
Citation: Sun, Y.; Zhong, H.; Ding, Y.;

Cai, H.; Peng, X. Exploring the

Diverse Response of Cropland

Vegetation to Climatic Factors and

Irrigation across China. Agronomy

2024, 14, 188. https://doi.org/

10.3390/agronomy14010188

Academic Editor: Yang Gao

Received: 20 December 2023

Revised: 11 January 2024

Accepted: 11 January 2024

Published: 15 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agronomy

Article

Exploring the Diverse Response of Cropland Vegetation to
Climatic Factors and Irrigation across China
Yanan Sun 1, Huayu Zhong 2, Yibo Ding 3, Huanjie Cai 1,* and Xiongbiao Peng 1

1 College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling,
Xianyang 712100, China; 2020060361@nwafu.edu.cn (Y.S.); pengxiongbiao@nwafu.edu.cn (X.P.)

2 College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China;
zhy_water@163.com

3 Yellow River Engineering Consulting Co., Ltd., Zhengzhou 450003, China; dingyibo@stu.scu.edu.cn
* Correspondence: huanjie@tom.com; Tel.: +86-029-8708-2133; Fax: +86-029-8708-29014

Abstract: Owing to limited research on the interactions between cropland vegetation and climate and
irrigation, this study used the normalized difference vegetation index (NDVI) as a cropland vegetation
indicator to describe vegetation dynamics. Potential evapotranspiration (PET) was calculated using
the Penman–Monteith equation. A partial correlation analysis and a Pearson correlation coefficient
were used to determine the spatial response mechanisms of cropland vegetation to different climatic
factors and irrigation in China for the period 1985–2015. The results show that different climatic factors
(precipitation, PET, and water deficits) display positive correlations with cropland vegetation in
China. A stronger correlation was observed between cropland vegetation and meteorological factors
in northern China compared to the southern parts; the response time of NDVI values of croplands to
precipitation was observed to be short-term (1 to 3 months) and long-term (3 to 6 months) in northern
and southern regions, respectively. In contrast, the response time of NDVI values of croplands to
PET displayed a complex spatial heterogeneity. Most of the cropland vegetation and the areas with
the highest potential crop yields were located in the eastern part of China; these areas also require
higher levels of irrigation, which benefits the potential crop yields. This study can provide a better
understanding of the agricultural ecosystems and formulate strategies for food security.

Keywords: cropland vegetation; response time; climate change; spatiotemporal heterogeneity;
cropland ecosystem

1. Introduction

Vegetation plays an essential role in material and energy exchange, greenhouse carbon
reduction, and climate stabilization [1–4]. The vegetation cover is commonly used to
assess regional and global environmental conditions [5–8]. The impact of human activities
and climatic factors on vegetation dynamics has been widely discussed in the last few
decades [9–11]. Relevant studies have shown that climatic factors have the most direct
effect on vegetation, affecting its growing seasons, species composition, and distributional
range, thereby altering the structure and function of ecosystems; human activities directly
or indirectly affect vegetation by disturbing and modifying ecosystems, such as urban
development and land-use change [12–15].

Cropland, being one of the most significant terrestrial vegetation types, is essential
for the sustainable development of national economies [16–19]. In addition to producing
grains, vegetables, and fiber for humans, cropland also performs important roles in ecosys-
tem services such as soil protection, carbon sequestration, and gas management [20–22].
Cropland vegetation is much more complex than other types of vegetation changes due
to farmers and government policies [23–26]. In particular, cropland has retained the traits
of the original natural ecosystem while also undergoing extensive human modification,
resulting in a classic natural–artificial coupled ecosystem [16,27]. However, less research
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has investigated the different responses of cropland vegetation to environmental condi-
tions than vegetation such as forests and grasslands. Investigating cropland vegetation’s
reaction to climatic variables and human activities can aid in understanding the drivers of
cropland change, developing reasonable agricultural policies, and achieving sustainable
agricultural growth.

Satellite remote sensing data have become an indispensable source of information for
monitoring vegetation changes at the regional, national, and global levels [28–31]. Remote
sensing vegetation indexes have been widely utilized to monitor vegetation status [32–34].
Numerous studies have confirmed that the Normalized Difference Vegetation Index (NDVI)
is closely related to aboveground biomass, the leaf area index (LAI), vegetation coverage,
and vegetation chlorophyll, thereby effectively reflecting regional vegetation coverage and
vegetation growth status. Therefore, among various vegetation indices, the NDVI has
become the most popular vegetation index and is commonly used in the quantification
of vegetation dynamics, terrestrial carbon, and environmental stress [7,35]. The Global
Inventory Modeling and Mapping Study (GIMMS) NDVI product, derived from the Ad-
vanced Very High-Resolution Radiometer, provides global bi-weekly NDVI data starting
from the 1980s, which is considered to be a reliable long-term NDVI time series, and has
been widely used in Earth and environmental sciences [35–37]. These remotely sensed data
are also employed for crop monitoring and agricultural yield predictions, allowing for the
examination of crop vegetation over lengthy time periods and enormous areas [34].

Cropland vegetation growth is vulnerable to a combination of natural and anthro-
pogenic factors [7,13,15,38]. Climate affects vegetation dynamics, which in turn impacts
plant growth [39]. Precipitation is the climate factor that receives the most attention when
examining the response between cropland vegetation and climate, especially in arid re-
gions. Changes in precipitation over a longer time period will cause changes in the type
of vegetation function, while changes in annual and seasonal precipitation will alter plant
phenology and ecosystem cover [38,40]. Potential evapotranspiration (PET) plays a critical
role in the ongoing atmosphere–soil–vegetation interaction as an essential component of the
global water and energy cycles, and water resources in the agricultural system are primarily
drained through PET [41,42]. Similarly, PET impacts vegetation development on different
temporal and spatial scales. Water scarcity impacts cropland vegetation growth in both arid
and humid places due to regional variances in precipitation and PET [43]. Furthermore,
previous research has shown that vegetation growth can be influenced by past climatic
conditions. Piao et al. (2003) found a nearly three-month lag in the NDVI responses to
temperature [44]. Wen et al. (2019) identified the overall average lagged times of daily
minimum and maximum temperature on vegetation growth were 1.45 ± 0.96 months and
1.68 ± 1.05 months, respectively [45]. Therefore, time-lag effects must also be considered
when evaluating the response relationship between agricultural vegetation and climatic
factors, and understanding such time lags allows us to better comprehend the interactions
between cropland vegetation and climate factors.

In addition, many studies have confirmed that human activities are another major
factor affecting vegetation cover. Ren et al. (2023) demonstrated that anthropogenic
influences, such as Gross Domestic Product (GDP), had largely negative effects on the
NDVI in the Jilin Province, China, while changes in land use types were mostly positive [7].
Gao et al. (2022) inferred from the results of residual analysis that human activities were the
dominant driver for vegetation change [38]. In general, human activities have both positive
and negative impacts on vegetation cover [10]. For cropland, irrigation is the main means
of supplementing crop water scarcity and ensuring effective water management, and is
a major factor influencing changes in cropland vegetation, which are directly affected by
human activities [46,47]. Irrigation is becoming increasingly crucial in a rapidly changing
climate, since more frequent and severe extremes, such as droughts and heatwaves, increase
the risk of plant death and production, while also putting an additional strain on water
resources. [48–50]. Therefore, it is especially critical to explore the response of cropland
vegetation to irrigation.
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China is one of the greatest agricultural countries in the world, with significant differ-
ences in climatic conditions across the country. The response and feedback mechanisms of
cropland vegetation to climatic factors and human activities vary considerably in different
areas [51–53]. Precipitation, PET, water deficiency, and irrigation all have an impact on
cropland vegetation coverage. Therefore, it is necessary to explore the diverse responses of
cropland vegetation to various climatic factors and irrigation across China. The primary
objectives of this study were to (1) analyze the response of the cropland NDVI to different
climatic factors; (2) investigate the response time of cropland vegetation to different climatic
factors; and (3) assess the spatial differentiation of the relationship between cropland vegeta-
tion and irrigation. The findings of our study could improve our understanding of cropland
vegetation development by identifying cropland vegetation response mechanisms and
environmental factors, as well as providing decision support for agricultural production.

2. Materials and Methods
2.1. Study Area

The main basins, plateaus, plains, and rivers in China are shown in Figure 1a. Based
on climate characteristics, the study area was divided into eight sub-regions (sub-region
I to sub-region VIII) (Figure 1b). The climatic classification criteria were provided by the
Resource and Environmental Sciences and Data Center of the Institute of Geographic
Sciences and Natural Resources Research, Chinese Academy of Sciences (China) (https:
//www.resdc.cn/data.aspx?DATAID=133, accessed on 20 December 2023). The princi-
pal cropland-producing areas were separated into nine sub-regions based on regional
features, as illustrated in Figure 1c (http://www.resdc.cn/data.aspx?DATAID=275, ac-
cessed on 20 December 2023). The nine food-producing regions are (I) the Northeast China
Plain (NECP), (II) the Yunnan–Guizhou Plateau (YGP), (III) the Northern China Plain
(NCP), (IV) Southern China (SC), (V) the Sichuan Basin and surrounding regions (SCB),
(VI) the Middle and Lower reaches of the Yangtze River (MLRYR), (VII) the Qinghai Tibet
Plateau (QTP), (VIII) the Loess Plateau (LP), and (IX) the Arid and Semi-arid Area of North
China (ASANC).

2.2. Data Sources and Preprocessing

We employed GIMMS NDVI gridded cell data, specifically the NDVI3g product (USA).
For the period 1982–2015, NDVI gridded cell data were collected from the GIMMS dataset
with a spatial resolution of 8 km pixel and a temporal resolution of 15 days [54]. The
maximum value synthesis method was used to create the monthly dataset [55].

We used NDVI gridded cell data obtained from the Global Inventory Modeling and
Mapping Studies (GIMMS) project, specifically the NDVI3g product. The NDVI gridded
cell data, originating from the GIMMS dataset with a spatial resolution of 8 km pixel and a
temporal resolution of 15 days, were obtained for the period 1982–2015 [54]. The dataset
on a monthly scale was achieved by the maximum value synthesis method [55].

In this study, the monthly weather gridded cell data of 862 meteorological stations
for the period 1982–2015 (Figure 1b) were obtained from the China Meteorological Data
Sharing Service Network (China) (http://data.cma.cn/site/index.html, accessed on 20
December 2023). The PET was calculated using the Penman–Monteith formula, the details
of which can be seen in Section 2.3.1. The water deficit was expressed as precipitation
minus PET. We reconstructed the spatial resolution of the meteorological data using the
Inverse Distance Weighted (IDW) approach, in accordance with the NDVI dataset [56].
Table 1 shows the average annual PET and annual cumulative precipitation for the eight
climatic zones (Figure 1b) from 1982 to 2015.

https://www.resdc.cn/data.aspx?DATAID=133
https://www.resdc.cn/data.aspx?DATAID=133
http://www.resdc.cn/data.aspx?DATAID=275
http://data.cma.cn/site/index.html
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Table 1. The average annual potential evapotranspiration (PET) and the average annual cumulative
precipitation for the eight climatic zones (1982–2015).

Climate Zones Average Annual Potential
Evapotranspiration (mm)

Annual Average Cumulative
Precipitation (mm)

I 269–398 464–497
II 484–555 587–735
III 820–948 557–800
IV 727–998 1061–1590
V 805–1320 1567–2052
VI 677–862 340–464
VII 862–1034 104–205
VIII 655–941 340–723

The crop yield (ton) was obtained from the Ministry of Agriculture and Rural Affairs
of The People’s Republic of China. The potential yield data of croplands were obtained
from the Resource and Environment Science and Data Center (China) (http://www.resdc.
cn/data.aspx?DATAID=261, accessed on 20 December 2023). The data about the irrigated
cultivated lands were obtained from the Food and Agriculture Organization (FAO) of the
United Nations. Specifically, the irrigation rate in this study refers to the proportion of
irrigated cultivated lands to total cropland. We resampled the potential yield data and
the irrigated cultivated lands to match the spatial resolution of 8 km using the majority
function in the Resample Tool of ArcGIS 10.2 (ESRI, Redlands, CA, USA).

http://www.resdc.cn/data.aspx?DATAID=261
http://www.resdc.cn/data.aspx?DATAID=261
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2.3. Data Analysis
2.3.1. Potential Evapotranspiration

The Penman–Monteith equation (Equation (1)) takes into account all relevant elements
and is commonly used to calculate PET [57,58].

PET =
0.408∆(Rn − G) + γ 900

T+273 u2(es − ea)

γ(1 + 0.34u2) + ∆
(1)

where PET is the potential evapotranspiration (mm·d−1); Rn is the net surface radiation
(MJ/m−2·d), which is calculated from Equations (2) to (15); G is the soil heat flux (MJ/m2·d),
which is calculated from Equation (17); γ is the dry and wet constant (kPa/◦C), which is
calculated from Equations (10) to (12); T is the average temperature (◦C), which is obtained
from the observational data; u2 is the wind speed at a height of 2 m (m/s), which is
calculated from Equation (16); es is the actual vapor pressure (kPa), which is calculated
from Equations (13) to (14); ea is the actual atmospheric pressure (kPa), which is calculated
from Equations (13) and (15); and ∆ is the tangent slope of the saturation vapor pressure
curve at T (kPa/◦C), which is calculated from Equation (18).

Rn = Rns − Rnl (2)

where Rns is the net shortwave radiation (MJ/m2·d), which is calculated from Equation (7);
and Rnl is the net longwave radiation (MJ/m2·d), which is calculated from Equation (3).

Rnl = 2.45 × 10−9 ·
(

0.9
n
N

+ 0.1
)
· (0.34 − 0.14

√
ea) ·

(
T4

max,K + T4
min,K

)
(3)

where n is the actual sunshine hours (h), obtained from the observational data; N is the
maximum possible sunshine hours (h), which is calculated from Equation (4); and Tmax,K
and Tmin,K are the maximum and minimum absolute temperatures (K), respectively, which
are obtained from observational data.

N = 24/π · ωs (4)

where ωs is the sunshine hour angle (rad), which is calculated from Equation (5).

ωs = arccos(− tan φ · tan δ) (5)

where φ is geographical latitude (rad), which is obtained from the observational data; and
δ is the dip angle of the sun (rad), which is calculated from Equation (6).

δ = 0.409 · sin
(

2π

365
J − 1.39

)
(6)

where J is the ordinal number.

Rns = 0.77 ·
(

0.19 +
0.38n

N

)
Ra (7)

where Ra is the solar radiation at the edge of the atmosphere (MJ/m2·d), which is calculated
from Equation (8).

Ra = 37.6 · dr · (ωs · sin φ · sin δ + cos φ · cos δ · sin ωs) (8)

where dr is the relative distance between the sun and the earth, which is calculated from
Equation (9).

dr = 1 + 0.033 · cos
(

2π

365
J
)

(9)
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γ = 0.00163 · P
λ

(10)

where P is the pressure (kPa), which is calculated from Equation (11); and λ is the latent
heat (MJ/kg), which is calculated from Equation (12).

P = 101.3
(

293 − 0.0065Z
293

)5.26
(11)

where Z is the elevation (m), which is obtained from the observational data.

λ = 2.501 −
(

2.361 × 10−3
)
· Tm (12)

where Tm is the monthly average temperature (◦C), which is obtained from the observa-
tional data.

e(T) = 0.6108 exp
(

17.27T
T + 237.3

)
(13)

where e(T) is the saturated water vapor pressure at a temperature of T.

es =
e(Tmax) + e(Tmin)

2
(14)

where Tmax and Tmin are the maximum and minimum temperatures (◦C), respectively,
which are obtained from the observational data.

ea =
RH

/[
50

e(Tmin)
+

50
e(Tmax)

]
(15)

where RH is the relative humidity (%), which is obtained from the observational data.

u2 =
4.87 · Uh

/
ln(67.8h − 5.42) (16)

where h is the sealing height (m), which is obtained from the observational data; Uh is the
actual wind speed (m/s), which is obtained from the observational data.

G = 0.38 · (Td − Td−1) (17)

where Td and Td−1 are the atmospheric temperatures at d and d − 1, respectively, which
are obtained from the observational data.

∆ =
4098ea

(T + 237.3)2 (18)

2.3.2. Partial Correlation Analysis

In this study, we performed a pixel-level partial correlation analysis between cropland
vegetation, precipitation, and PET for the period 1982–2015.

ryx.z =
rxy − rxzryz√

(1 − r2
xz)

(
1 − r2

yz

) (19)

where ryx.z refers to the partial correlation coefficient between y and x, when z is the
control variable, and ryx, ryz, and rxz represent the correlation coefficients among y, x, and
z, respectively.
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2.3.3. Pearson Correlation Coefficient

In this study, we used the Pearson correlation coefficient (p < 0.05) to quantify the
impact of water deficits on the vegetation of croplands. The Pearson correlation coefficient
was calculated between the cropland vegetation NDVI and crop yield for the major crop-
producing areas. The Pearson correlation coefficients were calculated for each grid cell.

3. Results
3.1. The Cropland Vegetation Response to Climatic Factors
3.1.1. Response of Cropland Vegetation to Precipitation

We assessed the correlation coefficients between the cropland NDVI and precipitation
to discover the characteristics of the response of cropland vegetation to precipitation
(Figure 2a). We also performed a partial correlation analysis of the NDVI and precipitation
in different climatic sub-regions, with response times ranging from 1 to 6 months (Figure 2b).
Precipitation was shown to have a beneficial impact on cropland vegetation in China, with
the largest positive impact recorded in sub-regions I, II, VI, and VIII, with a high positive
impact in sub-regions III, and a low positive impact in sub-regions IV, V, and VII (see
Figure 2a). Figure 2b shows that the majority of locations had reaction times of less than
3 months (64.8% of grid cells), although other places had response times of 4 to 5 months
(18.6% of grid cells). Only a few areas (16.6% of grid cells) showed a time lag of more than
5 months, and these were mainly in sub-regions IV and V (Figure 2b).
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Figure 2. Response of cropland vegetation to precipitation for the period 1985–2015: (a) partial
correlation coefficient and (b) response time.

Figure 3a demonstrates that the correlation coefficient between cropland vegetation
and precipitation (usually >0.6) was highest in sub-regions I, II, VI, and VIII, and that
these four sub-regions (Figure 3b) had similar response times (generally 1–2 months).
Although sub-regions II and III (Figure 3b) had similar response times (usually 2 months),
the correlation coefficient in sub-region III (typically 0.2–0.6) was lower than the correlation
coefficient in sub-region II (typically 0.6–0.7) (Figure 3a). Sub-region VII had the lowest
correlation coefficient (usually 0.2–0.4), with some grid locations (32.4%) having a response
time of more than 2 months. The spatial distribution pattern shows that the climate sub-
regions in eastern China (sub-regions IV and V) had a longer response time of 2–6 months
(Figure 3b), with correlation coefficients only slightly higher than sub-region VII.
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Figure 3. Box diagram showing (a) the correlation coefficient and (b) the response time between
cropland vegetation and precipitation for different sub-regions.

3.1.2. Response of Cropland Vegetation to PET

As compared to precipitation, the positive impact of PET on cropland vegetation
was significantly stronger (Figure 4a), which seems to be latitude-dependent. The highest
positive impact of PET was observed in sub-regions I, II, VI, and VII in northern China,
which was significantly stronger than sub-regions III, IV, and V in southern China, with
sub-region V in southern China exhibiting the lowest correlation coefficient. However,
sub-region VIII is located in southern China, and it also shows a strong positive PET impact,
suggesting a complex response relationship between PET and vegetation in China. The
response time of cropland vegetation to PET was significantly longer than precipitation,
which also showed different characteristics in different climatic zones (Figure 4b). Unlike
the correlation coefficient, the response time was not observed to be particularly linked to
latitude; most areas had a response time longer than 3 months in the climatic zones, which
are located in northern China (sub-regions I, II, and VI) and also in southern climatic zones
(sub-regions III, IV, V, and VIII) (Figure 4b).
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The correlation coefficient of cropland vegetation and PET was greater than 0.6 for
most of the sub-regions, particularly sub-regions I and II (typically >0.8) (Figure 5a). The
correlation coefficient of cropland vegetation and PET was the lowest for sub-region V
(typically 0.4~0.6), which is located further south in China. The response time of cropland
vegetation and PET varies considerably between different climatic zones; sub-regions II,
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V, VI, and VIII had the longest response times (typically >3 months), and sub-region IV
had the shortest response time (typically <3 months). In addition, the response time of sub-
region VII (typically 2 to 4 months), sub-region III (typically 1 to 5 months), and sub-region
V (typically 3 to 6 months) varied over a long range. Therefore, it can be concluded that
there was no clear link recorded between response time and correlation coefficient.
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3.1.3. Response of Cropland Vegetation to Water Deficits

To identify cropland vegetation response to water deficits, we calculated the correlation
coefficients between the cropland NDVI and water deficits for each grid cell, which was
expressed as precipitation minus PET. Figure 6 shows that water deficits had a positive
impact on cropland vegetation in China; sub-regions I, II, VI, and VII had the highest
positive impact, and the cropland vegetation in sub-regions I, II, and VI also responded
strongly to precipitation and PET. In terms of water deficits, precipitation, and PET, the
impact and response times were the lowest in sub-regions IV and V. In addition, higher
correlation coefficients were generally found in the north of China (sub-regions I, II, VI, and
VII), while lower correlation coefficients were observed in the south of China (sub-regions
IV and V).
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Figure 7a shows that the highest correlation coefficient of cropland vegetation to
water deficits (typically >0.6) was recorded in sub-regions I, II, VI, and VII (Figure 5b),
which displayed larger water deficits (typically >200 mm). The most water-deficient area,
sub-region VII (typically >800 mm), displayed a correlation coefficient greater than 0.8.
Sub-regions III and VIII (Figure 5b) had a similar correlation coefficient (typically 0.4–0.6);
however, sub-region VIII (typically >400 mm) displayed larger areas with water deficits
compared to sub-region III (typically >0~400 mm). Sub-regions IV and V were the areas
with the most severe water scarcity (typically <−200 mm), and had the lowest correlation
coefficients. In general, the correlation coefficients between water deficits and cropland
vegetation were closely related to the degree of water shortage.
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3.2. Response of Crop Yield to Irrigation Rate
3.2.1. Relationship between Cropland NDVI and Crop Yields

The goal of our study was to understand the correlation between the NDVI and crop
yield in each crop-producing area. The average NDVI values during the growing season
(March–October) and the multi-year average crop yields were obtained. Figure 8a shows
the correlation coefficients between crop yields and the NDVI of cropland vegetation,
which was greater than 0.6 in all crop-producing areas. The SC, YGP, LP, SCB, and ASANC
crop-producing areas showed the highest correlation coefficients (typically >0.9), followed
by the NEP, NCP, and MLRYR areas (approximately 0.8), and the QTP area, which showed
a relatively weak correlation (typically <0.7). The multi-year average NDVI values for the
growing season have been shown in Figure 8b. The crop-producing areas in the MLRYR,
SC, YGP, and SCB regions showed the highest NDVI values (typically >0.55), followed by
the areas in the NEP and NCP regions (approximately 0.5) and the QTP, LP, and ASANC
regions (typically <0.5). The multi-year average crop yields in the NEP, NCP, and MLRYR
regions were the highest (typically >90 million tons), followed by the SC, YGP, SCB, LP,
and ASANC regions (typically >20 million tons), and the QTP region (1.94 million tons)
(Figure 8c).

3.2.2. The Effect of Different Irrigation Rate on Potential Crop Yields

The potential grain yield and irrigation rate for each grid cell in China are shown in
Figure 9. The irrigation rate is represented by the percentage of total irrigated land on
each grid cell. Figure 9a shows that the potential grain yield per hectare was the highest in
sub-regions III and IV, and these areas had the highest irrigation rates (Figure 9b); China’s
plains (paddy, sorghum, maize, etc.) are located in these two sub-regions. Sub-region I is
one of the coldest areas of China and mainly produces one crop a year [59], sub-region
VIII includes the Qinghai–Tibet Plateau, where crop growth is very difficult [60], these two
sub-regions (I and VIII) have the lowest potential for grain production in China. It can
be seen in Figure 9b that most areas had an irrigation rate lower than 40% (81.9% of grid
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cells), but some displayed a higher degree, 40%~80% (17.4% of grid cells). Only a few areas
(0.7% of grid cells) had an irrigation rate higher than 80%, which were mainly distributed
in sub-region III (Figure 9b).
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We further assessed the response of the irrigation rates to potential crop yields in
different climatic zones, as shown in Figure 10. Irrigation rates are low in China, with
sub-regions III and VII (15–20%) having slightly higher values than sub-regions II, IV, V,
and VI (5–10%) in relative terms. The irrigation rates of sub-regions I and VIII were close
to zero. A strong correlation was observed between potential grain yields per hectare
and irrigation rates, with sub-regions II, III, and VII showing higher average potential
grain yields per hectare than sub-regions IV, V, and VI. Sub-regions I and VIII displayed
significantly lower correlations compared to the remaining divisions (Figure 10b).
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We also analyzed the correlations between the average potential grain yields per
hectare and irrigation rates (Figure 11). The irrigation rate increased from 0–25% to 50–75%,
with the average increase in potential crop yield growing from 4000 kg/hm2 to 8000 kg/hm2.
It is worth noting that the rate of this increase becomes progressively smaller. The average
potential grain yield per hectare did not show a significant increase when the irrigation
rate was increased from 50~75% to 75~100%.
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4. Discussion
4.1. Discrepancy Response of Cropland Vegetation to Legacy Effects

As shown in this study, there is a positive correlation between precipitation and
the cropland NDVI, although it is not equally distributed in space [61,62]. The cropland
NDVI responded more strongly to precipitation in sub-regions I, II, VI, and VIII than in
sub-regions IV, V, and VII (Figure 3a). Table 1 shows that sub-regions VI and VIII are
relatively dry, with multi-year average PET far exceeding multi-year average cumulative
precipitation. In addition, the temperature in sub-regions VI and VIII, which are dry and
cold areas, respectively, is low [63,64]. In general, the NDVI values of croplands were
observed to be more sensitive to precipitation in cold and dry areas, which has also been
illustrated by Bao et al. (2021) [65]. Sub-regions I and II are located in NECP, where rain-fed
irrigation is widely practiced and precipitation is the main source of the soil moisture
utilized by crops [59]. Although the temperature in the NECP region is low, rain-fed
crops have been reported to be more sensitive to precipitation, which is a major factor, in
addition to temperature, affecting crop yields [66]. Sub-regions IV and V, which have high
temperatures and enough precipitation, had the smallest association between precipitation
and vegetation [67].

The correlation between the cropland NDVI and PET was substantially greater than
the correlation between precipitation and the NDVI (Figure 5a). It has been reported that
many factors affect PET, such as wind speed, vapor pressure deficits, temperature, and
precipitation [68–70]. According to Table 1, the driest climate zones in China are located
in subzones VI, VII, and VIII. The arid climate zones have a large water vapor pressure
difference, which produces a large PET. The maximum PET will reduce the soil water
content, which in turn will cause water shortages and affect the growth of vegetation [71].
Tang and Tang (2021) found that wind speed has also been an important factor affecting
PET [68], and sub-regions I and II experience the highest wind speeds in China [72], which
may be an important factor of the PET sensitivity to change in the farmland vegetation
in these regions. There may also be other factors contributing to the strong correlation
between farmland vegetation and PET in these regions, but the current literature on this
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issue is insufficient, and further research is required. The water quantity in sub-region
V is sufficient (Table 1) and the relative humidity of air is high, which does not create
water deficit conditions; thus, the response of farmland vegetation to PET is not strong in
this region.

Croplands in sub-regions I, II, and VI had a stronger reaction to precipitation than
croplands in sub-regions III, IV, V, VII, and VIII (Figure 5a). A thorough examination
of Figures 3a and 5a reveals a strong correlation between cropland NDVI values and
precipitation, which is similar to the correlation between the cropland NDVI and PET in
sub-regions I and II, where water deficit conditions are determined by both precipitation
and PET. Xu et al. (2018) discovered that trees have the highest drought resistance and can
access water stored in deep soil layers in severe drought circumstances [73]. Herbaceous
plant xylem systems are less drought-resistant due to their low capacity for water and
carbon storage [74]. Therefore, the type and density of vegetation cover have a great
influence on the ecological resistance of the region, which results in significant spatial
variability in the response of cropland vegetation to climatic factors. As can be seen in
Figure 12, sub-region VI has a larger proportion of grassland vegetation (Figure 12a) and a
lower vegetation cover (Figure 12b), indicating that the ecological resistance of this region
is poor and it is prone to respond strongly to water deficit conditions. The maximum
precipitation in sub-regions IV and V (Table 1) was observed to also have the highest
forest and vegetation cover, indicating that abundant precipitation and stronger ecological
resistance may be the reason for the insensitivity of NDVI values of cropland to water
deficit conditions in this region.
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4.2. Adaptive Irrigation Practices for Different Grain-Producing Areas

This study shows that the spatial distribution of average multi-year potential yields is
not uniform throughout all the regions (Figure 10). The average irrigation rates (Figure 10a)
and corresponding average multi-year potential crop yields were observed to be highest
in sub-regions III, IV, and VII. Figure 11 further shows that by increasing the irrigation
rate, crop yields can increase to some extent. In particular, crops in wetter areas usually
require more water as they are more sensitive to precipitation, and therefore increased
irrigation is more effective [59]. Furthermore, mulched irrigation is considered to be the
most efficient irrigation method because the uniform distribution of water in the soil
limits deep percolation and reduces unproductive evaporation from the soil [75]. Several
gaps were identified between mean yearly yields and potential crop yields in several
grain-producing areas of China, particularly in the NEP, NCP, MLRYR, LP, and ASANC
sub-regions. In addition, the most important grain-producing areas of China were observed
to be the NEP, NCP, MLRYR, LP, and ASANC sub-regions, which constituted more than
70% of China’s total crop area. The average multi-year precipitation in NEP (sub-regions I,
II, and eastern VI) is very small (Table 1), but the average multi-year PET is large, which
creates a larger water deficit (Figure 13b) and conditions more sensitive to water deficit
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conditions (Figure 7a). According to Figure 12b, the irrigation rate is higher in the NEP
sub-region, which indicates that mulched irrigation is an effective strategy to reduce the
PET in this region. The multi-year average precipitation in the NCP sub-region (sub-region
III) is low and the multi-year average PET is large (Table 1). According to Figure 7a, the
cropland vegetation in sub-region NCP is more sensitive to water deficit conditions. In
addition, the response of vegetation to PET is slightly greater than that of precipitation
in the NCP sub-region (Figure 13a), with a large water deficit (Figure 13b). According to
Figure 12b, the irrigation rate in the NCP sub-region is low; therefore, a further increase in
the irrigation rate and the use of mulching in the NCP sub-region could reduce PET. The
MLRYR sub-region was observed to have a higher average multi-year precipitation and a
lower average multi-year PET (Table 1). According to Figure 7a, the cropland vegetation in
sub-region MLRYR is more sensitive to water deficits. In addition, the proportion of forest
vegetation in sub-region IV was low, and the response of the MLRYR sub-region to PET
was slightly greater than that of precipitation (Figure 13a). According to Figure 12b, the
average irrigation rate in the MLRYR sub-region was high; therefore, mulched irrigation
should be an effective strategy to reduce evaporation. The multi-year average precipitation
in the ASANC sub-region (sub-region VIII) was low and the multi-year average PET was
large (Table 1). According to Figure 7a, the cropland vegetation in the ASANC sub-region
was more sensitive to water deficits. In addition, the response of vegetation to PET in
the ASANC sub-region was slightly greater than that of precipitation (Figure 13a), with a
large water deficit to meet crop needs (Figure 13b). According to Figure 12b, the irrigation
rate in the ASANC sub-region was low; therefore, the irrigation rate could be further
increased and mulching could be applied to reduce PET. Sub-region ASANC is located in
an extremely arid region, and improving the drought tolerance of crops has been proposed
to increase the yield of crops in such areas [76]. However, irrigation could be a double-
edged sword. For example, Zheng et al. (2021) showed that improper irrigation strategies
may also erode the land environment and reduce crop yields [77]. Furthermore, while
irrigation provides sufficient water, it also promotes nitrous oxide emissions due to the
large amount of nitrogen inputs [78]. In addition, secondary hazards, such as splashing
and erosion from irrigation, have been shown to potentially reduce water and fertilizer
use efficiency [79]. Therefore, there is also a need to improve soil watering methods
(e.g., Biosystems Technology) when irrigating cropland vegetation, and to provide better
prerequisites and a stable environment for plant growth [80,81].
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5. Conclusions

This study investigated the diverse response of cropland vegetation to meteorological
conditions and irrigation across China. Our findings will contribute to the understanding
of changes in agricultural vegetation and their driving factors in different sub-regions for
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more effective and sustainable ecosystem management. This study’s findings have been
summarized as follows:

The diverse response of cropland vegetation to climatic factors (precipitation, PET,
and water deficits) was assessed in different climate sub-regions across China. The climatic
factors showed positive correlations with cropland vegetation, and the highest correlation
coefficient between cropland vegetation and climatic factors was observed in sub-regions
I, II, and VI, and the lowest in sub-regions IV and V. In general, there was a stronger
correlation between cropland vegetation and meteorological factors in northern China
compared to the southern parts.

The response time of cropland vegetation to precipitation and PET in China varied
greatly due to meteorological conditions and vegetation density. The response time of
cropland vegetation to precipitation was found to be short (1–3 months) in the north and
lengthy (3–6 months) in the south, whereas the response time of cropland vegetation to
PET revealed extensive regional variation.

The correlation between cropland vegetation, crop yields, and irrigation rates varied
considerably across China. Most of the cropland vegetation and the areas with the highest
potential crop yields are located in the eastern part of China. These areas also require higher
irrigation rates, which benefits the potential crop yields.
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