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Abstract: In response to the challenge of resource recycling, this review investigates the removal of
phytotoxicity from agricultural waste for its application as a growing media component. Agricultural
waste typically exhibits high phytotoxicity due to the presence of substances such as phenols, organic
acids, ammonia, nitrogen, and heavy metals. These substances hinder seed germination and plant
growth, posing a significant barrier to the use of agricultural waste as a growing media component.
Thus, it is imperative to mitigate or eliminate phytotoxicity before effectively utilizing agricultural
waste. This review rigorously analyzes an extensive array of recent studies, scrutinizing diverse
technologies for the mitigation of phytotoxicity in agricultural wastes. The methods investigated
include the four most common methods—composting, heat treatment, washing, and aging, and
a recently introduced method, ammonium incubation. Each method was assessed considering its
underlying principles, effects in application, and respective advantages and disadvantages. This
review suggests that successful phytotoxicity mitigation in agricultural waste hinges on reducing
the content or activity of phytotoxic substances. Moreover, this study emphasizes that future phy-
totoxicity mitigation efforts should aim for economic efficiency while maximizing the preservation
of the original material volume and weight. This study offers insightful guidance for technical
professionals aiming to mitigate the phytotoxicity of agricultural waste, thereby fostering sustainable
agricultural practices.

Keywords: agricultural waste; growing media; phytotoxicity; composting; biochar; ammonium
incubation

1. Introduction

Soilless cultivation refers to a planting method that does not use natural soil but
uses other substances as the growing media for plants [1,2]. In recent years, the demand
for soilless cultivation has been growing due to the continuous decrease in arable land,
bringing soilless cultivation substrates into the spotlight [3,4]. Owing to its good water
retention, fertility retention, and breathability, peat has become the most widely used
soilless cultivation substrate worldwide [5,6]. Soilless cultivation with peat substrates can
save water resources, improve plant yield and quality, and reduce the occurrence of pests
and diseases, and is suitable for the growth of various vegetables, flowers, and ornamental
plants [7]. However, excessive peat extraction also brings serious environmental problems
such as wetland degradation, biodiversity reduction, and greenhouse gas emissions [5,8].
In the long run, this could potentially result in alterations to the regional climate, which
may negatively impact crop growth [9]. In order to protect the environment and resources,
it is necessary to explore sustainable peat substrate alternatives [10,11].

Agricultural waste refers to various residues produced in agricultural production
and processing, such as poultry and livestock manure, straw, sawdust, fallen leaves, fruit
peels, mushroom residue, etc. [12]. These agricultural wastes are mostly plant-derived
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and contain rich organic matter as well as plant nutrients such as nitrogen, phosphorus,
potassium, and trace elements. They have the potential to be used as growing media
components [8,11,13–15]. Many studies have shown the feasibility of using agricultural
waste as a growing media component to replace peat [11,16–19].

While agricultural waste may serve as an alternative to peat in growing media, numer-
ous studies have observed a notable decrease in biological yield when using this waste as
a growing media component. This reduction is typically ascribed to phytotoxicity [20,21].
Phytotoxicity refers to any adverse effect on plants caused by specific substances or growth
conditions [21]. The germination index (GI) is usually used to measure the phytotoxicity
level of materials. It is generally considered that the material has reached the harmless
standard when the GI ≥ 80% [22,23]. Phenolic substances are generally considered to
be the main phytotoxic substances in woody waste [24–26]. In addition, organic acids,
NH4

+, heavy metals, and other substances can also cause phytotoxicity in agricultural
waste composting [27,28]. Besides phytotoxic substances, certain physicochemical prop-
erties of substrate material, including pH and EC levels beyond the optimal range and
inadequate aeration, can also cause phytotoxicity [14,29]. Agricultural waste is usually
mainly composed of various plant residues and poultry and livestock manure, so it is
usually rich in phenolic substances, organic acids, ammonia nitrogen, and other phytotoxic
substances [30–32]. In addition, agricultural waste also usually contains high levels of pol-
lutants, such as high concentrations of heavy metals and polycyclic aromatic hydrocarbons,
which often lead to phytotoxicity [22]. Before being used as a growing media component,
the phytotoxicity of agricultural waste must be reduced or eliminated.

Throughout the annals of history, humanity has devised numerous methods to harness
agricultural waste for the purpose of bolstering agricultural productivity. Composting
stands as the earliest method humans employed to harness the potential of agricultural
waste resources [33]. Up to now, comprehensive research has been conducted on compost-
ing technologies for diverse types of agricultural waste [31,34]. In recent years, biochar
research in agriculture has gained momentum, and considerable attention has been paid to
the realm of biomass heat treatment [15,35]. Currently, composting and thermally treated
products of agricultural waste are mainly used as soil additives to improve soil fertility, but
increasing efforts are tapping into their potential as growing media components [36,37].
When used as soil amendments or fertilizer components, agricultural waste composting or
thermally treated products only form a minor fraction of the plant root environment. Thus,
the effect of material phytotoxicity may be negligible [38,39]. However, when they are used
as growing media, they form the majority of the plant root environment. Consequently,
phytotoxicity emerges as an inescapable issue [40,41]. For this reason, increasing research
on agricultural waste compost and heat treatment has focused on the issue of phytotoxicity
in recent years [42–45]. In addition, many scholars have explored various new ways to
remove phytotoxicity and proposed many valuable insights for the utilization of agricul-
tural waste substrates. Regrettably, to our knowledge, there is currently no systematic
elaboration of these valuable studies from the perspective of phytotoxicity removal.

To systematically elucidate research on phytotoxicity removal technologies for agri-
cultural waste as a growing media component, this review undertook a comprehensive
literature search across multiple databases. The literature selection and review process
adhered to strict standards, ensuring coverage of as many relevant documents as possi-
ble. During this process, the study focused on the methods, results, and conclusions of
the research, ensuring their scientific validity and accuracy. It also assessed the work-
ing principles, application effects, and advantages and disadvantages of each technology.
All referenced literature was meticulously recorded and cited, ensuring transparency
and traceability.

This review synthesizes several decades of work aimed at mitigating the phytotoxicity
of agricultural waste and delves into four common methods—composting, heat treatment,
aging, and washing—along with a newly reported rapid detoxification technique called
ammonium incubation (incubation treatment with ammonium salt). These technologies



Agronomy 2024, 14, 40 3 of 23

generally aim to mitigate phytotoxicity by diminishing the content or activity of phytotoxic
substances. This study provides a systematic summary of the principles, application effects,
and pros and cons of these technologies, with an emphasis on advancements made to
enhance these methods. Considering the substantial volume of agricultural waste, its use
as growing media represents an innovative approach to resource utilization. Consequently,
this study primarily aims to enrich the comprehension of phytotoxicity and serve as
a reference for related research and applications in phytotoxicity mitigation for agricultural
waste. This review aspires to draw more scholars into conducting research on the utilization
of agricultural waste as growing media, thus contributing to the resolution of resource
recycling challenges.

2. Removal of Phytotoxicity by Composting

Composting is a process of decomposing organic matter into stable, humus-like
products through microorganisms under controlled conditions [31]. It is essentially the
mineralization and humification of organic matter under the action of microorganisms [34].
Composting is generally carried out under aerobic conditions, usually including the stages
of heating, high temperature, and maturation [31]. The practical agricultural operation
process involves the careful adjustment of the physicochemical properties of the materials,
including the C/N ratio and moisture content, with the objective of facilitating the rapid
proliferation of microorganisms. This microbial activity, in turn, accelerates the decomposi-
tion of readily biodegradable organic matter, ultimately yielding compost products that
exhibit a higher level of stability [46,47]. During aerobic composting, microbial metabolic
activity releases a large amount of heat, raising the temperature of the pile to above 50 ◦C.
In certain cases, composters may introduce thermophilic bacteria, pushing the temperature
even higher, sometimes surpassing 100 ◦C. This elevated temperature serves to effectively
eliminate pathogens, pests, and weed seeds, thereby meeting the necessary criteria for
plant growing [48–50]. Owing to its simplicity and efficiency, composting has been the most
widely used method for harnessing the resource potential of agricultural waste [51,52].

Composting is also the most commonly used method to reduce or eliminate the
phytotoxicity of agricultural waste. It can reduce phytotoxicity by decomposing, trans-
forming, and aggregating phytotoxic substances and reducing the bioavailability of toxins
(Figure 1). Specifically, composting typically reduces the phytotoxicity of materials by
reducing the concentration of organic acids and ammonium ions and the bioavailability of
heavy metals in the material. For instance, a study conducted by Wang et al. [28] highlighted
that the initial concentrations of acetic acid and butyric acid in raw composting materials
exceeded 400 mg/L and 200 mg/L, respectively. However, after the composting process,
these organic acids were nearly undetectable in the materials, resulting in a substantial
reduction in phytotoxicity. Kong et al. [53] employed farm animal manure for composting.
Their findings revealed a negative correlation between the NH4

+-N concentration and
the GI. Following the composting process, the NH4

+-N concentration dropped from an
initial level of 300 mg/L to near 0 mg/L, thereby ensuring that the compost material met
the harmless criteria. Zhao et al. [54] analyzed the correlation between heavy metal ions
and phytotoxicity, confirming that the phytotoxicity of compost products was positively
correlated with the content of As, Cd, Hg, Cr, Fe, Mn, and Pb. Tiquia et al. [23] also revealed
that the main contributors to the phytotoxicity of pig manure compost were extractable
copper, extractable zinc, and NH4

+-N. Importantly, these substances gradually decreased
during the composting process.

Although composting can notably mitigate the phytotoxicity of agricultural waste,
it is important to note that this process is relatively time-consuming. The entire compost-
ing procedure required to attain full maturation typically spans several months [30]. In
addition, some studies have also shown that even after undergoing thorough compost-
ing treatment, compost products may still retain phytotoxicity; the variability inherent
in the materials, coupled with the differences in composting methods and equipment,
can result in diverse composting outcomes [55]. For example, Siles-Castellano et al. [56]
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analyzed the evolution of phytotoxicity in five compost materials from fifteen industrial
composting facilities. The results showed that compost products derived from municipal
solid waste and plant residues, even after undergoing composting treatment, always ex-
hibited phytotoxicity. They also revealed that inappropriate EC, pH values, and heavy
metal content were the primary factors leading to phytotoxicity in these compost prod-
ucts. To address this issue, there is a growing focus on optimizing composting measures.
This involves improving the composting environment in various ways, such as regulat-
ing temperature and enhancing ventilation, with the aim of accelerating the compost-
ing process, reducing the duration required for compost maturation, and diminishing
the phytotoxicity of final compost products. As an example, Tong et al. [57] conducted
a comparative study examining the distinctions between static treatment, flipping treatment,
forced ventilation treatment, and acidified forced ventilation. Their findings suggested
that forced ventilation and acidification could enhance composting efficiency, shorten
treatment times, mitigate ammonia volatilization, and reduce greenhouse gas emissions.
Rosimara Zittel et al. [58] prepared mixtures using different reactors and different types
of waste to carry out reactor compression mixed composting at different stages, thereby
generating mature and non-toxic compost faster. Furthermore, the inherent characteristics
of compost raw materials, such as C/N and moisture content, may also cause variations in
compost outcomes. Rosimara Zittel et al. [59] used tobacco, garden waste, sawdust, and
sludge to form substrates with different C/N contents for composting. The experimental
group with a C/N of 20.1 exhibited superior detoxification, yielding compost products
with the highest GI. Generally speaking, maintaining the C/N of the compost pile within
the range of 18–30 and the water content within 60–75% promotes nutrient utilization by
microorganisms. This, in turn, facilitates the conversion of phytotoxic organic substances
and reduces the bioavailability of heavy metals [60,61].
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Figure 1. Diagram of composting process and its phytotoxicity removal mechanism.

While adjusting the pile composition and optimizing the process flow can improve
compost quality and reduce outcome phytotoxicity, it is worth noting that in practical
composting operations, there may be limitations on these measures. Consequently, the
application of additives has often been regarded as an efficient and easy-to-master strategy
to accelerate composting processes [34]. Some representative cases are shown in Table 1.
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Many additives can effectively enhance the humification of compost and reduce phy-
totoxicity, but their effects on the composting process are different. As an illustration,
Wang et al. [62] introduced superphosphate and biological additives into chicken ma-
nure compost. Their findings revealed that both additives effectively accelerated the
composting process and reduced the phytotoxicity of the material. Superphosphate was
found to promote the humification process and reduce phytotoxicity, while biological
additives facilitated the formation of precursor substances and the humification process. In
Wang et al.’s study [28], it was highlighted that carbon-rich additives, such as mushroom
substrates, corn straw, and waste branches, can diminish the levels of total soluble nitrogen,
ammonium nitrogen, and low molecular weight organic acids in the compost, thereby
contributing to a decrease in phytotoxicity. Sun’s team, as reported in [63], found that
adding bean dregs and crab shell powder for composting led to various improvements in
compost conditions such as compost temperature, specific surface area, average pore size,
pH value (the concentration of hydrogen ions, used to measure the acidity or alkalinity
of a solution), and EC value (electrical conductivity, used to measure the concentration
of soluble ions in the growing media). These improvements further facilitated microbial
growth and enhanced enzyme activity. Moderate use of these two additives accelerated
the decomposition of the composting process, shortened the composting duration, and
improved the maturity and stability of compost products. Yin et al. [64] conducted com-
posting with the addition of bean dregs and flue gas gypsum. This measure accelerated
the degradation of lignocellulose and improved the water retention, nutrient content, pore
distribution, and soil structure of the final compost products, and reduced their phytotox-
icity. Pei et al. [65] used fruit residue, biochar, and manganese dioxide as additives for
agricultural waste composting. Their results proved that these additives could significantly
promote metabolic product transformation, optimize bacterial community structure, and
effectively remove phytotoxic substances in agricultural waste, thereby improving the GI.

Biochar has gained significant popularity as a compost additive in recent years. Its
incorporation into compost can effectively mitigate phytotoxicity by improving the physic-
ochemical properties of the compost mixture. This includes boosting microbial activity,
facilitating the decomposition of organic matter, promoting nitrogen conversion processes,
diminishing the bioavailability of heavy metals, and enhancing overall compost matu-
rity [66,67]. For example, Chen et al. [46] reported that biochar improved the pore structure
of compost materials, leading to enhanced oxygen availability, the prevention of anaerobic
environments, and the overall enhancement of compost quality. These effects collectively
contributed to a reduction in phytotoxicity. A study by Sánchez-García et al. [68] also
showed that biochar could prevent the formation of large chunks of material, thus pro-
moting gas exchange and reducing phytotoxicity caused by poor material structure and
gas exchange. In addition to improving the pore structure, Xiao et al. [67] pointed out that
biochar could serve as a habitat for microorganisms, providing energy and nutrients for
microbial activity, thereby promoting the microbial conversion of phytotoxic substances. In
addition, since ammonia nitrogen is a substrate for nitrification, the addition of biochar
to compost can accelerate the conversion of ammonia to nitrate and nitrite nitrogen, thus
reducing the phytotoxicity caused by high concentrations of ammonia nitrogen [69,70].
A study by Chen et al. [46] proved that biochar can significantly reduce the extractable
heavy metal content during the composting process of river bottom sediment and agri-
cultural waste mixtures. Arshad et al. [71] also demonstrated that biochar reduced the
bioavailability and migration of certain metal elements during the composting process,
thereby reducing the phytotoxicity arising from excessive concentrations of heavy metals
in compost materials. Additionally, it is worth noting that biochar contains high levels of
FA-like and HA-like substances. These substances can expedite the formation of humus-like
substances, thereby promoting a faster maturation of the compost and ensuring it meets
harmless standards [72].

In summary, the incorporation of additives has commonly been considered a practical
and efficient method to expedite the reduction of phytotoxicity in compost products.
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Inorganic additives such as metal oxides, minerals, and phosphate fertilizers offer cost-
effective and environmentally friendly options; however, their efficacy in phytotoxicity
removal is limited. Organic additives, particularly biochar, can address phytotoxicity from
multiple aspects but come with a slightly higher cost. Martínez-Gallardo and colleagues [73]
demonstrated that the use of bioadditives enhances the maturity of compost. Nevertheless,
the applicability of bioadditives in composting requires validation through extensive
research. Therefore, the simultaneous use of multiple additives has been proposed as
a strategy that can potentially reduce costs, enhance phytotoxicity removal effects, and
stabilize outcomes [34]. For example, Qu and colleagues [74] proved that composite
additives not only improve compost maturity and phytotoxicity removal effects but also
reduce the number and cost of additives. Duan et al. [75] found that because biochar has
a larger specific surface area and stability, it provides a suitable habitat for microorganisms.
The synergistic effect of biochar with biological additives could significantly accelerate the
humification process of cow dung composting. Research by Li and colleagues [76] also
confirmed that using 2% peanut shell biochar and 0.5% microbial inoculant as composite
additives significantly improved compost maturity and reduced phytotoxicity. However,
it is important to note that research on the detoxification of compost using composite
additives remains relatively limited. Future studies on the promotion of phytotoxicity
reduction in compost may benefit from exploring the combined use of multiple additives.



Agronomy 2024, 14, 40 7 of 23

Table 1. Changes in physicochemical properties and phytotoxicity using different composting techniques.

Raw Material
Composting Changes in Phytotoxicity-Related Factors

(Star→ Finish, Conventional Composting vs. Improved Composting) Changes in Phytotoxicity
(GI, Conventional

Composting vs. Improved
Composting) *

Composting Days Required to
Reach Safety Standards (GI >

80%, Conventional Composting
vs. Improved Composting) *

References
Conventional Improved Phytotoxicity-Related

Substances * pH * EC *(mS·cm−1)

Urban Green
Waste

C/N = 25,
water content = 60–70%

Composting with 35%
Soybean Residue and

25% Crab Shell Powder
Added

/
6.1
vs.
7.3

1.8→ 1.2
vs.

1.5→ 1.8

75%
vs.

163%

30 Days
vs.

Earlier than the Conventional
Group

[63]

Urban Green
Waste

C/N = 25,
water content = 60–70%

Composting with the
Addition of Flue Gas

Desulfurization
Gypsum and Silage

Ammonia Nitrogen
(mg/kg):

354.44
vs.

73.24–120.24

8.3→ 8.2
vs.

(7.3–7.4)→ (7.5–7.8)

1.19→ 1.26
vs.

(1.1–1.4)→ (1.2–1.5)

76%
vs.

115–130%

42 Days
vs.

Earlier than the Conventional
Group

[64]

Chicken
Manure +
Sawdust

C/N = 18,
water content = 65%,

Composting with the
Addition of Biochar,

Biofungicide, and
Superphosphate

Ammonia Nitrogen (mg/L):
600→ 180

vs.
(500 -530)→ (120 -200)

7.7→ 8.5
vs.

(7.0–7.7)→ (8.0–8.5)

4.15→ 3.8
vs.

4.15→ (3.4–6.0)

68.9%
vs.

89.7–95.2%

Unable to Reach Safety
Standards

vs.
14 Days

[62]

Beer Spent
Grain water content = 60–70%

Composting with the
Addition of Biochar at
Levels of 0%, 5%, 10%,

and 15%

Ammonia Nitrogen (mg/g):
0.06→ 0.30

vs.
(0.05–0.06)→ (0.10–0.33)

6.28→ 8.35
vs.

(7.01–7.12)→
(8.03–8.33)

/
115%

vs.
120–140%

21 Days
vs.

14 Days
[77]

Pig Manure +
Sawdust /

Composting with the
Addition of Biochar at
Levels of 0%, 3%, 5%,

and 10%

/
7.4
vs.

8.27–8.4

All Treatments Showed
No Difference: Around

0.85 mS/cm

58%
vs.

119–171%
/ [78]

Urban Green
Waste

C/N = 25–30, water
content = 60–70%

Composting with 35%
Kitchen Waste and

15.5% Montmorillonite
Added

Ammonia Nitrogen
(mg/kg):

800→ 400
vs.

200→ 0

6.2
vs.

7.44

1.87
vs.

3.53

70%
vs.

145%

Unable to Reach Safety
Standards

vs.
Earlier than 21 Days

[79]

Chicken
Manure +
Sawdust

C/N = 25,
water content = 65%

Composting with the
Addition of Biochar at
Levels of 0%, 3%, 5%,

and 10%

Ammonia Nitrogen
(mg/kg):

300→ 250
vs.

300→ (150–200)

All Treatments Showed
Similar Trends:

(7.4–7.6)→ (8.0–8.1)

2.25→ 2.8
vs.

(2.35–2.45)→ (1.9–2.2)

70%
vs.

90–120%

Unable to Reach Safety
Standards

vs.
Earlier than 50 Days

[80]

Sheep Manure water content = 65%

Composting with the
Addition of 15%

Wet-Weight Mushroom
Substrate, Corn Straw,

and Garden Waste

Ammonia Nitrogen (mg/L):
300→ 120

vs.
(200–240)→ (20–60)

Small Molecule Acids (No
Difference in All

Treatments):
Formic Acid (mg/L):

(10–50)→ 10;
Propionic Acid (mg/L):

(10–20)→ (2–10);
Acetic Acid (mg/L):

(400–800)→ 0;
Butyric Acid (mg/L):

(200–350)→ 0

8.4→ 8.8
vs.

(7.7–7.9)→ (8.1–8.4)

4.7→ 4.7
vs.

(4.1–4.3)→ (3.5–4.3)

50%
vs.

120–150%

Unable to Reach Safety
Standards

vs.
14 Days

[28]
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Table 1. Cont.

Raw Material
Composting Changes in Phytotoxicity-Related Factors

(Star→ Finish, Conventional Composting vs. Improved Composting) Changes in Phytotoxicity
(GI, Conventional

Composting vs. Improved
Composting) *

Composting Days Required to
Reach Safety Standards (GI >

80%, Conventional Composting
vs. Improved Composting) *

References
Conventional Improved Phytotoxicity-Related

Substances * pH * EC *(mS·cm−1)

Sludge,
Cigarette
Tobacco,
Sawdust,
Garden
Waste,

/

Composting Substrate
Mixed with Tobacco,

Sludge, Garden
Pruning Waste, and

Sawdust at C/N = 18.6,
15.5, and 20.1

/
C/N: 18.6:8.0→ 8.2
C/N: 15.5:7.2→ 8.1
C/N: 20.1:6.6→ 8.1

C/N: 18.6: 2.2→ 4.1
C/N: 15.5: 2.3→ 4.9
C/N: 20.1: 1.6→ 1.9

(C/N: 18.6: 30%; C/N: 15.5:
35%; C/N: 20.1: 40%)
→ (C/N: 18.6: 70%; C/N:

15.5: 92%; C/N: 20.1: 100%)

C/N: 15.5, C/N: 20.1
60–120 Days;

C/N: 18.6
Unable to Reach Safety

Standards

[58]

Plant Straw,
and Chicken

Manure
C/N = 30, water

content = 60%

Composting with the
Addition of 5% Biochar,

5% Gypsum, and 5%
Biochar + 5% Gypsum,

Ammonia Nitrogen (No
Difference in All Treatments,

g/kg): 0.3→ 0.1

7.5→ 7.3
vs.

(7.1–7.5)→ (7.0–7.3)

0.8→ 0.4
vs.

(0.8–2.3)→ (0.4–1.8)

90%
vs.

120%

49 days
vs.

45–49 days
[74]

* These data were extracted using Web Plot Digitizer from figures in the original reference.
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3. Removing Phytotoxicity by Heat Treatment

Heat treatments, including pyrolysis, torrefaction, and hydrothermal carbonization
(HTC), are common methods for biomass treatment [81–83]. The representative prod-
uct of heat-treated biomass for agricultural applications is biochar. Biochar refers to the
solid, carbon-rich part obtained through the thermochemical conversion of biomass in
a limited oxygen environment [69]. Pyrolysis, typically conducted under anaerobic or
anoxic conditions within a temperature range of 350–1000 ◦C, results in the gradual de-
composition of cellulose and lignin under thermal cracking conditions [84]. Torrefaction
is an incomplete pyrolysis process that occurs under anaerobic or low-oxygen conditions
at 200–300 ◦C [85]. Compared with pyrolysis, torrefaction has lower energy consumption.
However, due to the lower degree of carbonization, it is generally considered that biomass
torrefaction products cannot provide the same carbon sequestration capacity as biochar [86].
As a result, compared with biochar, less attention has been paid to biomass torrefaction
products [82]. The HTC process requires a moderate temperature of 150–350 ◦C and
a certain pressure (2–6 Mpa); thus, HTC is particularly suitable for raw materials with a
high water content, such as crop straw and sludge [87,88]. Hydrothermal carbonization,
with a carbon efficiency as high as 80–100%, significantly outperforms pyrolysis, which has
a carbon efficiency of about 50%. Given its similar physicochemical properties to peat, HTC
is regarded as a promising technology for using biomass as growing media [89]. Biomass
heat treatment products are generally quite stable and have a high porosity and specific
surface area. They can significantly improve soil physicochemical properties and improve
nutrient utilization efficiency. Therefore, they are widely used in agricultural production.
Some common agricultural applications of biomass heat treatment products, such as soil
amendments, compost additives, slow-release fertilizer carriers, etc., have been extensively
studied [39,67,90,91]. In contrast, there are much fewer studies on biomass heat treatment
products as growing media components. However, several scholars have underscored
the significant potential of biomass heat treatment products as components of growing
media [24,41,92]. Here, this review focuses on reviewing the research on heat treatment
to eliminate the phytotoxicity of agricultural waste materials, concludes how production
conditions affect the phytotoxicity of the products, and elaborates on their application as
growing media components (Figure 2).
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During the heat treatment process, the phytotoxic components in the material are
volatilized/condensed and degraded/generated at high temperatures, resulting in
a significant alteration in the phytotoxicity. The alteration is typically manifested as
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a substantial decrease in the material’s phytotoxicity [93–95]. For instance, organic sub-
stances like polyphenols were eliminated from a garden waste mixture through the process
of slow pyrolysis, enabling the treated materials to meet harmless standards [96]. Steam ex-
plosion treatment notably diminished the phenolic content in oak chips. Consequently, the
treated oak chips ceased to impede the growth of Chinese cabbage, marking a significant
contrast to the pre-treatment phase [97]. Furthermore, after the pyrolysis and hydrother-
mal carbonization processes of urban sewage sludge, the bioavailability of heavy metals
was reduced, and there was a decrease in phytotoxicity [98]. In addition, all hydrochars
exhibited superior germination compared to untreated raw materials such as sludge, coffee
grounds, and grape pomace [99]. Moreover, after using eucalyptus globulus bark treated
by a low-temperature hydrothermal treatment and then mixed with peat as a substrate
for cultivating Chinese cabbage, the growth statistics of Chinese cabbage were better than
those of commercial substrates, indicating that it is non-phytotoxic [24].

However, materials may still retain phytotoxicity after heat treatment [100].
Mumme et al. [101] measured the phytotoxicity of various biochars. Some heat treat-
ment products still inhibited plant growth, and different biochars showed great variations
in phytotoxicity levels. A study by Busch et al. [102] compared the phytotoxicity of biochar
and hydrochar products under various processes and found that some hydrochars still had
a high level of phytotoxicity, while the overall phytotoxicity of biochar was lower than that
of hydrochar. Furthermore, the research results of Bargmann et al. [81] also showed that
biochar usually has no effect on seed germination or even has a slight positive effect, while
hydrochar usually has a significant negative impact on seed germination. The phytotoxicity
of these hydrochars was mainly caused by the presence of water-soluble or volatile organic
compounds [81,103,104]. Buss et al. [105] also pointed out that volatile organic compounds
(VOCs) with the highest potential to cause phytotoxicity include low-molecular-weight or-
ganic acids and phenols, which is attributed to their high mobility. Furthermore, polycyclic
aromatic hydrocarbons (PAHs), which are byproducts of the pyrolysis process, can also
contribute to phytotoxicity [106,107]. Furthermore, the formation of phytotoxic compounds,
such as furans and polycyclic aromatic hydrocarbons, was generated during the pyrolysis
process, and these phytotoxic substances then dissolved into the bio-oil. This bio-oil had the
potential to be adsorbed onto the biochar following recondensation during the carboniza-
tion process, thereby transforming the biochar into a pollutant carrier and leading to high
levels of phytotoxicity [103,108,109]. Besides volatile substances, high concentrations of
heavy metals are also a main reason for the phytotoxicity of biochar [110–112]. In addition,
the adsorption of ammonia nitrogen and organic and inorganic composite pollutants by
biochar and high pH and EC levels can also have negative effects on plant growth [102,103].

The properties of biochar vary due to different raw materials and heat treatment
conditions [39]. The type of raw material, heat treatment conditions (temperature, time,
and oxidation conditions), and variations in pre- and post-treatment steps significantly
influence the composition of elemental and surface functional groups as well as the pore
structure and quantity of biochar [69,113,114]. These alterations result in substantial vari-
ations in the properties of biochar, thereby affecting the final outcome of phytotoxicity
removal [115–117]. Considering the variations in raw materials and heat treatment pro-
cesses, the effects of heat treatments on phytotoxicity removal as observed in representative
studies are listed in Table 2 [81,86,118].

Compared with low-temperature biochar, high-temperature biochar often has lower
phytotoxicity. This can be attributed to the fact that high temperatures are more conducive
to reducing the content of organic pollutants in biochar and reducing the bioavailability
of heavy metals [104,119]. However, higher temperatures often mean a higher pH of the
product, and high pH is generally not conducive to plant growth. Furthermore, higher
temperatures result in increased energy consumption, which, in turn, significantly raises
production costs. Compared with high-temperature pyrolysis, hydrothermal carbonization
is more efficient and consumes less energy, and largely retains physicochemical properties
similar to peat. However, due to the low processing temperature, it cannot effectively elimi-
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nate volatile and water-soluble organic phytotoxic substances, nor can it passivate harmful
heavy metals, so it is difficult to directly use for growing media components [120,121].

Table 2. Phytotoxicity and pH of products from different raw materials and heat treatment processes.

Feedstock Process Parameters pH Phytotoxicity (GI, %)

/ Dry carbonization, 270 ◦C, 10 min 5.8 102.8
/ Dry carbonization, 320 ◦C, 20 min 6.4 98.3

Softwood chips Dry carbonization, 500 ◦C, 12 min 8.7 95.8
Cinnamomum camphora Dry carbonization, 200 ◦C, 10 min 7.10 9.66
Cinnamomum camphora Dry carbonization, 200 ◦C, 20 min 6.55 17.25
Cinnamomum camphora Dry carbonization, 200 ◦C, 30 min 6.56 23.20
Cinnamomum camphora Dry carbonization, 200 ◦C, 60 min 7.11 28.70
Cinnamomum camphora Dry carbonization, 250 ◦C, 10 min 7.30 28.05
Cinnamomum camphora Dry carbonization, 250 ◦C, 20 min 6.90 36.10
Cinnamomum camphora Dry carbonization, 250 ◦C, 30 min 6.48 43.51
Cinnamomum camphora Dry carbonization, 250 ◦C, 60 min 7.42 52.60
Cinnamomum camphora Dry carbonization, 300 ◦C, 1 min 6.46 15.10
Cinnamomum camphora Dry carbonization, 300 ◦C, 5 min 7.20 55.04
Cinnamomum camphora Dry carbonization, 300 ◦C, 10 min 7.57 83.62
Cinnamomum camphora Dry carbonization, 300 ◦C, 20 min 6.75 103.14
Cinnamomum camphora Dry carbonization, 300 ◦C, 30 min 6.77 111.09
Cinnamomum camphora Dry carbonization, 350 ◦C, 1 min 6.68 27.75
Cinnamomum camphora Dry carbonization, 350 ◦C, 5 min 6.81 96.54
Cinnamomum camphora Dry carbonization, 350 ◦C, 10 min 6.84 127.89
Cinnamomum camphora Dry carbonization, 350 ◦C, 20 min 6.92 125.97
Cinnamomum camphora Dry carbonization, 350 ◦C, 30 min 6.83 133.61

Grass Hydrothermal carbonization, 180 ◦C, 8 h 5.3 0
Wood Hydrothermal carbonization, 180 ◦C, 10 h 4 5
Straw Hydrothermal carbonization, 180 ◦C, 8 h 4.4 80

Biogas digestate Hydrothermal carbonization, 180 ◦C, 9 h 5.7 55
Horse manure Hydrothermal carbonization, 180 ◦C, 10 h 6.4 145

Spent brewer’s grains Hydrothermal carbonization, 190 ◦C, 4 h 6 0
Spent brewer’s grains Hydrothermal carbonization, 190 ◦C, 12 h 5.9 0

Beetroot chips Hydrothermal carbonization, 190 ◦C, 4 h 6 40
Beetroot chips Hydrothermal carbonization, 190 ◦C, 12 h 5.9 0
Sewage sludge / 5 5

Wood chips Hydrothermal carbonization, 180 ◦C, 10 h 4.4 90
Spent brewer’s grains Dry carbonization, 800 ◦C, 0.5 h 11.8 115

Beetroot chips Dry carbonization, 800 ◦C, 0.5 h 10.4 95
Beetroot chips Dry carbonization, 800 ◦C, 0.5 h 8.7 85
Sewage sludge Dry carbonization, 800 ◦C, 0.5 h 8.8 100

Wood chips Dry carbonization, 800 ◦C, 0.5 h 12.1 80
Miscanthus Dry carbonization, 860 ◦C, 0.5 h 9.8 110

The data in this table were summarized from the labeled reference tables.

To create high-quality, heat-treated growing media components at a low cost and with
minimal energy consumption, numerous studies are concentrating on the post-treatment
process of HTC; the aim is to entirely eliminate the phytotoxicity of HTC products (Table 3).
Choosing suitable raw materials and optimizing preparation and post-treatment processes
have been proven to be feasible methods to reduce the phytotoxicity of HTC. For example,
research by Martin Hitzl et al. [90] proposed that secondary heat treatment of prepared HTC
at 275 ◦C can remove more than 99% of volatile organic phytotoxic substances. Research by
Intani et al. [122] pointed out that fresh biochar and biochar water extract both have severe
phytotoxicity, but the washing treatment of biochar can effectively reduce its phytotoxicity.
Similarly, research by Islam [87] showed that untreated biochar, fresh HTC, and aging
hydrothermal carbon all have strong phytotoxicity, but washed hydrothermal carbon
shows lower phytotoxicity.
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Table 3. Effectiveness of post-treatment strategies for phytotoxicity removal.

Raw Material Heat Treatment Condition Post-Treatment Phytotoxicity Removal Effect Reference

Sawdust, Wheat straw / Washing (water) 3–9% increase in final grain
yield of the plant [123]

Date palm leaflets Hydrothermal carbonization,
250 ◦C, 3 h Washing (water) 20% increase in

germination rate [124]

Sawdust Hydrothermal carbonization,
200 ◦C/300 ◦C Washing (water + acetone) 79–96% reduction in

circulating hydrocarbons [125]

Chicken feather Hydrothermal carbonization,
150 ◦C, 1 h Washing (water)

30% increase in branch length
and 50% increase in

dry biomass
[87]

/ Hydrothermal carbonization,
200 ◦C, 1 h

Secondary heat treatment
at 275 ◦C 99% reduction in VOC content [90]

Waste biomass (parks,
gardens)

Hydrothermal carbonization,
200 ◦C, 4 h

Secondary heat treatment at
350 ◦C and 550 ◦C

Germination index increased
from 60% to 165% (350 ◦C) and

190% (550 ◦C)
[126]

The data in the table were summarized from the original literature calculations.

4. Removing Phytotoxicity by Washing

Washing is the technique of using water or other solvents to diminish the pollutant
content of materials, thereby enhancing their quality and applicability [127]. Initially,
research on washing methods was primarily aimed at solving the problem of heavy metal
soil pollution, with a focus on reducing the excessive concentrations of these metals in the
soil [128]. In recent years, washing has also been used to treat agricultural waste to remove
its phytotoxicity [122].

Washing can be categorized into two types based on the type of washing agent used:
water washing and chemical washing [129]. Water washing is the simplest and most
common method. It uses deionized water to wash contaminated media to dilute and
eliminate pollutants. The advantage of water washing is that it is simple to operate and
low in cost. The disadvantage is that it is inefficient, requires a large amount of water
resources, and may lead to wastewater discharge [130,131]. Chemical washing refers
to the use of chemical reagents to treat contaminated materials in order to increase the
solubility of harmful substances or alter their chemical properties, thereby accelerating
their removal process. Chemical washing is efficient and can choose reagents suitable for
specific pollutants, but it is complicated to operate, high in cost, and may produce some
phytotoxic or difficult-to-degrade chemicals, causing secondary pollution [132]. As shown
in Table 4, different washing agents have their limitations and the properties of commonly
used agents can vary significantly [133].

Phytotoxicity removal mechanisms for washing methods can be divided into two
categories (Figure 3): physical mechanism—by the flushing, dissolution, adsorption, and
desorption of pollutants in the material with water or other washing agents, whereby pollu-
tants are transferred from the solid phase to the liquid phase or gas phase, thereby reducing
their content and bioavailability in the material—and chemical mechanism—through oxi-
dation, reduction, complexation, permutation, and other reactions between water or other
washing agents and the pollutants in the material, which are transformed into more solu-
ble, less phytotoxic, or more easily degradable forms, thereby reducing their content and
bioavailability in the material [133,134]. It is important to note that washing is only suitable
for treating some lightly or moderately polluted soils and soilless substrates, especially ma-
terials containing soluble or adsorbable harmful substances. For some difficult-to-remove
pollutants, such as organochlorine pesticides and polycyclic aromatic hydrocarbons, wash-
ing may not achieve the expected effect and may need to be combined with other methods
for comprehensive treatment [135,136].
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Table 4. Advantages, scope of application, and disadvantages of detergent types.

Detergent Type Advantages and Scope of Application Disadvantages

Inorganic acid Can effectively remove various heavy metals,
low cost.

Destructive to substrate structure and fertility,
may cause secondary pollution.

Inorganic salt Less impact on soil structure and fertility, can
form soluble metal salts.

Moderate removal efficiency, may
cause salinization.

Oxidizing/reducing agent Can change the valence state of metals,
increase solubility, or reduce toxicity.

Removal efficiency affected by metal type and
valence state, may cause secondary pollution.

Amino polycarboxylic acid

Can form stable water-soluble complexes
with various heavy metals, high removal

efficiency, less impact on soil structure
and fertility.

High cost, poor selectivity, may cause loss of
nutrient elements and secondary pollution.

Natural low-molecular-weight
organic acid

Good biodegradability, environmentally
friendly, can form complexes or ion exchange

with heavy metals.

Moderate removal efficiency, affected by
substrate type and pH.

Surfactant
Can increase the solubility and dispersibility
of heavy metals and reduce surface tension,

less impact on soil structure and fertility.
High cost, may cause secondary pollution.

Composite chemical agent
Can improve removal efficiency, reduce

single dosage and cost, and reduce damage
to soil.

May increase the risk of secondary pollution.

Soluble organic matter
Low cost, wide source, can form complexes

or ion exchange with heavy metals, has
fertilizing effect on soil.

Removal efficiency affected by substrate type
and pH.

The data are summarized from the original literature calculations.

Due to significant differences in the physicochemical properties of different phytotoxic
substances and washing agents, the removal effects of washing methods on material phy-
totoxicity vary [137]. Generally speaking, organic pollutants are more difficult to remove
than inorganic pollutants, and high-concentration pollutants are more difficult to remove
than low-concentration pollutants [138]. Furthermore, the washing time and frequency
affect the contact time and number of washes between pollutants and washing agents. The
longer the washing time and the higher the frequency, the better the removal effect, but
it may also cause the material to be overly moist. Therefore, it is necessary to determine
the appropriate washing time and frequency based on the migration speed of pollutants
and the water demand of substrates or plants [130]. Furthermore, different washing agents
have different solubilities and affinities for pollutants. Usually, the higher the concentration
of the washing agent, the better the removal effect, but a too-high concentration of the
washing agent may cause damage to the material. Therefore, it is necessary to choose a suit-
able washing agent and dosage based on the characteristics of pollutants and the tolerance
of substrates or plants [129]. Moreover, the washing temperature and pH will affect the
chemical reaction rate and equilibrium state between pollutants and washing agents [139].
The higher the temperature and the farther away from neutral pH, the better the removal
effect usually is [140]. But, it is necessary to consider whether too high a temperature and
too acidic or alkaline an environment will cause thermal damage or acid-base damage
to materials, and pH will greatly affect nutrient element availability [11]. Therefore, it is
necessary to control washing temperature and pH value according to pollutant reaction
kinetics and use a suitable temperature and pH range for the material [141,142].
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Although washing methods can efficiently mitigate phytotoxicity through straight-
forward procedures and observable outcomes, they also pose challenges, including the
consumption and contamination of water resources. Consequently, it is essential to de-
vise more eco-friendly washing technologies; investigate novel, safe washing agents; and
establish scientifically sound washing standards and regulations.

5. Removing Phytotoxicity by Aging

Composting, heat treatment, and washing are all technologies that require human
intervention to remove phytotoxicity from agricultural waste. Aging treatment refers
to the open-air storage of materials and natural weathering for 2–18 months, without
adding fertilizers or additives and without adjusting the physicochemical properties of the
materials in order to achieve the purpose of removing phytotoxicity [1,143]. Organic carbon,
ammonia nitrogen, sulfur, and other elements in plant waste are converted into harmless
states such as carbon dioxide, ammonia, nitrate nitrogen, nitrite nitrogen, sulfate, etc. by
microorganisms and enzymes [25,144]. Moreover, phytotoxic substances such as phenols,
aldehydes, and ketones in plant waste can be removed by aging, while the suitability of the
waste as a growing media component can be improved [145].

The efficiency of phytotoxicity removal through natural aging is determined by vari-
ous factors, primarily environmental temperature, humidity, and the material’s pH value
and C/N ratio [146–148]. Temperature, humidity, and pH are important factors affecting
the activity of microorganisms and enzymes. Too-high or too-low temperatures, humidity,
and pH will inhibit the activity and metabolism of microorganisms and enzymes [149–151].
The C/N ratio is an important factor affecting the conversion rate of organic carbon and
nitrogen [152]. Generally, the more suitable the C/N ratio of the material, the faster the
natural aging speed is. Too-high or too-low C/N ratios will lead to the accumulation
or deficiency of organic carbon or nitrogen [153]. The most used aging waste is coir and
bark [1,80,143,146]. In this review, several cases are used to illustrate aging methods for agri-
cultural waste as a growing media component. Research by Ma and Nichols [154] pointed
out that fresh coconut shells have high phytotoxicity and are used as a cultivation substrate
to significantly inhibit lettuce growth. After the aging treatment of coconut shells, the
phenol content is reduced and the inhibition of lettuce growth is also weakened. Witcher’s
team [155] also conducted a phytotoxicity test on fresh and aged pine bark. Although the
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growth of plants grown in aged pine bark growing media is not as good as that of plants
grown in peat substrate, the phytotoxicity is significantly reduced compared to fresh pine
bark growing media. Furthermore, Tuckeldoe et al. [156] planted peppers with soil and
aged coir growing media, respectively. The planting effect of aged coir growing media was
better than soil planting. Furthermore, Buamscha et al. [144] used fresh and aged cedar
bark as growing media, respectively. The geraniums planted in aged cedar bark growing
media grew faster and had higher leaf nitrogen contents. Similarly, Chemetova et al. [146]
found that fresh Acacia melanoxylon bark also has a strong phytotoxic effect, but, after
the aging treatment of Acacia melanoxylon bark, phenolic substances were completely
removed and no longer inhibited celery germination. And Altland et al. [143] compared
the physical and hydraulic properties of fresh pine bark, short-time-aged pine bark, and
long-time-aged pine bark. The aged pine bark had a finer particle size and stronger water
storage capacity, so it was more suitable for use in soilless cultivation.

Generally, the benefits of natural aging are clear: cost-effectiveness, ease of implementa-
tion, and no requirement for chemical additives. However, natural aging is time-consuming,
yields inconsistent results, and is limited by the availability of raw materials. These factors
make it challenging to industrialize for the production of high-quality growing media [157].

6. Removing Phytotoxicity by Ammonium Incubation

This review provides a comprehensive overview of four common phytotoxicity re-
moval technologies. These four methods are relatively mature and can often achieve the
non-phytotoxic standard (GI ≥ 80%). However, each method has its drawbacks. Com-
posting requires an extended processing period and specific equipment investments. It
also results in nitrogen loss, inconsistent outcomes, and the emission of waste liquids and
gases. Heat treatment demands significant equipment input and energy consumption
while emitting substances like bio-oil and biogas. Washing necessitates substantial water
and washing agents, leading to considerable chemical wastewater discharge, which is not
environmentally friendly. Aging involves an extended processing period along with waste
liquid discharge. These limitations restrict their application in the industrial utilization of
agricultural waste as growing media. For the industrial utilization of agricultural waste as
growing media, prerequisites include shorter processing times, ease of operation, repro-
ducibility, and stable yield and quality. Additionally, consideration must be given to cost
reduction and minimizing environmental pollution. Recently, Zhou and colleagues [158]
conducted an evaluation of the phytotoxicity of six common plant wastes in southwestern
China. They highlighted a strong correlation between the intensity of phytotoxicity and
the content of organic acids in these wastes. Drawing on these findings, they suggested
a novel approach for mitigating the phytotoxicity of green waste called ammonium incu-
bation. The basic idea of ammonium incubation is to have a specific detoxifying agent
react chemically with the phytotoxic substances in the material and reduce the activity or
concentration of the phytotoxic substances, thereby eliminating or reducing the phytotox-
icity. Specifically, they mixed green waste and ammonium salts (ammonium carbonate,
ammonium bicarbonate, etc.) at a mass ratio of 1–2%, adjusted the moisture content to
60–70%, and then placed them at room temperature for 3–7 days (Figure 4). The experiment
showed that this technology could significantly reduce the content of organic acids and
their derivatives in green waste within 5 days, increasing the seed germination index (GI)
of representative green waste mixtures from less than 5% to more than 100%. During
the ammonium incubation process of green waste, complex biological and non-biological
reactions involving ammonium salts, organic acids, and other phytotoxic substances may
occur, thereby reducing the phytotoxicity of green waste. This treatment process had low
energy consumption and low pollution and very good prospects for industrial application.
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7. Conclusions and Future Research Expected

Recent research on phytotoxicity removal technologies for agricultural waste as
a growing media component has been examined in this review. Four common meth-
ods (composting, heat treatment, washing, aging) and a new technology called ammonium
incubation have been identified as effective in significantly reducing the content or bioavail-
ability of phytotoxic substances. The main findings indicate that while these methods
can transform agricultural waste into nearly harmless growing media materials, they also
present several disadvantages such as inconsistent product quality, high energy consump-
tion, loss of volume and weight, lengthy processing times, and secondary pollution. The
advantages and disadvantages of the various methods are compared in Table 5.

Table 5. The advantages and disadvantages of phytotoxicity removal technologies.

Phytotoxicity
Removal

Technology

Processing
Time

Energy
Consumption

Water
Consumption

Equipment
Costs

Emissions of
Pollution

Volume and
Weight Loss

Composting Long (weeks
to months)

Low energy
consumption

Extremely
low water

consumption

Low equipment
costs

Odor, leachate
emissions

High volume
and weight loss

Aging

Extremely long
(months or

even more than
a year)

No additional
energy

consumption

No water
consumption

Low equipment
costs

Odor, leachate
emissions

High volume
and weight loss

Heat treatment Short (minutes) High energy
consumption

No water
consumption

High
equipment

costs

Greenhouse gas
emissions

High volume
and weight loss

Washing Short (minutes)
Extremely
low energy

consumption

Extremely
high water

consumption

Low equipment
costs

Wastewater
discharge

Low volume
and weight loss

Ammonium
incubation

Medium
(5 days)

Extremely
low energy

consumption

Extremely
low water

consumption

Low equipment
costs

No pollution
emissions

Low volume
and weight loss

Given these findings, future efforts should focus on optimizing these phytotoxicity
removal technologies to minimize material loss and processing costs while avoiding sec-
ondary pollution. Furthermore, maintaining the original volume of agricultural waste and
removing its phytotoxicity should be prioritized when it is utilized as a growing media
component as soilless cultivation requires a large volume and weight of the substrate [159].
The implications of this study suggest that future research could explore economical and
environmentally friendly washing agents and efficient washing technologies. Additionally,
the chemical detoxification route based on detoxifying agents warrants further attention.
This method can achieve rapid and nearly zero-energy-consumption removal of phyto-
toxicity while preserving the volume, weight, and physicochemical properties of the raw
materials. This approach could particularly benefit the industrial use of agricultural waste
as a growing media component. In conclusion, this review underscores the importance of
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thoroughly investigating the sources of phytotoxicity in different agricultural wastes, iden-
tifying the composition of their phytotoxic substances, and developing efficient removal
methods. The findings are hoped to inspire further research in this area, contributing to the
resolution of resource recycling challenges.
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