and comprehensive performance of the simulated annealing
algorithm, that is, finding a better solution quickly and accurately with less time cost. (The
above initial temperature does not represent the physical temperature in the real envi-
ronment, but instead a parameter that needs to be optimized in the simulated annealing
algorithm, which represents the base temperature in the optimization algorithm.)

In theory, the larger the initial temperature, the better. A low temperature causes the
problem of the algorithm not searching enough in the solution space, resulting in missing
the optimal solution in the optimizing process. But if the temperature is too high, it will
take a lot of time. The number of inner loop iterations also affects the search ability of
the algorithm in the solution space. The greater the number of iterations at the same
temperature, the greater the chance of finding the optimal solution, but the time cost is
often greatly increased. Then, a too large cooling coefficient easily leads to the loss of the
optimal solution, while a too small cooling coefficient greatly increases the algorithm’s
time cost. The termination temperature determines when the algorithm ends. Setting the
termination temperature too high will result in an insufficient search, so the termination
temperature is generally set to a smaller value.

(1) The adjustment of initial temperature Ts

Only the initial temperature was changed, and other parameters were kept constant
and assigned values. The number of iterations was set to 100, the cooling coefficient was 0.9,
and the end temperature was 0.02. Twelve groups of temperatures were selected, and the
simulated annealing program was run 10 times at each temperature to reduce the accidental
error. Table 2 shows the data of the optimization process.

Table 2. Program optimization at 1000 degrees centigrade.

Ts = 1000 Traversal Distance
Optimized (m) Running Time (s) Cooling Iteration Times

1 18.7174 4.1342 32.0000
2 20.6193 3.8558 21.0000
3 20.9443 3.4763 9.0000
4 19.1814 4.1061 29.0000
5 19.9797 3.9653 23.0000
6 20.3760 4.2626 32.0000
7 20.4530 4.3658 36.0000
8 21.6306 3.8912 21.0000
9 20.0824 3.9527 23.0000
10 19.6808 4.2147 31.0000

MIN 18.7174 3.4763 9.0000
AVG 20.1665 4.0225 25.7000

Standard deviation 0.8451 0.2546 7.9029

The average traversal distance and the minimum value at each temperature, as well
as the standard deviation, were counted to generate the line chart (Figure 16). The blue
line is the average traversal distance at each temperature, which was utilized to evaluate
the overall optimization performance of the algorithm. The smaller the average traversal
distance, the better the performance of the algorithm at that temperature. The yellow
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line represents the optimized minimum value at each temperature, which represents the
ability to find the optimal solution at each set of temperatures. The smaller the minimum
value, the stronger mining ability of the algorithm at that temperature. The green line
represents the standard deviation of each set of data, which was utilized to judge the
degree of discreteness of a set of data. If the standard deviation was larger, it means that
the set of data fluctuated greatly, and the performance of the algorithm was unstable.
The abscissa represents the temperature of each group, and the ordinate represents the
corresponding distance at a certain temperature. According to Figure 16, when the initial
temperature was 100 ◦C, the average traversal distance and the minimum distance were
the largest, indicating that the performance of the algorithm was poor. As the temperature
increased, the average traversal distance and the minimum distance decreased. After
the initial temperature reached 1500 ◦C, the decrease in amplitude of both slowed down
as the initial temperature increased. After the initial temperature reached 3000 ◦C, the
average traversal distance and minimum distance remained basically unchanged, and
the algorithm performance tended to be stable. At the same time, it can be seen that the
standard deviation fluctuated up and down at the beginning and then decreased to zero at
the end, indicating that the algorithm optimization performance became more stable. In
summary, 3000 ◦C was selected as the initial temperature of the algorithm to ensure the
performance and reduce the waste of time.
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(2) The adjustment of the number of inner loop iteration M

Only the iteration number of inner loop was changed, and other parameters were
kept constant and assigned. The initial temperature was set to 3000, the cooling coefficient
was 0.9, and the end temperature was 0.02. Twelve groups of iteration numbers were
selected, and the simulated annealing program was run 10 times at each iteration number
to reduce the accidental error (Table 3).

Table 3. Program optimization under 100 loop times.

M = 100 Traversal Distance
Optimized (m) Running Time (s) Cooling Iteration Times

1 16.3104 5.8098 83
2 17.5659 7.2418 119
3 16.2374 4.2802 32
4 16.3471 5.5327 60
5 16.8163 7.1329 122
6 16.5062 8.8083 171
7 16.334 6.6753 108
8 17.3419 7.0707 122
9 16.7095 8.8845 178
10 16.8789 8.5171 166

MIN 16.2374 4.2802 32
AVG 16.70476 6.99533 116.1

Standard deviation 0.4557 1.5009 48.0681
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The average traversal distance, minimum value, and standard deviation under each
internal iteration number were counted, and the trend line chart was drawn. When the number
of internal iterations was too small, the optimization ability of the algorithm was limited, and
the optimization effect of the average traversal distance was not obvious (Figure 17). With the
increase in the number of internal iterations, the average traversal distance and the optimized
minimum distance both decreased, indicating that the optimization ability of the algorithm
was enhanced with the increase in the number of internal iterations. As the number of internal
iterations increased, both the average traversal distance and the optimal minimum distance
decreased, indicating that the optimization ability of the algorithm increased as the number of
internal iterations increased. When the number of iterations reached 150, the performance of
the algorithm almost did not improve with the increase in the iteration numbers. Therefore,
the algorithm was already at a relatively optimal level at this time, and further increasing the
number of internal iterations would only increase the time cost. In summary, the number of
inner iterations was chosen to be 150.
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(3) The adjustment of cooling coefficient α

Only the cooling coefficient was changed, and other parameters were kept constant and
assigned. The initial temperature was set to 3000, the iteration number of each temperature
was 150, and the end temperature was 0.02. Twelve groups of cooling coefficient were
selected, and the simulated annealing program was run 10 times at each cooling coefficient
to reduce the accidental error (Table 4).

Table 4. Program optimization under 0.99 cooling coefficient.

α = 0.99 Traversal Distance
Optimized (m) Running Time (s) Cooling Iteration

Times

1 16.2242 8.1109 107
2 16.2374 5.6527 55
3 16.2242 5.0363 43
4 16.3104 9.1028 133
5 16.2910 8.3292 113
6 16.2242 6.4719 71
7 16.2374 5.3622 51
8 16.2374 4.8088 37
9 16.2374 3.575 10
10 16.4018 7.1986 89

MIN 16.2242 3.575 10
AVG 16.26254 6.36484 70.9

Standard deviation 0.0571 1.7823 38.7941
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The average traversal distance and the minimum value, as well as the standard devia-
tion, at each iteration number were counted to generate the trend line chart (Figure 18). The
blue line is the average traversal distance at each temperature. The yellow line represents
the optimized minimum value at each temperature. The green line represents the standard
deviation of each set of data. The abscissa represents the cooling coefficient of each group,
and the ordinate represents the corresponding distance at a certain cooling coefficient.
According to Figure 18, with the increase in the cooling coefficient, the optimization ability
of the algorithm became better. When the cooling coefficient reached 0.99, with the increase
in the cooling coefficient, the optimized effect of the simulated annealing algorithm was
not obvious, and the optimized average traversal distance and the optimized minimum
value of each group tended to be consistent. Therefore, 0.99 was an appropriate parameter
value for this algorithm. In summary, the cooling coefficient of the algorithm was 0.99.
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Taking an area as an example, 20 points were randomly generated within the picking
range of a robot arm to simulate the distribution of pears on a trellis. Since the impact
in the vertical direction is small, only the coordinate information in X and Y directions
was considered. Figure 19 separately shows that the randomly traversed path before
optimization was disorderly and the picking path after optimization formed a neat loop,
for which the optimization effect was obvious (Figure 19).
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Figure 19. Comparison before and after the optimization of the simulated annealing algorithm.

The total number of iterations was 300. As the number of iterations increased, the total
path length gradually decreased. In the range of 0–50 times, the curve was steeper, and the
convergence speed was faster. At this time, the optimization effect was better. In the range
of 50–120 times, the curve was a straight line, and the algorithm fell into a local optimum.
As the number of iterations increased, the perturbation caused the solution to jump out of
the current local optimum. After the number of iterations reached 240, a better result was
achieved (Figure 20).
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5. Picking Experiment
5.1. Picking Experiment with Different End-Pickers

In this experiment, different numbers of fruits were set to test the picking effect of
different end-pickers. Each set of fruits had the same arrangement position, the same
picking sequence, and the same number. The picking experiment was carried out using
the gripper and the pick-place integrated end-picker. In addition, all the fruits in this
experiment were models, so all the cutting action of fruit stems was a simulation. The
picking pose of the end-picker was vertically up (Figure 21b).
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Figure 21. Picking diagram. (a) Initial pose; (b) target pose.

The binocular camera at the bottom of the robot arm obtained the three-dimensional
spatial coordinates of the fruit. After the coordinate transformation, the recognized fruit
coordinates were transmitted to the robot arm. The flexible gripper picking process is
shown in Figure 22. The pick-place integrated end-picker moved from the initial pose
(Figure 23a) to the lower part of target position (Figure 23b), and it continued to move to
the target position (Figure 23c). The mechanical arm carried the end-picker close to the
fruit, setting the fruit into the cavity. At this time, the steering engine drove the cutting
mechanism to close through the reduction gear and clamp the pear stem (Figure 23d).
Then, the robot arm drove the cutting mechanism to move down and cut off the pear stem,
and the fruit from the cavity fell into the collection tube in the direction of the arrow, and
through the collection tube entered the storage basket, which completed the picking and
collection (Figure 23e). Finally, after completing a picking task, the cutting mechanism was
driven to open by the steering engine (Figure 23f).
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Figure 22. The process of flexible grippers from picking fruits to placing them in the basket. (a) Reach-
ing below the target position; (b) gripper open; (c) reaching the target location; (d) gripper closed;
(e) putting the pear in the basket.
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Different numbers of pears were randomly placed within the picking range of the
robot arm. The picking experiments of two different end-pickers are shown in Table 5
below:
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Table 5. Picking experimental data statistics.

Fruit Number
Picking Time (s)

Percent (%)
Picking Failure Number

Grippers Pick-Place
Integrated Grippers Pick-Place

Integrated

2 35.32 21.96 37.83 0 0
4 69.65 45.59 34.54 1 1
6 97.65 61.28 37.24 2 1
8 138.35 81.09 41.39 2 0
10 165.94 111.63 32.73 3 2

It can be seen from the table that when picking with flexible claws, the picking time
of each fruit was about 16 s, while the pick-place integrated end-picker took about 10 s
to pick one fruit. The efficiency of the pick-place integrated end-picker was increased by
approximately 37%. At the same time, the probability of picking failure using a flexible
gripper was higher than that of the pick-place integrated end-picker. When the number
of fruits was ten, the number of failed gripper pickings was three, for which the failure
probability was 30%. Conversely, the failure probability of the integrated end-picker was
only 20%. In several sets of experiments, the overall success probability of the integrated
end-picker was about 86.67%, while that of the gripper was only 73.33%.

5.2. Comparison before and after Picking Sequence Optimization

In this experiment, different numbers of fruits were set to test the picking effect of
the single robot arm system, and the picking sequence was optimized by the simulated
annealing algorithm. The experiment used the integrated end-picker, for which each set of
fruits was randomly distributed within the picking range of the robot arm, and the fruit
distribution position was consistent before and after optimization. The picking experiment
result was as shown in Table 6 below:

Table 6. Experiment result before and after optimization.

Fruit
Number

Picking Time (s)
Percent (%)

Picking Failure Number

Random
Traversal

Simulated
Annealing

Random
Traversal

Simulated
Annealing

2 11.94 12.14 −1.68 0 0
4 28.65 23.51 17.94 0 1
6 41.59 31.24 24.89 1 0
8 50.98 39.61 22.30 2 2
10 63.43 46.58 26.56 2 1

It can be seen from the table that picking efficiency was improved by about 20% after
the optimization of the simulated annealing algorithm, for which the improvement effi-
ciency also increased with the number of fruits. The picking route was messy and lengthy
before optimization, and the traversal distance was greatly reduced after optimization by
the simulated annealing algorithm (Figure 24).
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5.3. Simulation of Task Allocation for Multiple Robotic Arms

We randomly generated 5, 10, 20, 30, 40, and 50 points in the picking plane area of the
two robot arms to simulate the growth distribution position of pears, and we counted the
number of fruits falling into the three areas and then followed the proposed task allocation
method of multi robotic arms allocating picking tasks to corresponding robot arms. Finally,
we counted the task volume of each robot arm. From Table 7, it can be seen from the six
sets of data that the task allocation method proposed in this paper was able to effectively
improve the utilization rate of a robot arm and make the task volume of the multi-machine
system tend to be evenly distributed.

Table 7. Task allocation for two robot arms.

Group
Fruits Number in Region Task Volume of the Robotic Arm

P1 P2 P3 R1 R2

5 2 0 3 2 3
10 5 3 2 5 5
20 5 12 3 8 12
30 17 9 4 17 13
40 21 14 5 21 19
50 26 16 8 26 24

We randomly generated 10, 20, 30, 40, 50, and 60 points in the working area of three
robot arms to simulate the growth distribution position of pears, and then we counted the
number of fruits falling into the seven areas, and finally, we allocated tasks. It can be seen
from Table 8 that for the three-robot-arm system, taking the number of fruits as 40 as an
example, after using the task allocation method proposed in this article, the task volume of
the three robot arms were 12, 14, and 14 each. The minimum and maximum of robot arm
task volume differed by two fruits.

Table 8. Task allocation for three robot arms.

Group
Fruit Number in the Region Task Volume of the Robotic Arm

P1 P2 P3 P4 P5 P6 P7 R1 R2 R3

10 3 1 0 1 2 1 2 3 4 3
20 4 3 5 1 2 2 3 6 6 8
30 4 6 7 4 3 2 4 12 9 9
40 8 9 7 4 3 4 5 12 14 14
50 9 7 11 8 5 7 3 16 18 16
60 11 13 10 6 6 7 7 17 20 23

In summary, the task allocation method for the multiple robotic arm system proposed
in this paper is effective and avoids the unreasonable task allocation that causes some of
the robot arms to have a particularly large task volume and work all the time, while other
robot arms have a particularly small task volume and a short working time, improving the
utilization rate of each robot arm and the overall picking efficiency.

5.4. Simulation of Two Robot Arms

We exported the URDF file of the robot arm and the STL model in SOLIDWORKS,
and we imported the file into Simulink. The two robot arms were 100 cm apart, and the
visualization is shown in Figure 25a.
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A total of 4, 6, 8, and 10 points were randomly generated in the picking range of
the two robot arms to simulate the position of the pear, and the proposed task allocation
method was used to allocate the tasks of the two robot arms. The manipulator directly
moved to the next target point after reaching a target point from the initial pose, so only the
movement process time of the manipulator was recorded. The movement time was read
from the oscilloscope as shown in Figure 25b,c, and the time data are shown in Table 9.

Table 9. Traverse time of two robot arms.

Group
Random Traversal (s) Simulated Annealing (s)

R1 R2
Overall
System R1 R2

Overall
System

4 13.854 11.651 13.854 10.533 9.032 10.533
6 15.217 18.965 18.965 10.657 14.367 14.367
8 21.717 25.361 25.361 16.014 18.549 18.549
10 30.941 25.758 30.941 23.187 19.552 23.187

As can be seen from Table 9, there was little difference in picking time between the
two robot arms in each group after task assignment, and the picking time of the overall
system was determined by the robot arm that spent the longest time. The time of traversing
all points was reduced by about 20% by simulated annealing.

6. Conclusions

In view of the current inefficient work of picking robots, this paper studied the
collaborative picking of multiple robotic arms in a trellised pear orchard environment to
improve the picking efficiency of the system. The physical characteristics of pears were
studied through experiments, and the structural design of the end-picker was carried out
based on this. We constructed the private dataset of pears, and finally, we output the
three-dimensional coordinates of the target fruit through the Yolo-v5s detection model
combined with the depth camera and carried out the object detection through the trained
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weight, and following this, we completed the object detection task accurately. The camera
calibration and hand–eye calibration were completed, and the images of the calibration
plate at different angles and distances were collected with the camera. After inputting into
the Matlab calibration toolbox, the camera’s distortion coefficient and internal parameter
matrix were obtained, for which the camera calibration was completed. Through the
relationship between two fixed coordinate systems, twenty points were selected to form a
hyperparameter equation, and finally, the hand–eye calibration matrix was obtained by
fitting the results using the least squares method. The conversion from the pixel coordinate
system to the robot arm base coordinate system was completed with good accuracy.

A task allocation method for a multiple robotic arm system was proposed, and the
picking sequence was optimized through the simulated annealing algorithm. The several
key parameters of the simulated annealing algorithm on the algorithm performance were
studied, and the optimal parameter values were selected. After optimization, the picking
efficiency was clearly improved. The final result was as follows: initial temperature
Ts = 3000 ◦C, internal loop iteration number M = 150, and cooling coefficient α = 0.99.

The experimental results showed that the picking efficiency of the designed pick-place
integrated end-picker is higher than that of the traditional gripper. The success rate of
the picking mechanism designed in this paper was 86.67%, which is about 30% higher
than that of the claw-gripper. The task allocation method proposed in this paper can
make the task volume of a multiple-robotic-arm system tend to be evenly divided, and it
obviously improved the utilization rate of each robot arm. Through the simulated annealing
algorithm, compared with random traversal, the efficiency of the optimized picking path
was increased by about 20%. Moreover, with the increase in fruit number, the efficiency
showed an increasing trend.

However, this paper only focused on the structural design of the end-picker, and it did
not conduct real experiments under different lighting conditions. In the next step, we will
further develop the vision system suitable for a wider range of application scenarios and
develop supporting devices that can reduce recognition interference such as light source
occlusion, so as to further improve the accuracy rate of the target detection system and
the success rate of the picking system. In addition, on the basis of studying the agronomic
characteristics and the damage mechanism of fruits, we will further improve the mechanical
structure and matching algorithm of the picker to achieve a better picking effect, which is
also the next goal of our research.
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