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Abstract: Rice–wheat rotation is a widely adopted multiple-cropping system in the Yangtze River
Basin, China. Nitrogen (N) fertilizer is a key factor in regulating crop yield; however, only a few
studies have considered the impact of annual N application on the yield, environmental impacts, and
economic profits of rice–wheat rotation systems. In this study, a field experiment was conducted in
the Jiangsu Province from 2020 to 2022. The rice and wheat seasons included six and five N fertilizer
application rates, respectively (Rice: 0, 180, 240, 300, 360, and 420 kg N ha−1; Wheat: 0, 180, 240, 300,
and 360 kg N ha−1), combined to form a total of 30 treatments. Life-cycle assessment was used to
evaluate the environmental impacts of rice–wheat rotation under different N application treatments,
using area, yield, and economic profit as functional units. Ten environmental impact categories
were selected, including global warming. The results showed that grain yield did not consistently
increase with an increase in N application, and the annual yield was the highest when 300 and
240 kg N ha−1 (R300W240 treatment) was applied in the rice and wheat seasons, respectively. The
area-based weighting index of the R300W240 treatment ranked 20th among the 30 treatments, while
the yield- and profit-based weighting indices were the lowest among the 30 treatments, decreasing by
14.9% and 28.7%, respectively, compared to the other treatments. The R300W240 treatment was the
optimal annual N application strategy for rice–wheat rotation. Among the 10 environmental impacts
considered, urea production contributed significantly to over eight environmental impacts, whereas
the pollutant losses caused by its application contributed significantly to six environmental impacts.
These findings reveal the dependence of the rice–wheat rotation system on the unsustainable use
of N fertilizer and indicate that N fertilizer management practices should be further optimized to
improve the environmental sustainability of grain production in the future.

Keywords: rice–wheat rotation; annual nitrogen management; global warming; environmental
impact; life cycle assessment

1. Introduction

Rice–wheat rotation is one of the main grain production modes in East Asia and
is widely distributed in countries such as China and India [1,2]. In China, the area of
rice–wheat rotation remains above 4.67 million ha and is mainly concentrated in the Yangtze
River Basin. At present, in the context of rising global temperatures, population growth,
and COVID-19, achieving sustainable food production at a minimum environmental cost
and ensuring food security are still the main tasks facing China’s agricultural production
industry [3].
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The application of nitrogen (N) fertilizers plays an important role in rice and wheat
yield. The national N fertilizer application rate in 2021 is 17.4 million tons [4]. Although
the amount of N fertilizer applied nationwide has decreased annually over the past decade,
the total amount is still relatively large. Compared to developed countries, the utilization
efficiency of N fertilizers still needs to be improved [5,6]. Long-term cultivation and
extensive N fertilizer application not only lead to a decrease in the N utilization efficiency of
crops but also damage the ecological environment [7]. Under the rice–wheat rotation mode,
a portion of N enters the atmosphere in gas form, causing global warming, environmental
acidification, and fine particulate matter formation [8,9]; however, parts of N are lost
through runoff, leaching, and other pathways, leading to eutrophication of water [10]. At
the same time, the heavy metal residues from fertilizer application in the soil can also
threaten human health [11]. Currently, it is necessary to evaluate the environmental impact
of the rice–wheat rotation mode from the perspective of the entire production system, which
is beneficial for guiding the sustainable development of this mode of production [12].

Life cycle assessment is a product-oriented whole-process evaluation method that
provides a standard method for systematically evaluating the environmental impact of
products from a system perspective [13,14]. Previous studies on the environmental impact
evaluation of rice–wheat rotation have mainly focused on screening suitable rotation
modes, irrigation methods, and straw-returning methods to coordinate economic and
environmental benefits. For example, Cai et al. (2018) quantitatively analyzed the carbon
and reactive nitrogen emissions of rice wheat, rice rape, rice fava bean, and rice milk
vetch in Yixing, Jiangsu Province, China. They showed that winter legume–rice rotations
can reduce nitrogen pollution and the carbon footprint while maintaining net ecosystem
economic benefits [15]. Chen et al. (2021) evaluated the environmental and economic
benefits of the rice–wheat rotation system using four irrigation methods (conventional
flooding irrigation, intermittent irrigation, transplanting rain-fed, and dry rice cultivation),
and the results showed that dry rice cultivation with high-yield rice varieties could provide
more comprehensive benefits throughout the whole rotation system [16]. Ghosh et al.
(2022) evaluated the energy and carbon relationships in rice–wheat rotation in India under
contrasting tillage and residue management scenarios, and the results showed that the
selection of high-yield, biotic, and abiotic stress-tolerant rice varieties will help narrow
the yield gap with puddled transplanted rice and further improve the crop and biomass
yield and energy productivity of the rice–wheat cropping system [17]. Xu et al. (2022)
compared the ecological, environmental, and economic benefits of the rice–wheat rotation
system with traditional fertilization and controlled-release fertilizer application, and the
results showed that twice-split application of bulk blending urea was the most effective
fertilization strategy to balance the economic benefit and ecological and environmental
impacts in the rice–wheat rotation system [18]. However, they only considered the amount
of N in a single-season crop and did not optimize the annual N fertilizer management.
In addition, the aforementioned studies focused only on one environmental impact, such
as global warming or energy consumption, and did not comprehensively assess multiple
environmental impacts.

An annual rice–wheat rotation field experiment was conducted in Yangzhou City in
the lower reaches of the Yangtze River from 2020 to 2022, and five and six N fertilizer
gradients were set in the rice and wheat seasons, respectively, to form 30 different N
fertilizer application treatments. The main objective of this study was to quantitatively
evaluate the environmental impact of different N-treated rice–wheat rotation systems
to screen suitable combinations of annual N doses that can both meet crop yields and
accommodate environmental benefits.

2. Materials and Methods
2.1. Study Area

The study area is located in Shatou Town, Yangzhou City, Jiangsu Province, China
(119◦56′ E, 32◦32′ N) (Figure 1). The region belongs to the transitional zone from a subtrop-
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ical monsoon humid climate to a temperate monsoon climate with four distinct seasons,
abundant sunshine, and abundant rainfall. The multi-annual average temperature is
16.5 ◦C, and the average annual rainfall is 1139 mm. The meteorological conditions used in
the experiments are shown in Figure 2. The soil was sandy loam with a pH of 7.78. The
average organic matter content of the topsoil (0–20 cm) is 22.33 g kg−1, and the total N and
alkaline N contents are 2.87 g kg−1 and 106.73 mg kg−1, respectively.
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Figure 1. Location of the research area. (a) Jiangsu Province in China; (b) the experimental station in
Yangzhou City, Jiangsu Province.
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Figure 2. Meteorological conditions during the experiment (2020–2022). (a) air temperature; (b) pre-
cipitation; (c) wind speed.

2.2. Experimental Design and Yield Measurement

This experiment adopted a rice (Oryza sativa L.)–wheat (Triticum aestivum L.) rotation
system and considered two complete annual events from 2020 to 2022 as a paradigm. Rice
was transplanted on 14 June 2020 and 13 June 2021, and harvested on 10 November 2020
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and 28 October 2021. Wheat was sown on 17 November 2020 and 20 November 2021, and
harvested on 27 May 2021 and 25 May 2022. The rice and wheat varieties used in this study
were Nanjing 5055 and Yangmai 25, respectively. The rice cultivation method involved
manual transplanting, whereas the wheat was sown using a drill machine. During the rice
season, six N application rates (pure N) were set, namely 0 (R0), 180 (R180), 240 (R240),
300 (R300), 360 (R360), and 420 (R420) kg ha−1. After rice harvesting, five N application
rates were set for each N fertilization gradient of rice for wheat production, namely 0 (W0),
180 (W180), 240 (W240), 300 (W300), and 360 (W360) kg ha−1. A total of 30 treatments
were formed through cross combinations (Tables S1 and S2). Each treatment had three
replicates, totaling 90 experimental plots, each with an area of 47.5 m2 (9.5 m × 5 m).
The N fertilizer used was urea, with base fertilizer: tillering fertilizer: spikelet-promoting
fertilizer: flower-protecting fertilizer = 4:2:2:2. Phosphate fertilizer (superphosphate) and
potassium fertilizer (potassium chloride) were applied as base fertilizers at application
rates of 47 kg P2O5 ha−1 and 158 kg K2O ha−1 in the rice season and 90 kg P2O5 ha−1

and 144 kg K2O ha−1 in the wheat season, respectively. After harvesting, the straw was
crushed using agricultural machinery and returned to the field, with annual average values
of 4.5 t ha−1 wheat straw and 7.5 t ha−1 rice straw returning to the field. The rice irrigation
mode followed the high-yield rice cultivation mode [19], and no artificial irrigation was
performed during the wheat season. Chemical pesticides were used for pest control and
other field management practices were implemented according to the requirements of
high-yield cultivation.

During the rice maturity period, three quadrats were selected in each plot and 100 hills
were harvested from each quadrat. After threshing and removing impurities, the moisture
content of the grains was measured using a portable grain moisture meter (PM-8188-A;
Kett, Tokyo, Japan) to calculate the actual yield. Similarly, during the wheat maturity
period, three 10 m2 plots were chosen from each plot for actual yield measurements.

2.3. Life Cycle Assessment

According to ISO 14044 [20], life cycle assessment consists of four steps: goal and
scope definition, inventory analysis, impact assessment, and interpretation of results. The
description of each step is as follows.

2.3.1. Goal and Scope Definition

The goal of this study was to quantitatively evaluate the environmental impact of
rice–wheat rotation with different fertilization modes and to identify key regulatory points
for energy conservation and emission reduction. The system boundary in this study
was from the cradle to the farm gate and included agricultural material production and
transportation, grain production, and direct/indirect field emissions. This study excluded
stages such as infrastructure construction and agricultural machinery production because
their contributions to environmental impacts are usually small [21]. To avoid biased results,
we selected three functional units for the comprehensive environmental impact assessment:
per hectare, per ton of grain, and per output value. To calculate the environmental impact
per output value, we conducted an economic benefit analysis based on data from 2021 to
2022 (Table S7 and Figure S1 in the Supplementary Materials).

2.3.2. Inventory Analysis

The life-cycle inventory includes all input–output items of the evaluation system. The
agricultural inputs for the annual production system of rice–wheat rotation in this study in-
cluded seeds, fertilizers, pesticides, irrigation water, electricity, and diesel (Tables S1 and S2),
and the system outputs included measured grain yields in the field as well as environ-
mental pollutants emitted into the atmosphere, soil, and water (Tables S3 and S4). For the
emissions and losses of environmental pollutants, the CH4 generated by rice cultivation
was estimated using the IPCC Tier 1 method [22]; the CH4 emissions generated by wheat
cultivation were not considered. The N2O emissions generated by rice and wheat cultiva-
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tion included both direct and indirect emissions. Direct N2O emissions were estimated
by multiplying the total N input and the emission coefficient recommended by the IPCC,
with emission coefficients of 0.005 and 0.01 for rice and wheat, respectively. Indirect N2O
emissions refer to the sum of N2O emissions caused by NH3 volatilization and N leaching.
Based on previous studies on rice–wheat rotation in the lower reaches of the Yangtze River
in eastern China, nitrogen oxides, NH3 volatilization, N leaching, and runoff of rice–wheat
rotation were estimated using the coefficient method [23–25]. The emission factors of P
runoff and leaching are shown in the Table S5 [26–28]. For more details on the P runoff and
leaching, refer to study [29]. Because of the weak mobility of K, its loss was not considered.
The heavy metal residues (Cd, Pb, Cu, and Zn) produced by fertilizer application are shown
in Tables S3 and S4. Pesticides entering the soil, atmosphere, and water account for 43%,
10%, and 1% of their effective component inputs, respectively [30].

2.3.3. Impact Assessment

The ReCiPe 2016 midpoint method [31] is widely used for environmental impact
assessment of agricultural ecosystems [13,32]. Among the 18 environmental impact cate-
gories, we selected 10 indicators that were closely related to food crop production: global
warming (GW), fine particulate matter formation (FPMF), territorial discrimination (TA),
freshwater eutrophication (FE), territorial ecotoxicity (TET), freshwater ecotoxicity (FET),
human carcinogenic toxicity (HTc), human non-carcinogenic toxicity (HTnc), fossil re-
source scale (FRS), and water demand (WD). Environmental impact assessment consists of
three steps: characterization, normalization, and weighting. The normalization process of
the characterized values refers to the global per capita environmental impact benchmark
value [33,34], and the weighting coefficients (relative importance) of each environmental
indicator were obtained based on expert opinions (Table S6).

2.4. Statistical Analysis

The yield of rice–wheat rotation in this study covers two complete anniversaries from
2020 to 2022, and the data are presented in the form of mean ± standard deviation. The
Shapiro–Wilk test was used to analyze the normal distribution of the data, and one-way
analysis of variance (Tukey’s test) was performed on the annual total crop yield. All
statistical analyses were performed using IBM SPSS Statistics for Windows version 28.
Due to the lack of obvious differences in input and output data of the production system
between years, the life cycle assessment was performed using the data from 2021 to 2022
using SimPro 9.0 software (Amsterdam, The Netherlands).

3. Results
3.1. Grain Yield of Rice–Wheat Rotation under Different N-Application Treatments

The crop yield was not only affected by the amount of N applied in the current season,
but also by the amount of N applied in the previous crop (Figure 3). Overall, the annual
yields of rice and wheat from 2021 to 2022 were higher than those from 2021 to 2021. Among
the 30 treatments, the annual yield of the R0W0 treatment was the lowest at 6776 kg ha−1

and 6813 kg ha−1 over the two years, respectively. With an increase in the N application
rate, the annual rice and wheat yields increased accordingly. The annual yield of the
R300W240 treatment was the highest, at 15,741 kg ha−1 and 17,541 kg ha−1 for the two years,
respectively. However, as the N application rate continued to increase, the annual yields of
rice and wheat showed a gradually decreasing trend. When the annual N application rate
reached the highest value, the annual yield of treatment R420W360 significantly decreased
by 18.3–20.9% compared to that of the R300W240 treatment (p < 0.01). When the annual
N application rate reached the highest value, the annual yield of the R420W360 treatment
decreased significantly (by 18.3–20.9%) compared to the R300W240 treatment (p < 0.01).
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Figure 3. Crop yield of rice–wheat rotation system with different fertilization modes. Different
lower-case letters represent significant differences at the 0.01 level.

3.2. Environmental Impact of Rice–Wheat Rotation under Different N-Application Treatments
3.2.1. Area-Based Environmental Impact and Hotspot Analysis

In the rice–wheat rotation system, crop growth, fertilization, and the application of
pesticides and diesel all affect the environment (Figure 4). The GW per unit area under dif-
ferent fertilization treatments increased with the increase in annual N application, ranging
from 7472 to 19,465 kg CO2 eq ha−1. Owing to the high emissions of CH4 from rice cultiva-
tion, its contribution to the total GW was the highest (51.6–80.4%). The contribution of urea
application to GW was also high (0–29.8%), followed by wheat cultivation (2.5–14.6%). The
contributions of other inputs (seeds, P and K fertilizers, pesticides, diesel, and electricity)
to the GW were relatively small. The FPMF of different treatments ranged from 4.8 to
41.8 kg PM2.5 eq ha−1. Rice cultivation contributed the most to FPMF, accounting for
36.3–69.9%, followed by wheat cultivation (0–39.3%). The contributions of urea application
(0–28.1%) and electricity use (7.8–68.0%) were also large, whereas the contributions of
other inputs were relatively small. The TA of different treatments ranged from 16.8 to
273.0 kg SO2 eq ha−1. The contribution of each input to TA was as follows: rice cultivation
(0–85.3%), electricity use (4.1–66.7%), wheat cultivation (0–61.7%), and urea application
(0–16.4%), with small contributions from other inputs. The FE of different treatments
ranged from 1.1 to 2.2 kg P eq ha−1. The contribution of wheat cultivation to FE was as
high as 30.3–59.8%, followed by urea application (0–49.3%), rice cultivation (12.0–23.7%),
and pesticide application (5.1–10.0%); the impacts of other inputs were relatively small.
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fertilization modes.

For environmental and human toxicity, the TET of the different treatments ranged
from 3865 to 34,341 kg of 1,4-DCB ha−1. The contribution of N fertilizer application
was high, ranging from 0% to 88.7%. Rice cultivation (4.9–43.2%), wheat cultivation
(2.2–19.1%), and pesticide application (2.1–19.0%) also contributed significantly, whereas
the contribution of other inputs was relatively small. The FET values of the different
treatments ranged from 161.5 to 282.7 kg 1,4-DCB ha−1. Rice cultivation (31.9–55.8%) and N
fertilizer application (0–42.9%) were dominant, followed by wheat cultivation (14.2–24.9%),
seed input (7.8–13.7%), and pesticide application (3.0–5.2%). The HTc of different treatments
ranged from 10.1 to 129.5 kg of 1,4-DCB ha−1. HTc was mainly caused by the application
of urea (0–92.2%) and pesticide (5.6–72.0%), with little contribution from other inputs. The
HTnc values of the different treatments ranged from 4111 to 8251 kg 1,4-DCB ha−1. Rice
cultivation (30.0–60.2%), urea application (0–50.2%), and wheat cultivation (13.4–26.9%)
contributed the most, followed by seeds (3.5–6.9%) and pesticides (2.4–4.8%), with little
contribution from P fertilizer, K fertilizer, and electricity use.

For resource consumption, the FRS of the different treatments ranged from 604 to
3011 kg oil eq ha−1, all of which were caused by agricultural inputs and energy consump-
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tion. The contributions of various items in descending order were urea (0–79.7%) > diesel
(7.2–35.9%) > P fertilizer (4.2–19.9%)> electricity (3.9–19.6%) > pesticides (2.2–11.1%) > K
fertilizer (1.8–9.2%). The WD of the different treatments ranged from 6574 to 6903 m3 ha−1,
mainly from the irrigation water used in rice cultivation. Wheat cultivation in the lower
reaches of the Yangtze River relies primarily on rainwater and requires very little irri-
gation. Moreover, N fertilizer production accounted for a small proportion of water
resources (0–4.8%).

3.2.2. Yield-Based Environmental Impact

The environmental impacts per unit yield for different treatments are shown in Figure 5.
The GW of the R300W0 treatment was the lowest (844 kg CO2 eq t−1), whereas that of the
R420W360 treatment was the highest (1358 kg CO2 eq t−1). The R0W0 treatment had the
lowest FPMF (0.7 kg PM2.5 eq t−1), TA (2.46 kg SO2 eq t−1), TET (567 kg 1,4-DCB t−1), HTc
(1.48 kg 1,4-DCB t−1), and FRS (88.7 kg oil eq t−1), while the R420W360 treatment had the
highest impacts, namely FPMF of 2.91 kg PM2.5 eq t−1, TA of 19.05 kg SO2 eq t−1, TET of
2396 kg 1,4-DCB t−1, HTc of 9.04 kg 1,4-DCB t−1, and FRS of 210.1 kg oil eq t−1. Owing to the
extremely low annual yield of the R0W0 treatment, it had the highest FE (0.163 kg P eq t−1),
FET (23.7 kg 1,4-DCB t−1), HTnc (603 kg 1,4-DCB t−1), and WD (965 m3 t−1); however, due
to the relatively high yield of the R300W240 treatment, these environmental impacts were
small, namely FE (0.106 kg P eq t−1), FET (14.0 kg 1,4-DCB t−1), HTnc (398 kg 1,4-DCB t−1),
and WD (388 m3 t−1).
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Figure 5. Environmental impacts per ton grain of rice–wheat rotation system with different
fertilization modes.

3.2.3. Profit-Based Environmental Impact

The environmental impacts of the different treatments per output value are shown
in Figure S1. Owing to the extremely low output value of the R0W0 treatment, it had
the highest GW of 2966 kg CO2 eq (CNY 103)−1, FE of 0.44 kg P eq (CNY 103)−1, FET of
64.1 kg 1,4-DCB (CNY 103)−1, HTnc of 1632 kg 1,4-DCB (CNY 103)−1, FRS of 239.9 kg oil
eq (CNY 103)−1, and WD of 2609 m3 (CNY 103)−1. R300W0 treatment had the lowest GW
and FRS, with the value of 629 kg CO2 eq (CNY 103)−1 and 83.5 kg oil eq (CNY 103)−1.
R300W240 treatment had the lowest FE, FET, HTnc, and WD, with the values of 0.07 kg P
eq (CNY 103)−1, 9.5 kg 1,4-DCB (CNY 103)−1, 270 kg 1,4-DCB (CNY 103)−1, and 263 m3

(CNY 103)−1, respectively. The ranges of FPMF, TA, TET, and HTc were 0.74–2.51 kg PM2.5
eq (CNY 103)−1, 3.66–16.43 kg SO2 eq (CNY 103)−1, 848–2067 kg 1,4-DCB (CNY 103)−1, and
3.03–7.79 kg 1,4-DCB (CNY 103)−1, respectively, all showing an increasing trend with the
increase in N application rate.
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3.2.4. Weighting Index

The area-based weighting index of the environmental impact for each treatment
increased with the increase in N application, ranging from 3.54 to 7.07 (Figure 6a). WD had
the greatest contribution to the area-based weighting index, ranging from 30.8% to 58.5%,
followed by FET and HTc, which accounted for 21.3–24.3% and 3.0–19.4%, respectively.
The R0W0 treatment had the highest yield-based weighting index of 0.52, whereas the
R300W240 treatment had the lowest yield-based weighting index of 0.34; the latter was
34.6% lower than the former (Figure 6b). Owing to the extremely low economic benefits of
the R0W0 treatment, its profit-based weighting index was 1.40, which was 222–502% higher
than that of the other treatments. The profit-based weighting index for the R300W240
treatment was the smallest, with a value of 0.23 (Figure 6c). R300W240 was found to be the
optimal fertilization treatment.
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4. Discussion

Previous studies on the appropriate N application rate for rice–wheat rotation have of-
ten only considered fertilizer management for single-season crops without considering the
impact of the annual N application rate on yield and environmental effects. In rice–wheat
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rotation as a whole production system, the residual N in the soil during the rice season not
only continues to provide N for the growth of the next wheat season but also causes environ-
mental pollution due to the loss of N to the environment [35]. As shown in Figure 3, high N
application leads to higher yields, whereas higher N application leads to ineffective tillering
and even lodging, thus decreasing crop yields. When excessive nutrients are present in
surplus in the soil, they put pressure on the ecological environment [36]. This study found
that a relatively high annual yield could be achieved at 300 and 240 kg N ha–1 for rice and
wheat, respectively, with relatively high economic benefits and low environmental impact;
thus, R300W240 was the best annual nitrogen application strategy.

Global warming triggered by crop production has attracted widespread attention as
the single most important environmental indicator threatening human health and ecosys-
tems. The GW of the field-scale rice–wheat rotation production system is listed in Table 1.
Owing to the different calculation models and emission factors, the results of different stud-
ies exhibit some variability. The GWArea of rice–wheat rotation systems in different regions
of China ranged from 7.1 to 45.1 t CO2 eq ha−1, and the results of this study are within this
range. Several studies in India have shown lower GWs (3.2–10.7 t CO2 eq ha−1), mainly
due to lower fertilization rates and GHG emissions from the fields. Xu et al. (2022) reported
the impact of different fertilization modes on the GW of rice–wheat rotation [18]. Under con-
ventional fertilization modes, the GW of rice–wheat rotation reached 45.1 t CO2 eq ha−1,
mainly due to the large amount of GHG caused by N fertilizer application. Their re-
search further indicated that the application of controlled-release fertilizers could reduce
the GW of the rice–wheat rotation system by 42.3%. To increase the robustness of the
evaluation results, we conducted an uncertainty analysis of the GW for the rice–wheat
rotation system using the R300W240 treatment as an example (Table S8). This study as-
sumed that the activity data and emission losses followed a triangular distribution [37],
with a coefficient of variation of 10% [38,39]. Monte Carlo simulation was used to es-
timate the uncertainty generated by 10,000 random samples. The average GW of the
R300W240 treatment was 17,494 ± 840 kg CO2 eq ha−1, and the 2.5% and 97.5% quantiles
were 16,017 and 19,313 kg CO2 eq ha−1, respectively. The median and coefficient of varia-
tion were 17,439 kg CO2 eq ha−1 and 4.8%, respectively, indicating weak uncertainty in the
evaluation results.

Table 1. Comparison between published global warming (GW) of rice–wheat rotation with
current study.

Reference Site GWArea (t CO2 eq ha−1) GWYield(t CO2 eq t−1)

[14] Jiangsu, China 11.3–13.3 1.5–1.8
[40] Hubei, China 15.3–22.6 1.0–1.3
[41] Anhui, China 9.1 –
[15] Hubei, China 7.1 –
[42] Hubei, China 26.9 –
[16] New Delhi, India 3.2–8.8 0.3–0.8
[1] Hubei, China 8.6–11.2 –
[43] Karnal, India 6.4–8.1 0.1–0.6
[37] Jiangsu, China 9.3–45.1 1.4–2.4
[44] New Delhi, India 8.9–10.7 0.1–0.3
This study Jiangsu, China 7.5–19.5 0.8–1.4

NH3 is one of the important reactive N pollutants [45] and is the main cause of land
acidification. According to the LCA results (Figure 4), the TA of each treatment mainly
occurred during the rice and wheat cultivation stages, accounting for 55.9% and 19.6%,
respectively. Moreover, the NH3 generated in rice–wheat rotation systems forms inorganic
aerosols in the troposphere with acidic substances (such as sulfuric acid and nitric acid),
mainly composed of ammonium sulfate and nitrate, which can cause haze [46]. In the
future, the appropriate use of slow- and controlled-release N fertilizers may further alleviate
the environmental burden of reactive N.
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The indicator with the greatest impact on the weighting index was WD (30.8–58.5%),
mainly due to the inclusion of agricultural irrigation water during the rice cultivation
stage in the life cycle assessment modeling. In this study, the irrigation water for the
rice–wheat rotation system mainly originated from the rice season, whereas the wheat
season mainly relied on rainfall. Despite the numerous rivers and lakes in the Yangtze
River Basin in China, water resources are relatively abundant. However, owing to the
frequent occurrence of extreme climate events in recent years [47,48], there is often a lack of
irrigation water during the rice-growing season, indicating that future rice–wheat rotation
systems should adopt more water-saving irrigation measures during the rice season to
reduce the comprehensive environmental impact index [16].

This study has several limitations. First, the optimal N application rate in this study
was determined by considering only the timescale of the two years. However, N in soil
is in a dynamic state of accumulation and loss, and long-term experiments are warranted
to determine the optimal annual N application rate. Second, although the uncertainties
in the GW, FPMF, and TA were relatively low, several toxic effects exhibited significant
variability. In future experiments, in situ monitoring of heavy metals is required to increase
the accuracy of the evaluation results. Finally, the changes in soil C were not significant in
the short term because this study only conducted a 2-year field experiment; thus, the soil
carbon sink was not considered in the evaluation of GW. In the future, as the experiment
continues, the soil carbon sink should be included in the evaluation scope.

5. Conclusions

In this study, the environmental impact, human and ecological toxicity, and resource
consumption of rice–wheat rotation with different N fertilizer applications were evaluated
based on field experimental data combined with a life cycle assessment method. The
area-based weighting index of the R300W240 treatment was 6.01, ranking 20th out of the
30 treatments. However, both the yield-based (0.34) and profit-based (0.23) weighting
indices of the R300W240 treatment were the lowest, with average reductions of 14.9% and
28.7%, respectively, compared to the other treatments. Considering the yield, economic
profit, and environmental impacts of the rice–wheat rotation system, R300W240 was the
best annual N application strategy. Based on this study, future research should be conducted
to optimize N fertilizer management (i.e., application period and high-efficiency N fertilizer
type) to achieve a win–win relationship between increasing grain production and reducing
the environmental burden.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/agronomy14010151/s1, Figure S1: Environmental impacts per CNY 103

economic profit of rice–wheat rotation system with different fertilization modes; Table S1: Life cycle
inventory of rice–wheat rotation from 2020 to 2021; Table S2: Life cycle inventory of rice–wheat
rotation from 2021 to 2022; Table S3: On-field environmental pollutants from rice cultivation (2021);
Table S4: On-field environmental pollutants from wheat cultivation (2021–2022); Table S5: Emission
factors of reactive N from N fertilization and P loss in the field; Table S6: Normalization reference
value and weight coefficient of world per capita environmental impact for 2010; Table S7: Economic
profit analysis of rice–wheat rotation with different N-fertilizer treatment (2021–2022); Table S8:
Uncertainty analysis of environmental impacts for rice–wheat rotation (Treatment: R300W240).
References [22–28,34] are cited in the supplementary materials.
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