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Abstract: Heat stress (HS) is a major threat to crop productivity and is expected to be more frequent
and severe due to climate change challenges. The predicted increase in global temperature requires
us to understand the dimensions of HS experienced by plants, particularly during reproductive
stages, as crop productivity is majorly dependent on the success of plant reproduction. The impact
of HS on crop productivity is relatively less-studied than the other abiotic stresses, such as drought
and salinity. Plants have evolved diverse mechanisms to perceive, transduce, respond, and adapt to
HS at the molecular, biochemical, and physiological levels. Unraveling these complex mechanisms
underlying plant HS response and tolerance would facilitate designing well-informed and effective
strategies to engineer HS tolerance in crop plants. In this review, we concisely discuss the molecular
impact of HS on plant reproductive processes and yield, with major emphasis on transcription factors.
Moreover, we offer vital strategies (encompassing omics studies, genetic engineering and more
prominently gene editing techniques) that can be used to engineer transcription factors for enhancing
heat tolerance. Further, we highlight critical shortcomings and knowledge gaps in HS tolerance
research that should guide future research investigations. Judicious studies and a combination of
these strategies could speed up the much-needed development of HS-resilient crop cultivars.

Keywords: heat stress; transcription factors; reproductive stage; omics approaches; CRISPR gene editing

1. Introduction

The increasing levels of greenhouse gases in the atmosphere indicate that average
global temperatures could rise by 0.3–4.8 ◦C by 2100 [1,2]. Growing concerns over global
warming and the increased frequency of severe heat waves have fueled research on the
mechanism and tolerance of heat stress [3]. Temperatures exceeding the adaptation thresh-
old adversely affects the plant growth and reproduction [4,5], leading to alterations in
phenology, physiology, and crop productivity in response to heat [6]. Thus, heat stress
(HS), or a consistent increase in temperature above optimal, is a major abiotic factor af-
fecting crop plants worldwide [7,8]. Significant advances have been made in discovering
physiological mechanisms, molecular responses, and HS-regulatory networks, followed by
the characterization of genes or quantitative trait loci (QTLs) associated with heat stress
response and tolerance in plants [9–13]. In this area, scientists have been trying to identify
new alleles for HS-responsive genes [14] and understand how the improved knowledge
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of cross-talk between physiology and molecular mechanisms can help us develop crop
varieties encompassing HS tolerance, adaptation, and recovery [11,15].

HS leads to irreversible damage to cellular components, plant functioning, and de-
velopment, drastically impacting crop growth and productivity. Wheat productivity is
estimated to decrease by 4–6% with a 1 ◦C rise in global temperature [16], rice by 10% [17]
and maize by 80−90% [18]. The severity of HS depends on the frequency, duration, and in-
tensity of the heat waves and the stage of the plant development. Longer HS exposure times
and higher temperatures are more damaging to plants than short-term exposures [10,19].
Usually, short-term HS lasts minutes to hours and is defined as the heat shock type [20,21].
Longer-term heat waves expose the plants to higher temperatures, lasting hours to days [7].
Both types of HS have been observed to negatively impact crop growth, reproductive
fitness, and yield components [22,23].

Plants adopt variable physiological, cellular, and metabolic acclimation mechanisms to
combat HS that vary between crops and genotypes [24–26]. Understanding the molecular
mechanisms underlying thermotolerance is imperative for effectively utilizing genetic engi-
neering tools for crop improvement and future yield sustainability. Numerous studies have
identified transcription factors (TFs) as the critical regulators of molecular and biochemical
processes associated with HS tolerance. TFs perceive the stress signal and regulate specific
stress-responsive genes on and off by binding to their cis or trans-regulatory elements.
Thus, insights into the role and regulation of the TFs will facilitate the crop improvement
strategies intended to develop and deliver agronomically superior crops [27]. Our review
emphasizes the role of TFs that have been exploited in the past and strategies leveraging
TFs that can be explored in the future to engineer heat-tolerant crop plants. We have
discussed the molecular roles of a few TF families, such as basic leucine zipper (bZIP), heat
shock factor (HSF), MYB, NAC, and WRKY, previously associated with HS response based
on experimental evidence. Further, we elaborate on challenges and future opportunities
leveraging TFs for developing climate-resilient crops. Additionally, this review provides
an overview of recent research on molecular, biochemical, and genetic events observed in
the reproductive stages of plant development during HS. These events involve the role
of transcriptional and post-transcriptional regulators and the small RNA molecules in
HS perception, heat-induced signaling, regulating HS-responsive gene expression, and
thermotolerance that promote plant adaptation to HS events.

2. Impact of HS on Plant Reproductive Development and Yield

HS can occur during any stage of the plant life cycle. Still, it is most detrimental during
reproductive stages of development, such as flowering, male and female gametogenesis,
and seed development [8,28–33]. HS during the reproductive stages leads to significant
yield losses due to reduced spikelet fertility and pollen viability, compromised seed yield,
vigor, and quality [10,18,34–36] (Figure 1). A heat wave could block reproduction or delay
reproduction and seed set, perhaps until after the heat wave, in either case, leading to
yield loss and lower seed quality. Among the reproductive stages, gametogenesis and
flowering in common bean [37,38]; maize [39]; peanut [40]; sorghum [41]; wheat [42–44];
soybean [45,46]; capsicum [47]; Brassica [48]; and chickpeas [49] are highly sensitive to
HS, leading to reduction in flower number, spikelet sterility, and decreased seed and fruit
numbers [28,50,51]. However, there needs to be more studies on the impact of HS on
floral meristem development, floral initiation, and panicle initiation [52–54]. HS impairs
rice yield by deforming floral organs reducing spikelet number, size, and sterility due to
poor panicle initiation and spikelet development [55]. High temperatures also reduce the
number of flowering branches and thus the overall floral turnover [48,56].
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Figure 1. Impact of heat stress on plant development’s reproductive stages (floral initiation, flower-
ing, and post-flowering). 
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the floral bud development in cowpeas; flowers developed under high night temperatures 
(30 °C) set no pods due to low pollen viability and anther indehiscence [59]. HS increased 
the rate of floral abortion in cotton [60]. In spring barley, an increase in the ambient tem-
perature decreased floret number and grains per spike [61]. Severe HS impacts gameto-
genesis, ovary growth, and pollen development and transfer, consequently reducing the 
kernel number [62,63]. HS causes structural abnormalities leading to abnormally shaped 
microspores and pollen sacs, which cannot accumulate carbohydrates [64]. Pre-anthesis 
HS decreased seed setting rate and grain quality in rice [65]. In sorghum, HS led to the 
abortion of florets and decreased pollen production and viability with a significant reduc-
tion in seed size and yield [66]. In maize also, pre-anthesis and anthesis stage HS reduced 
pollen viability [39]. Furthermore, post-anthesis HS in cereals expediates the rate of leaf 
senescence and reduces the duration of grain filling, resulting in reduced seed size and 
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ability in B. napus [13,69]. HS-induced yield decreases will impact all cultivated crops, but 
crop productivity will also vary across different regions worldwide [70]. 

HS can cause damage to both microsporogenesis and megasporogenesis, decreasing 
viable seeds [48,71]. Although female reproductive development is considered less sensi-
tive to HS than male, a few studies have reported a varied response to HS across different 
crops with a decreased number of ovules and increased abortion rate [72], a reduction in 
the size of the transmitting tissue in style [73], and desiccated and flaccid stigma, style, 

Figure 1. Impact of heat stress on plant development’s reproductive stages (floral initiation, flowering,
and post-flowering).

HS during the anthesis and grain filling stages led to reduced photosynthetic rate and
grain yield in wheat [57] and also caused substantial damage to floret fertility and total crop
failure with a mean daily temperature of 35 ◦C [58]. The intensity of HS affects the floral bud
development in cowpeas; flowers developed under high night temperatures (30 ◦C) set no
pods due to low pollen viability and anther indehiscence [59]. HS increased the rate of floral
abortion in cotton [60]. In spring barley, an increase in the ambient temperature decreased
floret number and grains per spike [61]. Severe HS impacts gametogenesis, ovary growth,
and pollen development and transfer, consequently reducing the kernel number [62,63].
HS causes structural abnormalities leading to abnormally shaped microspores and pollen
sacs, which cannot accumulate carbohydrates [64]. Pre-anthesis HS decreased seed setting
rate and grain quality in rice [65]. In sorghum, HS led to the abortion of florets and
decreased pollen production and viability with a significant reduction in seed size and
yield [66]. In maize also, pre-anthesis and anthesis stage HS reduced pollen viability [39].
Furthermore, post-anthesis HS in cereals expediates the rate of leaf senescence and reduces
the duration of grain filling, resulting in reduced seed size and yields [42,62,67]. High
ambient temperature delayed flowering in Brassica rapa [68], inhibited anther dehiscence,
and shortened anthers with reduced pollen germinability and viability in B. napus [13,69].
HS-induced yield decreases will impact all cultivated crops, but crop productivity will also
vary across different regions worldwide [70].

HS can cause damage to both microsporogenesis and megasporogenesis, decreasing
viable seeds [48,71]. Although female reproductive development is considered less sensitive
to HS than male, a few studies have reported a varied response to HS across different crops
with a decreased number of ovules and increased abortion rate [72], a reduction in the
size of the transmitting tissue in style [73], and desiccated and flaccid stigma, style, and
ovary [74]. Few studies directly compared HS effect on pistil and pollen [73,75]. Recently,
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it has been reported that the female gametophyte possesses a unique and differentially
mediated response to HS depending on the identity of the cell, as several essential HS
responsive genes were specifically expressed in the central cell but not in the egg cell [76].

HS during pre-anthesis and reproductive development reduces floret fertility and
lowers viable seed number [43,77–79]. This consequence cannot be rescued, resulting in
irreversible yield loss [34]. Post-anthesis HS, on the other hand, reduces the duration of
seed filling, resulting in smaller seeds and lower yields [77,80]. Hence, the thermotolerance
of seed setting and filling stages are also crucial in determining grain yield and composition.
It was also noted that yield was affected more by HS at the flowering than at the pod
development stage, indicating that pods pass a vital developmental threshold contributing
to enhanced heat tolerance [81].

In Brassica, HS impaired fatty acid biosynthesis and suppressed oil deposition in
developing seeds [82]. Also, high temperature during seed development altered seed
composition and impaired seed dormancy with a concomitant decrease in the abscisic
acid/gibberellic acid (ABA/GA) ratio [83]. In legumes, HS causes abortion during the early
stages of embryo development after fertilization [84].

The impact of high temperatures on plant development also varies with the geno-
type [25,81]. Thus, exploring phenotypic plasticity in different cultivars in response to
increasing temperature is critical for leveraging plant breeding techniques and adapting
crops to increasing global temperatures [85]. Some strong candidates for thermotolerance
traits include the photosynthetic capacity, leaf characteristics, root architecture, flowering
traits, size, fitness, metabolite content, and nutrient composition of seeds [32]. However, a
higher yield under high temperatures is the goal of plant breeding. Therefore, reproductive
traits are the most appealing traits for screening and selection of thermotolerant geno-
types. Numerous studies have been conducted to screen the wild relatives of cultivated
species to identify heat-tolerant genotypes [42,45,75,86]. An early flowering trait from
Oryza officinalis was utilized in rice to develop commercial cultivars displaying heat avoid-
ance to ensure successful fertilization [87]. Wild wheat accessions such as Aegilops speltoides,
and A. geniculata also have better thermotolerance than the cultivated varieties [88].

3. Plant Response Mechanisms to HS

Crops have evolved complex mechanisms to sense and respond to HS [89], which
are highly conserved and involve multiple pathways, regulatory networks, and cellular
compartments [20]. A whole set of genes acting for HS perception and signalling is
reviewed here [20,67,90]. Plants respond to high-temperature stress through short-term
escape, avoidance, and long-term acclimation mechanisms [5,8,67], as depicted in Figure 2.
The escape mechanisms ensure that plants quickly complete their life cycle during favorable
temperature conditions, often leading to minor crop yield penalties [67]. Several crop plants
mature early under HS, resulting in small yield losses, implying an important heat escape
mechanism [91]. Some heat-tolerant rice genotypes have incorporated the early morning
flowering trait, which aids plants in avoiding HS damage [92,93]. Heat escape has also
been reported in wheat, with peak flowering occurring during cooler hours of the day (i.e.;
early in the morning or late in the evening) [42]. This escape mechanism allows plants to
finish fertilizing before the onset of harmful (high) temperatures that can cause sterility.
High night temperatures induced a shift in B. napus peak flower opening time into earlier
and cooler morning hours, indicating an adaptation towards the heat escape response,
accompanied by a significant yield reduction [94]. There have also been reports that the
effect of temperature on reproductive development varies depending on the length of the
day, with high temperatures causing rapid progression through reproductive development
on long days but inhibiting early stages of reproductive development on short days [95].
These findings indicate that different thermoresponsive floral regulator pathways are active
in various crop plants.
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Figure 2. Mechanisms of heat stress response in plants.

Heat avoidance is a temporary and short-lived response elicited by warm ambient tem-
perature conditions, which is usually species-dependent via morphology and development
changes [67]. Mildly elevated temperatures can cause significant expression of HS-responsive
genes, resulting in visible plant morphological and developmental changes, including
accelerated flowering. This response is characterized by thermomorphogenesis [32,96].
Long-term adaptation mechanisms for HS tolerance, on the other hand, entail maintaining
essential plant functions and ensuring plant productivity under HS conditions. Further-
more, this improves plant genotype fitness under HS [67] and improves plant adaptation
to the HS environment [5].

Because plants are sessile, they have evolved complex signaling and response net-
works to detect changes in ambient temperature, activating a series of molecular events that
modify the plant’s cellular metabolism and promote survival and reproduction to better
adapt to HS [20,97]. Plants respond to HS by changing their molecular, cellular, biochemical,
metabolic, physiological, and morphological responses [98]. HS (a) alters membrane fluid-
ity, which disrupts photosynthesis and respiration, resulting in cell death and plant wilting;
(b) alters protein misfolding and protein aggregate accumulation, resulting in proteotoxic
stress; (c) induces ROS production and creates hormonal and metabolic imbalance; and (d) al-
ters cytoskeleton dismantling, resulting in several disruptions in plant development [20,99,100].
Activation of the antioxidant defense system, phytohormonal regulation, transcriptional
regulation of the HS response, initiation of HS-responsive genes, and maintenance of cel-
lular homeostasis are all components of HS tolerance [101,102]. The expression of HSFs
and heat shock proteins (HSPs) and reactive oxygen species (ROS)-scavenging activity
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play important roles in plant responses and acclimatization to HS [14,103]. Epigenetics,
small RNAs (sRNAs), and post-translational modifications have also been implicated in
thermotolerance [96,104,105].

3.1. Transcriptomic, Proteomic, and Metabolomic Changes in Response to HS

Plants employ a strategy of modulating multiple genes, proteins, and metabolites to
tolerate HS [102]. Omics approaches have contributed significantly to our understanding of
plant HS, providing valuable insights into the underlying mechanisms and processes [106].
This section summarizes comparative transcriptomic, proteomic, and metabolomic studies
deciphering plant HS response and acclimation in reproductive stages. These studies have
identified key differentially expressed genes, proteins and metabolites using contrasting
(tolerant and sensitive) genotypes [106].

3.1.1. Changes in Gene Expression Patterns in Response to HS

Transcriptional dynamics in response to HS can help understand the impact of HS
on reproductive development in crop plants. For example, transcriptional inhibition in
response to HS led to male sterility in barley [107]. Furthermore, transcriptional changes in
response to short-term HS influenced caryopsis developmental functions [103]. Failure of
transcriptional reactivation following a return to normal average temperatures increased
with the duration of elevated temperatures and was strongly associated with male steril-
ity. When exposed to HS, significant differences in gene expression were observed in the
early development and differentiation of barley anthers [108]. Transcriptomic studies in
tomatoes revealed that TFs and genes involved in HS response differed during microspore
stages [109,110]. ROS-related genes, ethylene and ABA signaling genes, HSFs, and carbohy-
drate metabolism genes are among the primary differentially regulated genes in HS-treated
microspores and pollen mother cells. Transcription profiling in B. napus seeds revealed
that genes encoding ethylene and GA biosynthesis were all downregulated, whereas genes
encoding auxin biosynthesis, signaling, and transport were all induced in response to
HS [111]. The HS responses involve the activation of specific genes and HSPs via signaling
pathways [35]. Improved signal transduction and hormonal regulation under high tem-
perature promote heat tolerance in rice. Simultaneously, abnormal panicle development
has been linked to impaired starch and sucrose metabolism under HS [112]. WRKY, HD-
ZIP, and ERF TFs were the most prominent among HS-responsive genes in the tolerant
genotype, implying a critical role in developing panicle HS tolerance. During anthesis,
the RNA sequencing of heat-treated reproductive tissues revealed that TF-encoding genes,
signal transduction genes, and metabolic pathway genes were all down-regulated in rice.
Simultaneously, the expression of HSFs and HSPs was highly activated, implying that
the appropriate expression of protective chaperones in anthers (before anthesis) ensures
that stress damage is overcome, and fertilization is successful [113]. Another study that
examined the transcriptome profiles of rice grains (at the early milky stage) from heat-
tolerant and heat-sensitive cultivars in response to high night temperatures found that
high temperature disrupts electron transport in the mitochondria, resulting in changes in
hydrogen ion concentration and enzyme activity in the TCA cycle, influencing secondary
metabolism in plant cells [114]. A recent comparative transcriptomic study revealed that
post-pollination HS in a heat-sensitive cultivar of maize led to kernel abortion due to
carbohydrate metabolic disorders [115].

Thermosensitive genic male sterility (TGMS) has also been reported in B. napus [69].
HSPs, skeleton proteins, GTPase, and calmodulin genes were discovered to be potentially
involved in TGMS under high temperatures. Auxin, gibberellins, jasmonic acid, abscisic
acid, and brassinosteroid signaling pathways, as well as some well-known TFs (MADS,
NFY, HSF, MYB, and WRKY), were also found to be involved in the regulation of TGMS in
the flowers. High night temperature exposure between flowering and seed-filling stages
resulted in a significant reduction in total fatty acids and changes in fatty acid composition
in susceptible B. napus cultivars. In-depth transcriptome analysis revealed that high night
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temperature increased gibberellin signaling associated with active expression of genes
involved in fatty acid catabolism during seed-filling stages [116]. Another transcriptome
study of HS on Arabidopsis reproductive stages revealed that genes involved in the unfolded
protein response (UPR) were enriched in reproductive tissues in response to heat. Further-
more, the UPR-deficient bzip28 bzip60 double mutant was HS sensitive, with decreased
silique length and fertility. These findings show that the UPR plays a protective role in
maintaining fertility under HS [30].

3.1.2. Changes in Protein Profiles in Response to HS

A study that looked at changes in anther protein expression in three rice genotypes
exposed to HS during anther dehiscence discovered cold and heat shock proteins that are
involved in heat tolerance [117]. Under different levels of high temperature, a compara-
tive proteomics analysis on rice anthers between HS-resistant and HS-sensitive cultivars
revealed that the resistant cultivar had significantly higher spikelet fertility than the sen-
sitive cultivar [118]. Data suggested that ribosomal protein degradation in the sensitive
cultivar negatively impacts the protein biosynthetic machinery. HS, on the other hand,
increased HSPs, expansins, and lipid transfer proteins in the resistant cultivar, which
likely contributed to its tolerance to HS. Another proteomics study found that ethylene
helps enhance thermotolerance in tomato pollen; higher ethylene levels before HS expo-
sure improved pollen quality [119]. Trehalose synthase activity in rice anthers increased
significantly after heat treatment, implying that trehalose may play a role in preventing
protein denaturation via desiccation [120]. A comparative proteomic analysis of tomato
anthers collected from thermotolerant and sensitive genotypes also identified several
thermotolerance-associated proteins [121]. During high-temperature stress, comparative
proteomic analysis in the early milky stage of rice grains identified proteins involved in
biosynthesis, energy metabolism, oxidation, heat shock metabolism, and transcriptional
regulation [122]. Photosynthesis, glycolysis, stress, defense response, heat shock, and ATP
production proteins were differentially expressed in tolerant and sensitive wheat cultivars
during grain filling stages [123].

A comprehensive analysis of tomato pollen collected at different development stages
under HS revealed elevated temperature response at both transcriptomic and proteomic
levels [124]. The proteins that were found to be differentially regulated were mostly
involved in protein synthesis, folding, and degradation. Another study compared the
physiological and proteomic profiles of heat sensitive (ICC16374) and tolerant (JG14) chick-
pea genotypes during anthesis [100]. The analysis identified a set of 482 heat-responsive
proteins in the tolerant genotype including acetyl-CoA carboxylase, ATP synthase, su-
crose synthase, glycosyltransferase, pyrroline-5-carboxylate synthase (P5CS), ribulose-1,5-
bisphosphate carboxylase/oxygenase (RuBisCO), phenylalanine ammonia-lyase (PAL) 2,
and late embryogenesis abundant (LEA) proteins. High temperatures during seed filling
are also detrimental to seed yield and quality [125].

Future research should focus on similar studies to better understand the pathways that
lead to decreased crop fertility during HS. The key HS-responsive proteins discovered in
these comparative proteomic studies could be used as biomarkers to identify or genetically
engineer HS-tolerant cereal crop cultivars.

3.1.3. Changes in Metabolite Accumulation in Response to HS

A comparative metabolomic and transcriptomic study of rice floral organs (anthers and
pistils) from a heat-tolerant and a heat-sensitive rice cultivar identified sugar metabolism as
the crucial metabolic and transcriptional component differentiating floral organ tolerance
or susceptibility to HS [126]. In an untargeted metabolomic analysis of tomato pollen,
young microspores accumulated large amount of alkaloids and polyamines, while ma-
ture pollen accumulated flavonoids [127]. The accumulation of flavonoids was suggested
to protect against oxidative stress during HS. Another untargeted metabolic assessment
identified several metabolic markers differentially induced between the heat-tolerant and
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heat-susceptible genotypes of B. napus during the reproduction stage under HS [128]. A
comparative metabolomics study of wheat genotypes exposed to post-anthesis HS discov-
ered several metabolites, such as L-arginine, L-tryptophan, L-histidine, and leucine, with
significantly higher levels in tolerant genotypes. Furthermore, HS had the most significant
impact on the aminoacyl-tRNA biosynthesis and plant secondary metabolite biosynthe-
sis pathways, indicating their importance in post-anthesis HS tolerance in wheat [129].
Another targeted metabolomics study reported that salicylic acid (SA)-treated rice plants
exhibited higher pollen viability and seed-setting rates by reducing the excessive ROS and
HS-induced tapetum degradation [130]. Another group reported changes in the wheat
pollen lipidome during high day- and night-temperature stress, implying that similar lipid
changes contribute to adaptive mechanisms in wheat leaves and pollen under high temper-
ature stress. Pollen and leaf lipidomes, on the other hand, have distinct compositions [131].

3.2. Role of Transcription Factors in Mitigating the Impact of HS on Plant
Reproductive Development

Plant HS response is regulated by a complex web of transcription factors (TFs) that
modulate HS-responsive gene expression [132]. These gene expression changes are the
driving force behind cellular, physiological, biochemical, and molecular changes in response
to HS [133,134]. Therefore, TFs are important targets for modulating downstream gene
regulatory networks and developing climate-resilient crops. TFs typically respond to
stress by binding their target sites within cis-acting elements in stress-responsive gene
promoter regions. The stress response consists of signal perception, signal transduction,
and stress-responsive gene expression [135]. Stress susceptibility or tolerance in plants
is primarily determined by the coordinated activity of phytohormones and transcription
factors (TFs) that control the spatiotemporal regulation of stress-responsive genes, as shown
in Figure 3. Recent reviews [12,102,136] go into great detail about the signaling cascade
and phytohormone-mediated regulation of the HS response in plants. This section only
includes studies that investigate the role of TFs in plant HS response and acclimation
during reproductive stages.
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The heat shock response (HSR) during HS in plants is a conserved response where
HSFs regulate HSPs by recognizing and binding to the conserved palindromic motifs in
their promoter regions [137]. Further, HSPs bind to the denatured proteins and inhibit their
aggregation, thereby maintaining the protein homeostasis and thermotolerance [138]. For
example, HSFA2 functions from a heat shock trigger and induces HSP genes to preserve
cytosolic protein homeostasis [139]. In a classic HSP-induced HSR model, HSP70, HSP90
and HSP100 exhibit upregulation to confer HS tolerance in barley reproductive stages [140].

Plant HSFs have been used for gene manipulation and crop tolerance to HS due to
their role as central regulators of the HS response [141,142]. The HSFA1 subfamily is a
master regulator of HS responses, and HSFA1a in tomato has a unique function for ac-
quired thermotolerance [143]. Overexpression of soybean GmHSFA1 improved transgenic
soybean thermotolerance by activating downstream genes such as GmHsp70, GmHsp22,
and other GmHsps under HS [135,144]. Recently, it was discovered that HSFA1 interacts
with a bHLH TF, BRASSINOSTEROID INSENSITIVE 1 EMS-SUPPRESSOR 1 (BES1) to
improve HS tolerance in Arabidopsis [145]. Overexpression of Arabidopsis HSFA2 in the
HSFA1 quadruple knockout (hsfA1a,b,d,e) mutant improved thermotolerance, suggesting
that HSFA2 can be active and functional and interact with other HSFs [145]. Meanwhile,
TaHSFA2-10 overexpressing transgenic Arabidopsis plants exhibited enhanced HS tolerance
because TaHSFA2-10 regulated the binding and upregulation of AtHSPs [146]. In addition,
the ectopic expression of rice HSFA2e and lily HSFA2 in Arabidopsis resulted in increased
thermotolerance [137,147,148]. Another study demonstrated that DREB2A plays a key
role in the transcriptional regulation of HSFA3 to improve plant thermotolerance [149].
Transgenic plants overexpressing ZmDREB2A demonstrated improved thermotolerance
150]. Wheat and Arabidopsis plants overexpressing wheat TaHSFA6f showed improved
thermotolerance [150,151]. ZmHsf05 overexpression in Arabidopsis enhanced both basal and
acquired thermotolerances in transgenic plants [142]. Expression of maize gene ZmHsf06
enhances transgenic Arabidopsis’ thermotolerance and drought-stress tolerance [152]. Also,
ectopic expression of tomato HSFA3 and wheat HSF3 in Arabidopsis enhanced its thermotol-
erance [153,154]. HSFB1 of Arabidopsis acts as a repressor of HS-inducible HSFs—HSFA2,
A7a, B1, and B2b—with hsfb1, hsfb2b knockout mutants exhibiting decreased acquired
thermotolerance [155]. Overexpression of VpHSF1 (HSFB2 family) from Chinese wild
Vitis pseudoreticulata in tobacco demonstrated the role of VpHSF1 as a positive regulator of
acquired thermotolerance but a negative regulator of basal thermotolerance [156].

Transgenic rice lines overexpressing AtHSP101 had significantly higher survival rates
and growth performance in the recovery phase after HS [157]. Rice HS tolerance is im-
proved by OsHSP101 [158], while transgenic Arabidopsis plants overexpressing HSP100
induce enhanced thermotolerance [159]. Transgenic plants overexpressing OsHSP18.6
showed improved tolerance to HS and other abiotic stresses [160]. Furthermore, transgenic
Arabidopsis plants over-expressing the HS-responsive HSP wheat gene TaHSP23.9 showed
improved tolerance to heat and salt stress, implying that TaHSP23.9 acts as a chaperone
to positively regulate plant responses to heat and salt stress [161]. The complex gene
regulatory network involved in the transcriptional regulation of HS response is made up of
several HSFs and HSPs.

Several other TF families such as WRKY, NAC, MYB, and bZIP also regulate heat-
responsive genes [162]. Constitutive expression of OsWRKY11 using HSP101 promoter
enhanced heat and drought stress tolerance in rice [163]. The transgenic Arabidopsis over-
expressing maize gene ZmWRKY106 exhibited improved tolerance to heat and drought
stresses [164]. Rice plants overexpressing SNAC3 showed increased tolerance to HS and
oxidative stresses, whereas plants lacking SNAC3 showed increased sensitivity to these
stresses [165]. HS increases the expression of the wheat NAC TF gene TaNAC2L, and
TaNAC2L overexpression in Arabidopsis plants improves acquired thermotolerance [166].
The NAC TF gene (ONAC063) in rice roots responds to heat stress [167]. Another example
is that transgenic Arabidopsis plants overexpressing ANAC042 have higher HS tolerance
than wild-type plants [168]. Heat sensitivity was conferred by a loss of function mutation
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in OsNTL3, whereas heat tolerance was increased by inducible expression of the truncated
form of OsNTL3 in rice seedlings [169].

In Arabidopsis, a direct mechanism was suggested by which increasing temperature
causes the bHLH TF Phytochrome Interacting Factor 4 (PIF4) to activate Flowering Locus T (FT),
inducing flowering under short-day conditions [170]. So, PIF4 controlled thermosensory
memory and the reproductive transition in Arabidopsis. Also, a variant of GmPIF4b in soy-
bean had a unique temperature adaptation at elevated temperatures [171]. PIFs play roles
in HS sensing and signalling [172], with PIF4 as a core thermomorphogenesis signalling
hub [173]. Like PIF4, PIF7 promoted thermomorphogenesis in Arabidopsis in response to
elevated ambient temperature [174].

MADS-box genes, Flowering Locus M (FLM) and Short Vegetative Phase (SVP), are also
key regulators of temperature-mediated flowering time [32,175,176]. In Arabidopsis, SVP
tends to be unstable and degrade at higher temperatures. SVP and FLM-β (alternatively
spliced variant of FLM) form a complex that represses flowering, but FLM-β is not pro-
duced at warm temperatures, which allows flowering to proceed. However, at lower
temperatures, more repressive complex (SVP–FLMβ complex) is present and flowering
is delayed [177,178]. In contrast, in barley, elevated expression of the MADS-box floral
repressor HvODDSOC2 at higher temperatures in short days is suggested to be involved in
delayed flowering. So, under long-day conditions, high temperature promotes flowering
in winter barley, while an opposite response is observed under short days [178].

bZIP17 knockout mutant in Arabidopsis exhibit higher sensitivity to HS at the re-
productive stage (silique length and fertility), demonstrating the role of AtbZIP17 in HS
tolerance [179]. SPL1 and SPL12, two Squamosa Promoter Binding Protein-like (SPL) TF
genes in Arabidopsis, act redundantly to confer thermotolerance during the reproductive
stage and in inflorescences [180]. Following HS exposure, MYB genes (BnMYB44 and
BnVIP1) were simultaneously reprogrammed and induced in the silique wall and seeds of
B. napus [181]. Ectopic expression of the transcription factor AtMYB68 in B. napus after se-
vere HS during flowering significantly improved pollen viability and yield [182]. Elevated
temperatures increase glucosinolate concentrations, which play protective roles in plant
stress defense mechanisms against biotic and abiotic stress in B. rapa through BrMYB28-
and BrMYB34-mediated regulation [183]. Overexpression of OsMYB55 improved tolerance
to HS and drought in maize [184]. Soybean DREB1/CBF-type TFs are reported to mod-
ulate heat-, drought-, and cold-stress-responsive gene expression [185]. The expression
of thermal resistance gene 1 (BnTR1) increased rice yield and heat tolerance, suggesting its
role in mitigating adverse impacts of HS [186]. Table 1 lists the TFs whose roles have been
experimentally validated in promoting plant heat tolerance.

Table 1. List of transcription factors (TFs) with experimentally demonstrated roles in heat tolerance.

S. No. Gene Name TF Family Source Species Host Species Strategy Used Phenotype References

1 AF1 and
ANAC055 NAC A. thaliana A. thaliana Mutant lines

Knockout mutants
showed improved

thermomemoryand
showed faster seed

germination and higher
fresh mass ratio than

wild type

[187]

2 ANAC042 NAC A. thaliana A. thaliana Overexpression
Overexpressed lines

showed increased
heat tolerance

[168]

3 AtWRKY30 WRKY A. thaliana T. aestivum Overexpression
Overexpressed lines

showed increased heat
and drought tolerance

[188]

4 BnWRKY149 WRKY B. napus A. thaliana Overexpression
Overexpression

lines were less sensitive
to ABA

[189]
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Table 1. Cont.

S. No. Gene Name TF Family Source Species Host Species Strategy Used Phenotype References

5 BZR1 BZR S. lycopersicum S. lycopersicum

Overexpression
and CRISPR/
Cas-mediated

editing

Overexpressed lines
showed increased heat

tolerance while knockout
lines showed decreased

heat tolerance and severe
wilting after heat stress

[190]

6 CaWRKY40 WRKY C. annuum N. tabacum Overexpression

Overexpression lines
showed increased heat
tolerance and enhanced

basal defence against
virulent R. solanacearum

[191]

7 CBF1 ERF/AP2 A. thaliana A. thaliana

Overexpression
and CRISPR/
Cas-mediated

editing

Ocerexpression lines
showed improved heat

tolerance and
CRISPR-edited lines were

extremely sensitive to
heat stress

[192]

8
DgMADS114

and
DgMADS115

MADS-box D. glomerata A. thaliana Overexpression

Overexpression lines
showed increased

tolerance to heat stress
and osmotic stress

[193]

9 HaHB4 HD-Zip H. annuus G. max Overexpression

Overexpression
lines showed increased

heat tolerance and
delayed senescence

[194]

10 BhHSF1 HSF B. hygrometrica A. thaliana and
N. tabacum Overexpression

Overexpression
lines showed increased

heat tolerance
[195]

11 OsHSF7 HSF O. sativa A. thaliana Overexpression
Overexpression lines

showed increased basal
thermotolerance

[196]

12 HSFA1 HSF G. max G. max Overexpression
Overexpression

lines showed increased
heat tolerance

[144]

13 HSFA2 HSF A. thaliana A. thaliana Overexpression
Overexpression

lines showed increased
heat tolerance

[197]

14 LlHSFA2b HSF L. longiflorum A. thaliana Overexpression

Overexpression lines
showed increased heat

and oxidative
stress tolerance

[148]

15 HSFA3 HSF A. thaliana A. thaliana Overexpression
Overexpression

lines showed increased
heat tolerance

[198]

16 HsfB1 HSF S. peruvianum S. lycopersicum Overexpression
and Antisense

Overexpression
lines showed increased

heat tolerance
[199]

17 HsfC1b HSF L. perenne A. thaliana Overexpression
Overexpression

lines showed increased
heat tolerance

[200]

18 HvSHN1 SHN/WIN H. vulgare N. tabacum Overexpression

Overexpression lines
showed increased heat,

drought, and
salt tolerance

[201]

19 LlERF110 ERF L. longiflorum A. thaliana and
N. benthamiana Overexpression

Overexpression
lines showed reduced

heat tolerance
[202]

20 LiHsfA4 HSF L. Longiflorum A. thaliana Overexpression
Overexpression

lines showed increased
heat tolerance

[203]



Agronomy 2024, 14, 159 12 of 31

Table 1. Cont.

S. No. Gene Name TF Family Source Species Host Species Strategy Used Phenotype References

21 MaDREB20 DREB M. acuminata A. thaliana Overexpression
Overexpression lines

showed increased heat
and drought tolerance

[204]

22 OsNAC063 NAC O. sativa A. thaliana Overexpression

Overexpression lines
showed tolerance to heat,

salinity, and
osmotic stress

[167]

23 OsMYB55 MYB O. sativa Z. mays Overexpression
Overexpression lines

showed increased heat
and drought tolerance

[121]

24 OsNTL3 NAC O. sativa O. sativa

Overexpression
and CRISPR/
Cas-mediated

editing

Overexpression lines
showed increased heat
tolerance while loss of

function mutant showed
heat sensitivity

[145]

25 OsWRKY11 WRKY O. sativa O. sativa Overexpression
Overexpression lines

showed increased heat
and drought tolerance

[109]

26 PpNAC56 NAC P. persica S. lycopersicum Overexpression
Overexpression

lines showed increased
heat tolerance

[205]

27 SNAC3 NAC O. sativa O. sativa Overexpression
and RNAi

Overexpression lines
showed increased heat
and drought tolerance

while suppressing
SNAC3 showed

decreased heat, drought,
and oxidayive
stress tolerance

[184]

28 TabZIP60 bZIP T. aestivum A. thaliana Overexpression
Overexpression

lines showed increased
heat tolerance

[206]

29 TaHsfA2d HSF T. aestivum A.thaliana Overexpression

Overexpression lines
showed increased heat,

salinity, and
drought tolerance

[207]

30 TaHsfA6b HSF T. aestivum A. thaliana Overexpression
Overexpression lines
performed better in
repsonse to stress

[208]

31 TaHsfA6b HSF T. aestivum H. vulgare Overexpression
Overexpression

lines showed improved
heat tolerance

[209]

32 TaHSFA6f HSF T. aestivum T. aestivum
A. thaliana Overexpression

Overexpression lines
showed tolerance to heat,

drought and salt stress
[151]

33 TaNAC2L NAC T. aestivum A. thaliana Overexpression

Overexpression lines
showed increased heat,

drought, salt and
freezing stress

[166]

34 TaZnF Zin finger T. aestivum A. thaliana Overexpression
Overexpression lines

showed tolerance to heat,
cold, and oxidative stress

[210]

35 VpHSF1 HSF V.
pseudoreticulata N. tabacum Overexpression

Overexpression lines
showed tolerance to heat,
drought, and salt stress

but enhanced
susceptibility to

P. parasitica

[156]
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Table 1. Cont.

S. No. Gene Name TF Family Source Species Host Species Strategy Used Phenotype References

36 ZmDREB2A DREB Z. mays Zea mays Overexpression
Overexpression lines

showed tolerance to heat,
drought, and salt stress

[211]

37 ZmHsf05 HSF Z. mays A. thaliana Overexpression
Overexpression

lines showed increased
heat tolerance

[142]

38 ZmHsf06 HSF Z. mays A. thaliana Overexpression
Higher seed germination

rate, longer axial
root length

[152]

39 ZmNAC074 NAC Z. mays A. thaliana Overexpression
Overexpression

lines showed increased
heat tolerance

[212]

40 ZmWRKY106 WRKY Z. mays A. thaliana Overexpression

Overexpression lines
showed improved

drought and
heat tolerance

[163]

41 HSFA1a HSF S. lycopersicum S. lycopersicum Mutants lines Mutant lines showed
strong defects in growth [213]

42 OsNAC006 NAC O. sativa O. sativa
CRISPR/

Cas-mediated gene
editing

Knockouts line
showed heat and

drought sensitivity
[214]

43 AtMYB68 MYB A. thaliana A. thaliana Overexpression
Overexpression lines

showed increased heat
and drought tolerance

[182]

44 ONAC127 and
ONAC129 NAC O. sativa O. sativa

Overexpression
and CRISPR/
Cas-mediated

editing

Both knockout and
overexpression lines

show incomplete grain
filling and shrunken
grains with higher

severity of heat stress

[215]

45 OsMADS87 MADS-box O. sativa O. sativa Overexpression
and RNAi

Overexpression lines
showed increased

thermotolerance while
suppressor linses were
sensitive to heat stress

[216]

3.3. Epigenetic Modifications in Response to HS

Chromatin remodeling, DNA and histone methylation, RNA-mediated DNA methy-
lation, and post-translational modifications—acetylation, methylation, phosphorylation,
SUMOylation, ubiquitination, and ribosylation—all play a role in plant survival during
HS by regulating HS-responsive gene expression [217–219] (Figure 4). Plants respond to
temperature changes, and even minor changes can cause morphological responses associ-
ated with flowering. The histone variant H2A.Z has been proposed to act as a molecular
enabler of the thermoresponsive flowering pathway in Arabidopsis [220]. Alternatively, in
B. rapa, delayed-flowering, observed under high-temperature treatment, was associated
with reduced BraA.FT.a mRNA expression. Also, high levels of H2A.Z occupied the
BraA.FT.a locus, which affected chromatin conformation and hindered its accessibility [68].
This implies that thermosensory pathways behave differently in different crops in or-
der to change flowering time regulators. Heat shock transcription factor A1 (HSFA1), the
transcriptional network’s master regulator, is involved in the HS response and acts dynam-
ically with H2A.Z histone [221]. As a result, HsfA1s are prime activators in the response
to HS, whereas HSPs, such as HSP70 and HSP90, suppress these in normal conditions.
Dehydration-responsive element binding 2A (DREB2A), heat shock factor A2 (HsfA2), HsfBs,
DREB2C, multiprotein binding factor 1C (MBF1C), and NAC are all regulated by these HSPs.
At the cellular level, HSPs are involved in homeostasis and plant defense. At the onset of
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HS, inactive HSFs are activated through oligomerization and shuttle signalling between
the cytoplasm and the nucleus [222].
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A study found phenotypic variation in anthers and pollen during heat stress in the heat-
sensitive and heat-tolerant cotton lines [223]. In comparison to a heat-sensitive line, the heat-
tolerant cotton line had higher levels of genome-wide DNA methylation under HS [224].
These methylation differences have been associated with the differential expression of
starch, auxin, and sugar metabolic pathway genes critical for pollen development. Further,
to investigate how variation in DNA methylation between these two cotton lines affects
their ability to tolerate HS, bisulphite-treated DNA sequencing on tissues from various
stages of anther development was performed [225]. The heat-tolerant line was discovered
to have an increased abundance of small RNAs, which correlates highly with increased
methylation levels uniformly across all chromosomes. Furthermore, in response to heat
treatment, more DNA methylation was observed in the heat-sensitive cultivar and more
DNA demethylation in the heat-tolerant line in B. napus [226]. Furthermore, a significant
change in the expression levels of DNA methyltransferase and demethylase enzymes
in response to salt and HS have been reported, indicating that the methylation of some
genes is required for plant response to abiotic stress [227]. Similarly, under heat stress,
position and context-dependent methylation variations were observed in B. rapa [228].
More complex implications of DNA methylation on gene expression and stress tolerance
have been discovered at the reproductive stages. During gametophytic development and
pollen embryogenesis, in vitro-cultured B. napus microspores changed their gametophytic
developmental pathway towards embryogenesis in response to HS via an epigenetic
reprogramming control. This developmental change was linked to decreased global DNA
methylation and cell proliferation activation [229]. Conversely, short-term heat shock
treatment decreased DNA methylation in cultured microspores of B. napus [229]. Another
B. rapa study found that 15 paralogous pairs of histone methyltransferase and demethylase
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genes showed significant variation in their expression profiles in response to heat and cold
stress. The dynamic differences in gene expression between specific tissues and treatments
suggest that these genes may play a role in stress tolerance mechanisms [230]. BAG7, an
ER-resident TF, participates in heat and cold stress responses by acting as a co-chaperone
and preventing the accumulation of unfolded proteins. BAG7 was sumoylated, released
from the ER, and translocated to the nucleus under HS conditions, where it interacts with
WRKY29 to regulate gene expression [231].

3.4. Alternative Splicing in Response to HS

Alternative splicing (AS) is an important control mechanism influencing signal-
response mechanisms in different developmental stages under stress conditions, and HS
has been reported to induce AS events in several genes, such as those related to protein fold-
ing [232] (Figure 4). A research group examined HS-induced AS in the pollen tissue of two
tomato cultivars [233]. Under control conditions, transcripts with steady expression levels
were obtained, and HS revealed a clear difference in the occurrence of specific isoforms
(intron retention or exon skipping) with partially or completely missing functional domains.
The latter demonstrates that post-transcriptional AS results in the synthesis of transcripts
encoding alternative protein isoforms that may be required for HS response. For example,
an ER-embedded sensor, Inositol Requiring Enzyme 1 (IRE1), acts as an RNA splicing
factor to convert bZIP60 mRNA into a form that lacks the transmembrane domain. The
active bZIP60 TF protein translated from the spliced variant is transported to the nucleus
and activates expression of stress-responsive genes [233]. Overexpression of the spliced
form of TabZIP60 (TabZIP60s) increased HS tolerance in Arabidopsis but not the unspliced
form (TabZIP60u) [206]. In addition, combined heat and drought stress induced specific
AS events in wheat, and 40% of differentially spliced genes overlapped with differentially
expressed genes under HS and combined heat and drought conditions [234]. These findings
indicate a close relationship between AS and transcriptional regulation in stress tolerance.
Recently, Arabidopsis NTC1-related protein 1 (NTR1) was shown to confer heat tolerance by
regulating the alternative splicing of several HS-responsive genes, including HSFs and
HSPs [235].

In B. napus, RNA-Seq analysis of plants treated with cold, heat, and drought stress
exhibited A subgenome biases in gene expression and C subgenome biases in the extent of
AS [236]. It has been demonstrated that polyploidy can lead to changes in transcriptome
repertoire by influencing AS [237,238]. AS in HS was further investigated for the existence
of splicing memory for achieving thermotolerance in Arabidopsis [239]. Heat-stressed plants
were observed to accumulate unprocessed transcripts through splicing repression with
intron retention that eventually reached normal levels during recovery. In the second heat
exposure, primed plants responded differently from non–primed plants. Under normal
conditions, primed plants remembered to undergo splicing and correctly process transcripts.
As a result, primed plants retain a splicing memory that can carry out correct splicing and
produce the necessary transcripts and proteins for plant growth and development after
stress cessation, thus ensuring plant survival following another stress event [240]. More
research is needed to determine whether splicing-linked stress memory can be passed
down through generations or is limited to the somatic cells of an individual.

3.5. Non-Coding RNA-Mediated Regulation of HS

The role of non-coding RNAs in regulating reproductive-stage stress tolerance is an
emerging area [241] (Figure 4). Both omics and single-gene-based studies are being carried
out to dissect this area further. For example, small RNA and degradome sequencing have
been used to examine the role of miRNAs in male sterility under high temperature stress in
cotton [242]. Analyses of known and novel miRNAs and their target genes from anthers of
insensitive and sensitive cotton cultivars suggested that miRNA-mediated auxin signalling
is essential for cotton anther fertility under high-temperature stress. The maize Dicer-like
5 (Dcl5) is responsible for 24-nt phased small interfering RNA (phasiRNA) biogenesis
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in meiotic anthers. The null mutants exhibit male sterility with complete loss of 24-nt
phasiRNAs under high-temperature conditions, indicating that Dcl5-mediated generation
of 24-nt phasiRNAs is critical for maintaining male fertility under HS conditions [243].
Five conserved miRNA families and four novel miRNA families were discovered to be
HS responsive in B. rapa [244]. In Arabidopsis and rice, miR159-regulated GAMYB-like TF
family function in flower development and gibberellin (GA) signalling [245]. TamiR159-
overexpressing rice lines were more sensitive to HS than the wild type, implying that
TamiR159 downregulation in wheat after HS may participate in a heat stress-related sig-
naling pathway, contributing to HS tolerance [246]. In another study, miRNAs mediated
thermotolerance in Arabidopsis by altering the expression of HSPs and improving seed
germination and seedling survival under HS [247]. In plants, research on non-coding RNAs
is still in its infancy, with only a few studies showing their role in plant development
and adaptation to abiotic stress [248]. Several novel lncRNAs in B. rapa in response to
heat treatment have been identified using RNA-seq [249]. Similarly, two up-regulated
lncRNAs (TalnRNA27 and TalnRNA5—miRNA precursors) were up-regulated in wheat
in response to HS [250]. A systematic analysis of pollen development and fertilization
in B. rapa revealed that 47 cis-acting lncRNAs and 451 trans-acting lncRNAs were highly
co-expressed with their target genes [251]. Furthermore, a B. rapa coexpression network
showed 210 DEGs, 4 miRNAs, and 33 lncRNAs under HS, implying their role in the heat
response [252]. These findings suggest that lncRNAs in plants may add complexity to
other stress response mechanisms during abiotic stress events. Because of its complexity
and poorly understood mechanisms, a more in-depth understanding of these intricate
epigenetic components would be a boon for gaining insights into the genomic regulation
underlying HS-mediated responses in important crop species.

4. CRISPR-Based Strategies for Targeting TFs Associated with Heat Stress Tolerance

TFs are lucrative candidates for engineering heat tolerance in plants [27]. Advances in
sequencing platforms have led to genome-wide identification and analysis of TF families
in several plant species. Several dedicated databases have also been developed for TF-
encoding genes that serve as valuable resources for candidate gene selection [253,254].
However, as TFs usually comprise large gene families in plants, a high level of redundancy
among gene family members hinders shortlisting candidates for characterization and
experimental validation. Integrating phylogenomic data with gene expression profiling
has been demonstrated as an effective strategy to tackle this challenge [255].

Various forward and reverse genetics strategies have been used to characterize TFs
associated with HS tolerance in the past. In forward genetics studies, large-scale mutants
are developed and screened for enhanced HS tolerance. A gain-of-function, forward genetic
screen in Arabidopsis identified AtMYB68 as a key transcriptional activator responsible for
productive seed set after severe HS during flowering [182]. Similarly, reverse genetics
strategies using overexpression or knockdown/out strategies have been used for the
functional characterization of candidate TF genes associated with heat stress tolerance
(Table 1). For example, overexpression of the BZR1 (Brassinazole Resistant 1) TF gene
enhanced tomato heat tolerance [190]. Conversely, RNAi-mediated gene silencing of
OsMADS87 decreased the negative impact of HS on grain filling in rice [216]. However,
although transgenic approaches have been widely used for functional characterization
of genes in crop plants, large-scale cultivation of transgenic plants remains a significant
challenge.

Recent technologies such as transcription activator-like nucleases (TALENs) [256],
zinc-finger nucleases (ZFNs) [257], and CRISPR/Cas system [258] have completely and
revolutionized plant biotechnology. While the first two technologies are more complex
to implement, CRISPR/Cas-based editing approaches are at the core of the new age agri-
cultural innovations, enabling efficient and precise trait generation and selection with the
scope of commercialization [259–262]. So far, the CRISPR/cas-based knock-out strategy has
been mainly employed to characterize TFs acting as positive thermotolerance regulators
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where knockout plants demonstrate higher heat sensitivity (Table 1). However, this tech-
nology can also be applied to negative regulators to obtain heat-tolerant plants (Figure 5).
For example, CRISPR-mediated loss-of-function of a stearic acid desaturase gene, PtSAD,
in Pinellia ternata led to enhanced thermotolerance [263]. Alternatively, CRIPSR-mediated
activation (CRISPRa) of positive regulators can also be achieved by using a catalytically
inactive Cas9, also known as dead Cas9 (dCas9) [264], where both the nuclease domains of
Cas9 are mutated. Hence, only the RNA-guided DNA binding activity of Cas9 is retained,
but its ability to cleave the DNA is lost. The dCas9 is fused with a transcriptional activator
such as simplex Virus Protein (VP16) or Transcriptional Activator Domain (TAD) to enhance
target gene expression. Several CRISPRa systems have been developed and evaluated
in plants for target gene activation [265]. Similarly, repressors such as SRDX have been
recruited to block RNA polymerase elongation, thereby blocking gene transcription known
as CRISPR interference (CRISPRi) [266].
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Alternatively, homology-directed repair (HDR) can also be leveraged by providing
the homologous sequence as a template for repair to insert foreign genes/promoters for
enhanced stress tolerance [267] (Figure 5). Although not yet applied for engineering plant
heat tolerance, HDR has successfully attempted to replace a native gene/promoter at
specific loci in several plant species [268].

The involvement of epigenetic modifications in HS response has been established
in plants [269]. HS significantly alters the 3D chromatin organization and interactions
between promoters and regulatory elements [213]. The application of the CRISPR activation
(CRISPRa) system for generating stress-tolerant plants through epigenetic modification
has been demonstrated in Arabidopsis [270]. The authors generated chimeric dCas9HAT

where dCas9 was fused with a catalytic core of Arabidopsis histone acetyltransferase that
triggers histone acetylation and induces DNA relaxation in the targeted region. Transgenic
plants expressing dCas9HAT targeting AREB1 (ABA-responsive element binding protein
1) promoter region enhanced AREB1 gene expression and drought tolerance [270]. DNA
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methylation is a particularly vital mechanism plants adopt to manage HS during male
gametophyte development [271]. Therefore, CRISPR-mediated activation or repression
through epigenetic modifications can be implemented to engineer reproductive stage HS
tolerance (Figure 5).

Another prospective approach would be promoter engineering, where CRISPR tech-
nology can also incorporate a specific DNA element in the regulatory region for enhanced
or decreased transcriptional activity of the target gene (Figure 6). This is facilitated by prime
editing that utilizes nicking Cas9 (nCas9), where one of the nuclease domains has been in-
activated through point mutation [272]. Unlike Cas9, which creates double-stranded breaks
repaired through NHEJ, nCas9 induces single-stranded breaks and promotes homologous
recombination [273]. For prime editing, nCas9 is linked to an engineered reverse transcrip-
tase and a prime editing gRNA (pegRNA), specifying the target site and the anticipated
editing region [274]. Recently, this strategy has been used to generate disease-resistant rice
plants by inserting an effector binding element in the promoter region of a dysfunctional
executor gene, xa23 [275]. Similar strategies can be deployed to incorporate enhancer or
suppressor elements into the regulatory regions of TF genes associated with heat tolerance.
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Similarly, dCas9 fused with the deaminase enzyme can facilitate C to T or G to A
substitution. CRISPR/Cas9-derived Cytidine base editor (CBE) was recently demonstrated
to direct a C-to-T base conversion in the acetolactate synthase (ALS) gene in tomato and
potato [276].

Alternatively, HDR can be used to replace the native promoter with a more potent
promoter to achieve the desired level of expression of the target gene. Shi and cowork-
ers demonstrated the use of CRISPR-mediated HDR by replacing the native promoter
of ARGO8 (1-aminocyclopropane-1-carboxylic acid synthase6) gene of maize with GOS2 pro-
moter that derives moderately constitutive expression [277]. The ubiquitous expression of
ARGOS8 driven by GOS2 promoter led to enhanced grain yield under drought conditions. A



Agronomy 2024, 14, 159 19 of 31

similar approach can also provide tissue-specific, chemical, light, and hormone-responsive
gene expression [278].

5. Conclusions, Challenges, and Future Directions

As climate change intensifies, HS is a major threat to global food security. The yield
reduction depends on the plant developmental stage in which HS occurs as well as the
frequency, duration, and intensity of HS. Among the developmental stages, the repro-
ductive stages are most sensitive to HS, severely affecting crop yields. To enhance crop
HS tolerance, an in-depth understanding is needed of how HS affects different stages of
reproduction, including floral meristem development, floral initiation, flowering, male and
female gametogenesis, fertilization, seed filling, and seed maturity. In particular, research
should identify molecular mechanisms that allow the crops to sense high temperatures
and induce thermoresponsive flowering (e.g., early morning flowering to avoid HS during
mid-day).

Comparative omics analyses targeting specific reproductive stages would pave the
way to unearth essential candidate genes or proteins underpinning heat tolerance at the
reproductive stage. Further, studies unraveling the role of non-coding RNAs [279], RNA
folding [280] and epigenetics [281] in HS response are pivotal in understanding the events
underlying response to HS during sexual reproduction. The proposed thermotolerance
mechanisms, such as post-translational modifications, transcription factors regulating
flowering, hormonal regulations, heat shock factors (HSFs), heat shock proteins (HSPs),
and increased reactive oxygen species (ROS) scavenging ability specific to the reproductive
stage will provide better tools for breeders and molecular biologist to develop heat-stress-
resilient crops with enhanced crop productivity.

With the increase in night temperatures, there is an emerging interest in investigating
the impact of high night temperature stress on plant development and crop productiv-
ity in cereals [282–284]. However, to date, our knowledge of the impacts of high night
temperatures on reproductive biology is limited, and this topic warrants further research.

As our understanding of TFs and the HS response grows, we expect to see even
more innovative and practical approaches to engineering heat tolerance. Crops suffer
tissue culture and transformation limitations, which can, fortunately, be overcome by
using improved Agrobacterium-mediated transformation methods [285] or using innovative
approaches to plant transformation and editing [286,287].
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