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Abstract: The main purpose of the paper is to highlight the impact of foliar fertilization during the
various growth stages of winter wheat and its role in achieving high-quality and superior production.
Foliar fertilizers play a crucial role in calibrating and forming active growth intervals correlated
with productivity factors. The research was conducted over a two-year period using the Andrada
winter wheat variety. It involved the application of four different foliar fertilizers: basic mineral
fertilization, FoliMAX Orange (two treatments and three treatments), FoliMAX CerealsMIX (two
treatments and three treatments), and Microfert U (three treatments). Depending on the treatment,
two or three applications of foliar with foliar fertilizers were carried out at various stages of winter
wheat development, including pre-flowering and grain formation. The research method used to
record physiological parameters was non-destructive (the leaves were not detached from the plant)
and was based on the use of the CIRAS-3 foliar gas analyzer, which simultaneously determines several
physiological and environmental indicators. As an indicator read by the device, photosynthesis was
chosen for leaf temperature and leaf transpiration, correlated with production and quality indices.
By applying the foliar fertilizer treatments to the wheat culture, we managed to increase production
and improve the quality. After using different foliar fertilizers, the assimilation and physiological
parameters had higher values of over 30 µmolm−2·s−1. Foliar fertilization applied to the winter
wheat variety resulted in an average production increase between 450 and 765 kg·ha−1 and quality
indices with a protein percentage between 11.5 and 12.6%, gluten content between 21.5 to 24.0% and
the Zeleny index between 29.0 and 39.0%, and the mass of one thousand grains was between 48.0
and 50.5 g.

Keywords: wheat; foliar fertilizer; yield; assimilation; quality indices

1. Introduction

Wheat (Triticum aestivum L.) is one of the most adaptable crops under different en-
vironmental conditions, with very wide ecological plasticity to pedo-climatic conditions,
occupying the largest agricultural acreages [1,2] and benefits from mechanisms of biological
performance in adaptation to soil conditions [3].

Under severe drought conditions, photosynthetic function significantly diminishes
to a great extent due to the deterioration of the photosynthetic apparatus [4], but when
the drought does not persist for a long period of time, there are even reduced water
reserves in the soil, applying foliar fertilization allow mechanisms to adapt and avoid tissue
dehydration [5].
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Current wheat breeding programs align with the rate of yield growth required to
achieve the goal of doubling agricultural production [6,7]. Agricultural research and related
sciences aim to minimize or eliminate other stress factors, such as extreme temperature
fluctuations during critical growth stages (such as anthesis and grain filling phases), which
cause significant yield losses in most wheat-growing areas [8], thus limiting production
potential [9]. The fight against these stress factors is complex, however, due to the way
plants react to various elements and the diversity of response pathways. It also triggers
their genetic determination [10–12].

The choice of varieties depends on the area; both macro- and micronutrients applied
to soil and foliar contribute to the proper nutrition of plants [13–16]. The pedoclimatic
conditions associated with applied technology are decisive factors in the success of the
wheat culture, both in terms of productivity and quantity [17,18]. Plant photosynthesis
is one of the main links in the carbon circuit through which plant-bound CO2 from the
atmosphere [19]. At maturity, wheat performs mostly photosynthesis on the standard leaf
and stem, this being the main source of assimilation of cereals during grain filling [20,21].

Foliar fertilization in the case of wheat crops is important for providing nutrients
directly to the plants through the leaves, providing a quick and effective solution to correct
nutritional deficiencies and stimulate plant growth, especially at critical moments of the
development cycle [22–24].

Also, the applicability of foliar mulches is very wide, from the moment when the
plants cover the ground until they are close to physiological maturity. In optimizing
fertilization strategies, foliar application with different types of micro and macro elements
has a positive effect on plant physiological parameters and growth yield of cereal crops and
reduces soil pollution [25–27]. Grain filling in cereals is an important measure dependent
on photosynthesis and environmental conditions after flowering, while storage capacity is
established in the pre-flowering period, and this can be the deciding factor for yield [28].

Flag leaf physiological, morphological, and biochemical traits play a crucial role in
determining grain yield and crop biomass [29]. Foliar fertilization in wheat crops is an
important strategy for the direct supply of plant nutrients through foliar application at
different vegetative stages. It serves as a quick and effective solution to correct nutrient
deficiencies [30,31] and to stimulate plant growth; applying fertilizer [32] in the later
stages of growth of wheat is an effective mitigation of drought stress [33], improving grain
filling [34].

As found in one study, in cereals under conditions of severe drought or heat [35],
photosynthesis is reduced in intensity depending on the species and the genotype, and
the filling of the grains depends a lot on the remobilization of reserves from the stem to
the grains. Through various studies, [36] found that as the grains fill the ear, the weight
of the stalks decreases. High production capacity is often associated with a lower grain
protein content [37]. The protein is the main component that determines the baking quality
of wheat [38].

From the analysis of the average values obtained, it results that the additional fertil-
ization ensures an increase in production as well as an increase in the average values of
the other components of the yield or of the qualitative indices, also conferring a smaller
variation of the values of these characters [39,40]. Furthermore, the correct management
of fertilization is essential to guarantee the correct milling of wheat kernels [41–43], opti-
mal flour quality [44–46], improved dough rheology, and best bread and bakery product
characteristics [47,48].

Applying foliar fertilizer treatments to wheat culture is essential for increasing as-
similation, plant growth, plant mass, quality, and yield. The main purpose of the paper
is to identify the important physiological segments in the yield and quality of the winter
wheat variety Andrada. Foliar fertilizers have the role of calibrating and forming the active
growth intervals correlated with the productivity elements. Promoting and identifying
the physiological mechanisms is useful in appreciating the biological development of
winter wheat.



Agronomy 2024, 14, 73 3 of 15

2. Materials and Methods
2.1. Biological Materials

The studies were conducted during the periods 2015–2016 and 2016–2017 using the
Andrada winter wheat variety. This variety originates from two local genotypes, Dropia
and Line T 57–90. It features an awned red spike measuring 9–11 cm, with large oval
red grains.

The plant height ranges from 80 to 95 cm, with a thousand grain weight (TGW)
ranging from 46 to 50 g. The variety exhibits reduced tillering capacity, between 1.5 and
2.5 tillers plant−1, good winter resistance, excellent lodging resistance, and a very favorable
vegetation period lasting between 265 and 270 days. The baking quality characteristics of
the Andrada winter wheat variety notably reflect a protein content of 12 to 13%, exceptional
gluten quality indicated by the gluten index value determined by the Perten method
(76–100%), and bread volume with an average value of 520 cm3 [49].

2.2. Research Methods

The experiments were conducted at the Agricultural Research and Development Sta-
tion Turda (ARDS Turda), Romania, located at approximately 46◦35′ latitude and 23◦47′

longitude, in the physical-geographical unit of the Transylvanian Plain. The field exper-
iment was organized on a Phaeozem soil type [50], with neutral pH (between 6.8–7.2;
using potentiometric method in distilled water), clay soil (clay between 51.8–55.5%), with
a humus content between 2.20–3.12% (using the Walkley–Black method), total nitrogen
between 0.162–0.124% (using the Kjeldhal method), phosphorus between 0.9–5 ppm and
well supplied with potassium between 126–140 ppm (using the Egner–Riehm–Domingo
extraction method). A characteristic of this type of soil is rapid settlement upon repeated
passage of heavy aggregates or if agricultural work is carried out in conditions of high
humidity. The soil samples for chemical analysis were collected at a depth of 0–20 cm.

The precursor plant is soybean. The experiment was based on a bifactorial type
A × B − R: 6 × 2 − 3, according to the method of subdivided plots, the size of the experi-
mental plots being 48 m2 (4 m wide × 12 m long) × 6 plots per variant × 3 repetitions, and
the total experimental area of 1288 m2.

Stages of application of foliar fertilizers are the following:

1. Elongation of the straw, 3–4 internodes (BBCH 37–39; Biologische Bundesanstalt,
Bundessortenamt und Chemische Industrie);

2. The appearance of the bellows—the beginning of the spanking (BBCH 51–53);
3. Growing and filling grains (BBCH 71–73).

The experiments were carried out for two years with six variants:

V1—Basic Mineral Fertilization (control-cv) (BMF);
V2—BMF + 2 treatments (1 + 2) with Folimax Orange (FO);
V3—BMF + 3 treatments (1 + 2 + 3) with Folimax Orange (FO);
V4—BMF + 2 treatments (1 + 2) with Folimax CerealsMIX (FCM);
V5—BMF + 3 treatments (1 + 2 + 3) with Folimax CerealsMIX (FCM);
V6—BMF + 3 treatments (1 + 2 + 3) with Microfert U (MU).

Foliar fertilization (extra-radicular) with macro and microelements complements root
nutrition, being an additional way of winter wheat nutrition that stimulates the elements
of productivity and improves the quality of the harvest.

These fertilizers are applied foliarly (on the leaves and stems of the plants), and this is
where the differentiation occurs: although the amount of nutrients absorbed is not very
high, the degree of absorption is very high (it can even reach 100%), especially compared to
fertilizers traditional, administered at ground level.

The latter are generally solid and need water (rain or irrigation) to penetrate the soil
and be absorbed by plants through the root system. The applicability of foliar fertilizers is
very wide, especially in recent years, with large areas of wheat being treated in this way
in Romania.
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The number of treatments and application phenophases were different, thus resulting
in five gradations and a control variant in which there was only mineral fertilization. It
should also be noted that all foliar fertilizations were carried out on the same mineral
fertilization soil as in the control variant (Table 1).

Table 1. Foliar fertilizers used on winter wheat crop.

No Trade Name, Content Dose kg, L ha−1 per 250 L of Water

1 Folimax Orange (FO)—NPK 15-45-10 + micro 2.0 and 5.0 kg·ha−1 With
phytosanitary treatment

2
Folimax CerealsMIX (FC)—8% N + 2% MgO +
3% B + 3% Cu + 4% Mn + 3% Zn + 46% SO3 +
micro

1.0 and 2.0 kg·ha−1 With
phytosanitary treatment

3 MICROFERT U (MU)—NPK—90:30:30 g·L−1 +
Mg + S, B, Co, Cu, Fe, Mn, Mo, Zn

3.0 and 5.0 L·ha−1 With
phytosanitary treatment

2.3. Technology Used in the Experimental Site

Basic fertilization over the two years was carried out with an ensured foundation
of 40 kg·ha−1 of nitrogen and phosphorus, simultaneously with sowing (N20P20K0—
200 kg·ha−1), and ammonium nitrate providing an additional 60 kg·ha−1 of nitrogen
was applied in spring, at the onset of vegetation, in the first week of March.

The experimental plots were established at the optimal sowing date for winter wheat
(the second half of October) at a seeding density of 550 seeds m−2. Basic fertilization
was applied before plant sowing at a rate of N50P50K0 kg ha−1. A single crop protection
treatment (herbicide + insecticide + fungicide) was applied to combat weeds, diseases, and
pests during the stem elongation stage.

Over the two years, plowing was performed at a depth of 30 cm using the reversible
Khun plow and the Gaspardo rotary harrow, achieving thorough soil processing. Sow-
ing was done simultaneously with autumn fertilization, under optimal conditions for
winter wheat sowing using the Directa 400 seeding machine, reducing soil compaction
by minimizing passes over the surface. The seed incorporation depth was 3–5 cm, with
row spacing of 18 cm, ensuring a density of 550 plants m−2, and the seed quantity was
280 kg ha−1. Harvesting took place in the first week of July using the Wintersteiger experi-
mental plot combined.

In the conditions of the Transylvanian Plain, cereal crops are often attacked by diseases
and pests, and enhanced attention is given from germination to emergence, providing
preventive phytosanitary protection. Treatments were carried out considering meteorologi-
cal conditions: air temperature and humidity, soil moisture, and precipitation. Herbicide
application and treatments against pathogens and pests were done at the end of tiller-
ing (BBCH 28–30) when the infestation level and weed spectrum were high, following a
complex scheme using chemicals with minimal environmental impact. Herbicide treat-
ments were applied postemergence in the late tillering stage at the appearance of the
first internode, targeting a broad spectrum of dicotyledonous weeds in the rosette stage
with 2–4 leaves or more advanced. Weed infestation at the time of treatment averaged
around 15–20%, with predominant weed species in the untreated control being Amaranthus
retroflexus, Chenopodium album, Convolvulus arvensis, Veronica heteriofolia, Setaria glauca, Delph-
nium consolida, Polygonum convolvulus, Polygonum aviculare, Veronica heteriofolia, Anagallis
arvensis. Disease (Erysiphe graminis, Fusarium spp., Puccinia spp., Septoria tritici) and pest
(Eurygaster integriceps, Lema melanopa) control was ensured preventively by adhering to
integrated control measures (crop rotation, seed treatment with fungicides before sowing)
and curatively by conducting treatments in two vegetation stages—at the end of tillering
and the booting phase (Table 2).
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Table 2. Treatments used in the two years of winter wheat cultivation.

Application Phase Destination Product Name Dose, L ha−1 Active Substance

Treatment 1: Late Tilling phase
(BBCH 28–30)

Herbicide

Sekator Progres OD 0.15
amidosulfuron 100 g L−1 +
iodosulfuron-metil-Na 25 g L−1 +
mefenpyr dietil 250 g L−1

Dicopur 1.0 600 g L−1 acid 2.4 D from
dimethylamine salt

Fungicides Falcon 460 EC 0.6
tebuconazol 167 g L−1 +
triadimenol 43 g L−1 +
spiroxamina 250 g L−1

Isecticide Biscaya 240 OD 0.2 240 g L−1 tiacloprid

Growth
Regulator Stabilan 750 SL 1.4 clormequat chloride 750 g L−1

Adjuvant Trend 0.25 Isodecyl ethoxylate alcohol: 90%

Treatment 2: Late Tilling phase
(BBCH 51–53)

Isecticide Calypso 480 SC 0.1 480 g L−1 tiacloprid

Fungicides Nativo 300 SC 1.0 clormequat chloride 750 g L−1

2.4. Methods of Analysis and Processing of Experimental Data

Physiological parameters were measured on the standard leaf after the last treatment
with foliar fertilizers in June, and assimilation (A—µmol CO2 m−2·s−1) transpiration rate
(T—µmolm−2·s−1), leaf temperature (Tleaf) related to production and quality indices. The
duration of the measurement was based on the duration of adaptation of the tissues in the
assimilation chamber. The research method used was non-destructive (the leaves were not
detached from the plant) and was based on the use of the CIRAS-3 foliar gas analyzer, which
simultaneously determines several physiological and environmental. The determinations
were carried out under semi-controlled conditions for normal CO2 (390 µmolm−2·s−1) and
of constant average ambient temperature at 27 ◦C. The measurements of the physiological
parameters were carried out on the standard leaf after 20 days from the last treatment with
foliar fertilizers in June, taking 25 readings per plant, for which the average was calculated,
taking 9 winter wheat plants on each variant, at all 3 repetitions [51].

The study employed the ANOVA (analysis of variance) [52], for analysis, allowing for
the execution of Least Significant Difference (LSD) tests at significance levels of 5%, 1%,
and 0.1%. This approach facilitated the examination of relationships between experimental
parameters and observations, as well as the execution of multiple comparisons using
Fisher’s LSD test, ultimately assessing the influence of fertilization on the biological growth
of plants. Additionally, quality indices were determined using the Inframatic 8800 NIR
grain analyzer.

3. Results
3.1. Climatic Conditions and Impact on Winter Wheat Cultivation Technology

Regarding the thermal regime (Figure 1), the average annual temperatures in the
study period had values higher than the multiannual average, a fact that underlines the
irreversible trend of global warming. This phenomenon is much more obvious if we notice
that the average temperatures in the first year of the study are around 10.86 ◦C, and in the
second, 9.58 ◦C, being higher than the average of 60 years ago when it was only 9.1 ◦C
with a deviation of +1.7 ◦C from the multiannual average; 2016 is characterized as a warm
year. The year 2017 started with a January colder than the multiannual average (deviation—
3.3 ◦C), followed by two warm months (February and March). The months of April, May,
and July were characterized as normal from a thermal point of view, followed by a summer
with warm June, from a thermal point of view [53].
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Figure 1. The monthly temperatures recorded at ARDS Turda.

Regarding the rainfall regime, during the study period much larger oscillations of
precipitation were observed, from excessively rainy to normal and excessively dry to
normal. The amounts of precipitation that fell in the two years were much higher, exceeding
by more than 200 mm the multiannual average of the last 60 years, which is 510.1 mm. Even
if these years were excessively rainy, they compensated for this with the temperatures and
ensured sufficient water in the soil, with the plant going through some of the most important
phenophases (the appearance of the spike primordia—which coincides with the formation
of the second internode, the bladder phase, anthesis, the formation and filling of the grains),
determining a good development of the culture in the growth phases, development, and
accumulation in the grain (Figure 2). Regarding the precipitation recorded in 2017, January
was excessively dry, followed by a normal February. The spring months, March and April,
were above the multiannual average, being rainy months; May, with little precipitation, was
characterized as normal from a pluviometric point of view. The summer month, June, was
deficient in terms of precipitation, but the month of July exceeded the multi-year average,
being characterized as very rainy. Under these conditions, the rain occurred normally. In
the process of straw elongation, normal internodes were formed, which was reflected in
the normal tall height of the plants, and when the grain was collected in June, the lack
of precipitation in 2017 caused lower biomass accumulation and higher production in
2016. The characterization of the thermal and pluviometric regime for the winter wheat
crop in both years was based on the primary data recorded by the Turda Meteorological
Station [54].

3.2. Interaction Results between Fertilization, Physiological Parameters, Yield and Quality Indices
in Winter Wheat

Data processing indicates that foliar fertilization had a significant positive impact on
yield and physiological parameters. The results obtained after the analysis of variance show
a significant interaction at the level of assimilation, with an F value of 3.33 and p < 0.05. In
addition, leaf temperature was also significantly affected by foliar fertilization, with an F
value of 4.18 and p < 0.05. Production was significantly influenced by foliar fertilization,
with an F value of 5.97 and p < 0.001. For evapotranspiration, no significant interaction was
observed, with an F value of 1.34 and p > 0.05. Quality indicators did not show significant
interactions or showed weak interactions (Table 3). Comparing the production values of
the Andrada winter wheat variety over the two years of experiments, treated with various
foliar fertilizers (FO, FC, and MU) in all variants, the foliar fertilizers exceeded the control
(basic fertilization), being statistically confirmed as positive significant.
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Figure 2. The monthly rainfall recorded at ARDS Turda.

Table 3. Statistical evaluation of the Physiological Indicators, Quality, and Yield by ANOVA.

Indicators F p

Assimilation (µmolm−2·s−1) 3.33 0.007
Temperature of the leaf 4.18 0.002
Evapotranspiration (µmolm−2·s−1) 1.34 0.264
Production (kg·ha−1) 5.97 p < 0.001
Thousand grain weight (TGW, g) 0.67 0.756
Protein (%) 1.32 0.275
Gluten (%) 1.41 0.231
Zeleny Indices (mL) 1.56 0.175

Marked effects are significant at p < 0.05

From the processing of the results, it can be observed that production, assimilation, and
leaf temperature were the only parameters that interacted significantly with the application
of foliar fertilizers, as indicated by variance analysis. On the other hand, the quality índices
and evapotranspiration did not show significant interactions or exhibited weak to very
weak interactions (Table 3).

3.3. Results of the Interaction between Fertilization and Yield in Winter Wheat

The highest yields exceeding 7350 kg·ha−1 were achieved in the first year in the
variants V3, V5, and V6, which were treated with the foliar fertilizers FO, FC, and MU with
three treatments with foliar fertilizer were applied, being statistically ensured as being very
significantly positive compared to the witness.

In the variants V2 and V4, where two foliar treatments with FO and FC were applied,
the productions obtained were over 7150 kg·ha−1, being statistically assured as significantly
positive.

In the second year, even if the productions obtained were lower compared to the
first year, in the variants where three treatments with foliar fertilizer were applied, the
production increases were over 400 kg·ha−1 for FO and 700 kg·ha−1 for FC variants where
two treatments were applied (Table 4).

In the two years of a control experiment where only basic fertilization was applied in
the first year, the production was higher by almost 300 kg·ha−1; this difference is due to the
much more favorable climatic conditions compared to the second year.

In the winter wheat variety in the two experimental years, the application of foliar
fertilizers in the different phenophases of crop development was well capitalized; there is a
positive correlation, a fact indicated by the p values [54–56].
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Table 4. Correlation between yield and foliar fertilizers in winter wheat.

Year V1 V2 V3 V4 V5 V6

Year I Variant Yield, kg·ha−1 6770 7150 7380 7170 7495 7370

V1-control variant (cv) 6770 0.044 p < 0.001 0.012 p < 0.001 p < 0.001
V2-BMF + 2 trat. with FO 7150 0.147 0.553 0.010 0.043
V3-BMF + 3 trat with FO 7380 0.378 0.206 0.530
V4-BMF + 2 trat. with FCM 7170 0.038 0.138
V5-BMF + 3 trat. with FCM 7495 0.515
V6-BMF + 3 trat. with MU 7370

Year II Variant Yield, kg ha−1 6550 6975 7250 7010 7265 7180

V1-control variant (cv) 6550 0.011 p < 0.001 0.006 p < 0.001 p < 0.001
V2-BMF + 2 trat. with FO 6975 0.016 0.824 0.083 0.156
V3-BMF + 3 trat with FO 7250 0.026 0.437 0.268
V4-BMF + 2 trat. with FCM 7010 0.127 0.227
V5-BMF + 3 trat. with FCM 7265 0.735
V6-BMF + 3 trat. with MU 7180

Years I + II Variant Yield, kg ha−1 6770 7150 7380 7170 7495 7370

V1-control variant (cv) 6550 0.198 0.159 p < 0.001 0.107 0.003 0.008
V2-BMF + 2 trat. with FO 6975 0.002 0.507 0.066 0.658 0.268 0.437
V3-BMF + 3 trat with FO 7250 p < 0.001 0.040 0.675 0.063 0.718 0.485
V4-BMF + 2 trat. with FCM 7010 p < 0.001 0.214 0.198 0.304 0.600 0.852
V5-BMF + 3 trat. with FCM 7265 p < 0.001 0.002 0.391 0.003 0.109 0.056
V6-BMF + 3 trat. with MU 7180 p < 0.001 0.010 0.833 0.016 0.326 0.191

Notes: Values marked with red are significant.

3.4. Results of the Interaction between Fertilization and Assimilation in Winter Wheat

Between the untreated variant and the variants treated with the different foliar fertil-
izers, in the Andrada variety wheat crop, the assimilation had values between 27.7 and
32.8 µmol CO2 m−2·s−1 in the two years. In the first year, photosynthesis was more intense
in variants V3, V5, and V6, where three treatments with foliar fertilizers were applied,
recording values from 30.5 to 32.5 µmol CO2 m−2·s−1. The highest value was recorded
with the foliar fertilizer FC at the V5 variant, where three foliar fertilizations were applied
in addition to the basic fertilization, the average assimilation value exceeding 32.5 µmol
CO2 m−2·s−1 (Table 5).

As for the second annual, photosynthesis increased by applying foliar fertilizer; the
variants with the most intense assimilation were recorded in variants V5 and V6, achieving
values of over 32.7 µmol CO2 m−2·s−1, the highest value being at the foliar fertilizer
Folimax Cereals mix and Microfert U.

The values obtained from the assimilation measurements in the two years showed
that the highest values were obtained with the foliar fertilizer Folimax Cereals mix and
Microfert U, the average of the assimilation values being between 31.8 and 32.8 µmol
CO2 m−2·s−1, with very significant positive differences compared to the control (Table 5).
The application of foliar fertilizers was beneficial, the assimilation being more intense in
the wheat crop with positive values statistically ensured.

The assimilation does not restrict the production potential of the plants, thanks to
the nitrogen in the composition of the fertilizer and the microelements, stimulating the
vigorous development of the plants, the production, and the quality of the crop, as also
found [57,58].
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Table 5. The correlation between leaf assimilation and foliar fertilizers in winter wheat.

Year V1 V2 V3 V4 V5 V6

Year I Variant Assimilation,
µmol CO2 m−2·s−1 25.9 27.7 30.8 28.0 32.5 31.8

V1-control variant (cv) 25.9 0.327 0.013 0.248 p < 0.001 0.004
V2-BMF + 2 trat. with FO 27.7 0.103 0.857 0.016 0.036
V3-BMF + 3 trat with FO 30.8 0.144 0.372 0.602
V4-BMF + 2 trat. with FCM 28.0 0.023 0.053
V5-BMF + 3 trat. with FCM 32.5 0.706
V6-BMF + 3 trat. with MU 31.8

Year II Variant Assimilation, 27.1 29.6 30.2 28.5 32.8 32.7

V1-control variant (cv) 27.1 0.179 0.100 0.463 0.005 0.006
V2-BMF + 2 trat. with FO 29.6 0.746 0.530 0.097 0.111
V3-BMF + 3 trat with FO 30.2 0.344 0.174 0.196
V4-BMF + 2 trat. with FCM 28.5 0.026 0.031
V5-BMF + 3 trat. with FCM 32.8 0.943
V6-BMF + 3 trat. with MU 32.7

Years I + II Variant Assimilation, 25.9 27.7 30.8 28.0 32.5 31.8

V1-control variant (cv) 27.1 0.507 0.051 0.025 0.169 p < 0.001 p < 0.001
V2-BMF + 2 trat. with FO 29.6 0.746 0.302 0.179 0.679 0.010 0.012
V3-BMF + 3 trat with FO 30.2 0.055 0.530 0.760 0.215 0.286 0.318
V4-BMF + 2 trat. with FCM 28.5 0.615 0.391 0.241 0.815 0.016 0.018
V5-BMF + 3 trat. with FCM 32.8 0.007 0.135 0.234 0.039 0.857 0.914
V6-BMF + 3 trat. with MU 32.7 0.018 0.255 0.411 0.084 0.578 0.628

Notes: Values marked with red are significant.

3.5. Results of the Interaction between Fertilization and Leaf Temperature in Winter Wheat

In winter wheat, the leaf temperature in both years of experience was influenced both
by the environmental conditions and by the application of the foliar fertilizers FO, FC, and
MU. In general, the leaf temperature had values close to the control, except for the V2 variant
that had 29.1 ◦C exceeding the control, being statistically assured as significantly positive.
Between the untreated variant and variants treated with the various foliar fertilizers, for
winter wheat, leaf temperature had values generally lower than the control. In the second
year, the temperature of the leaves was higher than in the first, and variants V2 and V4
were higher than the control, the rest of the variants obtaining lower or equal values.

The wheat crop to which foliar fertilizers were applied obtained a higher assimilation,
removing more carbon per unit time [59]. In the two years of experiment, this was influ-
enced both by environmental conditions and by applying different foliar fertilizers, FO, FC,
and MU, the highest temperature of the leaf, being on variants V2 and V4 where only two
foliar fertilizations were applied (Table 6).

3.6. Interaction Res Ults between Fertilization Yield, Assimilation and Leaf Temperature in
Winter Wheat

Data processing shows Gaussian dynamics, where the normal curve of the data shows
an increase in production from 7200 to over 7400 kg ha−1, with assimilation increasing from
30 and 32 µmol CO2 m−2·s−1 over a range of leaf temperature of 26–28 ◦C, after which
when the temperature rises above 32 ◦C the leaves begin to reduce their activity by closing
the stomata, assimilation decreases and with it the production also decreases (Figure 3).
From the production graph, it can be seen that the Andrada wheat variety has a particular
constancy when applying foliar fertilization; in addition to basic fertilization, there is a
positive correlation between production, assimilation, and leaf temperature [60], as also
found in [61].



Agronomy 2024, 14, 73 10 of 15

Table 6. The correlation between leaf temperature and foliar fertilizers in winter wheat.

Year V1 V2 V3 V4 V5 V6

Year I Variant Tleaf, ◦C 27.2 29.1 26.7 26.5 27.8 26.8

V1-control variant (cv) 27.2 0.016 0.546 0.380 0.432 0.546
V2-BMF + 2 trat. with FO 29.1 0.004 0.002 0.086 0.004
V3-BMF + 3 trat with FO 26.7 0.780 0.171 1.000
V4-BMF + 2 trat. with FCM 26.5 0.103 0.780
V5-BMF + 3 trat. with FCM 27.8 0.171
V6-BMF + 3 trat. with MU 26.8

Year II Variant Tleaf, ◦C 26.1 26.7 24.9 26.5 25.9 26.1

V1-control variant (cv) 26.1 0.405 0.094 0.546 0.852 0.963
V2-BMF + 2 trat. with FO 26.7 0.016 0.816 0.311 0.380
V3-BMF + 3 trat with FO 24.9 0.027 0.134 0.103
V4-BMF + 2 trat. with FCM 26.5 0.432 0.516
V5-BMF + 3 trat. with FCM 25.9 0.889
V6-BMF + 3 trat. with MU 26.1

Years I + II Variant Tleaf, ◦C 27.2 29.1 26.7 26.5 27.8 26.8

V1-control variant (cv) 26.1 0.507 0.051 0.025 0.169 p < 0.001 p < 0.001
V2-BMF + 2 trat. with FO 26.7 0.746 0.302 0.179 0.679 0.010 0.012
V3-BMF + 3 trat with FO 24.9 0.055 0.530 0.760 0.215 0.286 0.318
V4-BMF + 2 trat. with FCM 26.5 0.615 0.391 0.241 0.815 0.016 0.018
V5-BMF + 3 trat. with FCM 25.9 0.007 0.135 0.234 0.039 0.857 0.914
V6-BMF + 3 trat. with MU 26.1 0.018 0.255 0.411 0.084 0.578 0.628

Notes: Values marked with red are significant.
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3.7. Results of the Interaction between Foliar Fertilization and Quality Indices in Winter Wheat

The winter wheat variety Andrada maintains its pronounced stability, the mass of a
thousand seeds of wheat, both in favorable and unfavorable environmental conditions [62],
the values obtained being higher and balanced in all variants, not registering statistically
assured differences compared to the control [63]. As for the quality of the grains of the
Andrada winter wheat variety was influenced by the climatic conditions and foliar fertil-
ization, the values obtained in both years of cultivation for the V2, V4 and V5 variants were
positive for the protein content with a concentration of over 12% in both years, where three
foliar fertilizations were applied with FO and FC, and MU, in the phenophases of straw
elongation (BBCH 37–39), bellows (BBCH 51–53) and grain filling (BBCH 69–71), registering
statistically assured differences as distinct and very significantly positive compared to the
mineral fertilized control variant. It is known that there is a negative correlation between
high production capacity, which is often associated with a lower grain protein content
as they obtained in their experiment, this being the main component that determines the
baking quality of wheat [64,65].



Agronomy 2024, 14, 73 11 of 15

Regarding the percentage of protein in the Andrada wheat variety, the values obtained
in the two years of cultivation in the V2, V4, and V5 variants were positive, where two or
three foliar fertilizations with FO and FC were applied and MU.

In the variants V3, V5, and V6, where three foliar fertilizations were applied in the
phenophases of straw elongation, bellows, and grain filling, differences were recorded
statistically assured as distinct and very significantly positive compared to the mineral
fertilized control variant In the Andrada wheat variety, the percentage of gluten was higher
on the variants where three foliar fertilizations V3, V5, and V6 were applied with FO, FC,
and MU (Table 7). For the Zeleny index, higher values were obtained in the second year,
but there were no significant differences between the fertilized variants or the control.

Table 7. Quality indices for winter wheat in the two years.

Variant TGW, g Difference± Significance

Fertilizer/Variety Year I Year II Year I Year II Year I Year II Year I Year II

V1-control variant (cv) 45.2 46.8 100.0 100.0 0.00 0.00 cv cv
V2-BMF + 2 trat. with FO 46.8 47.5 103.5 101.5 1.57 0.70 - -
V3-BMF + 3 trat with FO 45.0 45.9 99.5 98.2 −0.20 −0.83 - -
V4-BMF + 2 trat. with FCM 45.5 46.4 100.5 99.1 0.23 −0.40 - -
V5-BMF + 3 trat. with FCM 45.7 46.2 101.1 98.8 0.47 −0.55 - -
V6-BMF + 3 trat. with MU 46.1 46.9 101.9 100.4 0.83 0.17 - -

LSD (p 5%) = 1.70 g; LSD (p 1%) = 2.3 g; LSD (p 0.1%) = 3.13 g

Variant Protein, % Difference± Significance

Fertilizer/variety Year I Year II Year I Year II Year I Year II Year I Year II

V1-control variant (cv) 11.2 11.8 100.0 100.0 0.00 0.00 cv cv
V2-BMF + 2 trat. with FO 11.9 12.2 106.9 104.0 0.70 0.43 ** -
V3-BMF + 3 trat with FO 12.2 12.5 110.1 106.8 1.03 0.73 *** **
V4-BMF + 2 trat. with FCM 11.7 12.0 105.2 102.5 0.53 0.27 * -
V5-BMF + 3 trat. with FCM 12.1 12.2 108.8 104.3 0.90 0.47 *** *
V6-BMF + 3 trat. with MU 12.0 12.5 107.8 106.8 0.80 0.73 ** **

LSD (p 5%) = 0.46%; LSD (p 1%) = 0.62%; LSD (p 0.1%) = 0.84%

Variant Gluten, % Difference± Significance

Fertilizer/variety Year I Year II Year I Year II Year I Year II Year I Year II

V1-control variant (cv) 20.0 21.4 100.0 100.0 0.00 0.00 cv cv
V2-BMF + 2 trat. with FO 19.7 20.9 98.7 97.8 −0.27 −0.47 - 0
V3-BMF + 3 trat with FO 21.0 22.1 105.2 103.6 1.03 0.77 *** **
V4-BMF + 2 trat. with FCM 19.7 21.1 98.5 98.8 −0.30 −0.27 - -
V5-BMF + 3 trat. with FCM 20.5 22.0 102.7 103.0 0.53 0.63 * **
V6-BMF + 3 trat. with MU 21.9 21.6 109.7 101.2 1.93 0.27 *** -

LSD (p 5%) = 0.46%; LSD (p 1%) = 0.63%; LSD (p 0.1%) = 0.85%

Variant Zeleny index, mL Difference± Significance

Fertilizer/variety Year I Year II Year I Year II Year I Year II Year I Year II

V1-control variant (cv) 44.5 47.8 100.0 100.0 0.00 0.00 cv cv
V2-BMF + 2 trat. with FO 39.9 45.9 82.3 94.7 −5.57 −1.80 000 -
V3-BMF + 3 trat with FO 44.4 49.4 96.7 104.9 −1.03 1.67 - -
V4-BMF + 2 trat. with FCM 40.0 46.6 82.6 96.3 −5.47 −1.23 000 -
V5-BMF + 3 trat. with FCM 40.6 48.2 84.6 101.4 −4.83 0.47 000 -
V6-BMF + 3 trat. with MU 45.6 46.5 100.3 96.2 0.10 −1.30 - -

LSD (p 5%) = 1.99 mL; LSD (p 1%) = 2.71 mL; LSD (p 0.1%) = 3.67 mL

Notes: cv—control variant;—insignificant; *—significant positive; **—significantly positive difference; ***—very
significantly positive; 0—significant negative; 000—very significantly positive; LSD—Least Significant Difference.

The foliar fertilization applied to the Andrada wheat variety influenced both the yield
and the quality indices, these falling into the good quality group as they also obtained
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Moldovan in 2012 [49] and Racz in 2022 [63], obtaining a percentage of protein between
11.5 and 12.6 gluten 19.5 to 22.1 and the Zeleny index between 24.0 and 34.0 mL, and the
TGW was between 45.0 and 47.5 g.

4. Discussion

The research over the two years has shown that the application of basic fertilization
together with foliar fertilization has a positive effect, leading to a good development of the
plants during the vegetation and finally to production of between 7200 and 7400 kg·ha−1,
to an intense assimilation of at 28 to over 32 µmol CO2 m−2·s−1 over a range of leaf temps,
from 26 to 29 ◦C, after which when the temperature rises above 32 ◦C the leaves begin
to reduce their activity by closing the stomata, the assimilation decreases and with this
decrease the yield.

From the production graph, it can be seen that the Andrada wheat variety has a
particular constancy when foliar fertilization is applied. In addition to basic fertilization,
there is a positive correlation between production, assimilation, and leaf temperature [60],
as was also found in [61].

Regarding the quality indices, protein, and gluten percentage la index of the Andrada
wheat variety, the values obtained in the two years of cultivation by applying two or
three treatments with foliar fertilizers that had in their composition in addition to N and P
phosphorus and microelements had positive results, especially with FC and MU.

For the Andrada winter wheat variety, it could be stated that the three types of foliar
fertilizers stimulate CO2 absorption activity, and the other analyzed parameters show
fluctuations from one fertilization variant to another, but in most cases, it is observed that
foliar fertilization stimulates the physiological activity of the leaves [62–65].

The winter wheat variety Andrada maintains its pronounced stability, the mass of
1000 grains, both in favorable and unfavorable environmental conditions [49,66] through
the application of foliar fertilizers, reacting positively to three variants out of six, and to FC
and MU values were above the control treated with minerals only. Fertilization occurs, and
even if the increases were not statistically ensured, the values obtained were between 45.5
and 48.5 g.

Regarding the percentage of protein in the Andrada wheat variety, the values obtained
in the two years of cultivation in the V2, V4, and V5 variants were positive, where two
or three foliar fertilizations with FO FC and MU. The foliar fertilization applied to the
Andrada wheat variety influenced both the production and the quality indices, these falling
into the good quality group [49,63] obtaining a percentage of protein between 11.5 and
12.6% gluten 19.5 to 22.1% and the Zeleny index between 24.0 and 34.0 mL.

5. Conclusions

The Andrada winter wheat variety is characterized by high photosynthetic activity in
all variants where, in addition to the basic fertilizers, foliar fertilizations were applied in
different phases of vegetation, obtaining productions of over 7350 kg·ha−1, being analyzed
through evapotranspiration which had close values regardless of the fact that the temper-
ature was much higher, denoting a tolerance to drought, which hypothetically could be
considered as an adaptation to the new climate changes.

On average, in the two experimental years with the Andrada winter wheat variety, it
is observed that foliar fertilizers with micro and macro elements help had positive results
on the physiological parameters and on the yield, obtaining increases of over 700 kg·ha−1

on the variants where or applied (basic fertilization + 3 treatments for all fertilizers used
FO, FC, and MU).

Assimilation does not restrict the production potential of plants due to the nitrogen in
the fertilizer composition and the microelements, promoting vigorous plant development,
production, and crop quality.
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