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Abstract: South China is dominated by mountainous agriculture and croplands that are at risk
of flood disasters, posing a great threat to food security. Synthetic aperture radar (SAR) has the
advantage of being all-weather, with the ability to penetrate clouds and monitor cropland inundation
information. However, SAR data may be interfered with by noise, i.e., radar shadows and permanent
water bodies. Existing cropland data derived from open-access landcover data are not accurate
enough to mask out these noises mainly due to insufficient spatial resolution. This study proposed a
method that extracted cropland inundation with a high spatial resolution cropland mask. First, the
Proportional–Integral–Derivative Network (PIDNet) was applied to the sub-meter-level imagery to
identify cropland areas. Then, Sentinel-1 dual-polarized water index (SDWI) and change detection
(CD) were used to identify flood area from open water bodies. A case study was conducted in
Fujian province, China, which endured several heavy rainfalls in summer 2022. The result of the
Intersection over Union (IoU) of the extracted cropland data reached 89.38%, and the F1-score of
cropland inundation achieved 82.35%. The proposed method provides support for agricultural
disaster assessment and disaster emergency monitoring.

Keywords: flood; Sentinel-1; sub-meter; PIDNet; inundated croplands mapping

1. Introduction

The inundation of cropland has a significant social impact, damaging crops, spreading
crop pests and diseases, contaminating the soil and water sources, and destroying cropland
infrastructure such as dikes and canals [1]. In addition, farmers are seen as potential
contributors to reducing flood risk by using croplands to give more room for water flooding,
which involves increasing their exposure [2]. These factors contribute to decreased crop
quality and reduced yields, posing an enormous threat to agricultural food security [3].
Accurate information on the distribution of inundated cropland is an important guide
for the government to develop disaster relief and mitigation plans, which is important to
ensure food security and safeguard farmers’ property [4].

However, monitoring cropland inundation in areas of rugged terrain is challenging
since the scarcity of in situ measurement networks in those areas hinders flood analysis [5].
The use of remote satellite sensing data, such as optical and radar data, overcomes the
limitations associated with measurement networks [6,7]. This approach enables the precise
identification of open water bodies [8] and the extraction of flood inundation areas for
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mapping [9–11]. However, during heavy rainfall leading to flooding, adverse weather
conditions make it difficult to obtain effective optical remote sensing data. Synthetic
Aperture Radar (SAR) remote sensing is less affected by weather and offers all-time and
all-weather monitoring [12], making it widely applied in flood monitoring research.

Accurate identification of cropland inundation areas with SAR faces challenges, mainly
because it is difficult to distinguish flood area from permanent water bodies and radar
shadows in SAR images [13,14]. Due to insufficient information, it is difficult to exclude
non-flooded areas by relying solely on SAR images and single observation. Researchers
have attempted to introduce multiple SAR observations and external remote sensing data,
including digital elevation models (DEMs), land use/land cover, and waterbody mask to
solve the above problems. S. Grimaldi et al. [12,15] used the Australian Dynamic Land
Cover dataset to remove permanent water bodies. Stefan Schlaffer et al. [16] use the Corine
Land Cover 2006 (CLC 2006) dataset to extract permanent water bodies and the flood range.
Beste Tavus et al. [17] used Sentinel-1 data to create land cover maps and used them as
reference images for change monitoring. It can be considered that accurate cropland data
can eliminate permanent water bodies and radar shadows. However, existing publicly
available cropland data are usually derived from land cover data, such as the United States
Department of Agriculture (USDA) Cropland Data Layer (CDL) [18], world/land cover
from the European Space Agency (ESA) [19] and the Environmental Systems Research
Institute (ESRI) [20] as well as other land cover data [21]. However, most of the existing
land cover products are based on Sentinel and Landsat data, and their spatial resolution
is not enough for the cropland mapping of rugged terrain [22] since the average area of
crop parcels is only 0.1–0.3 hectares in southern China (as prescribed by the standard of
well-facilitated capital farmland construction [23]). Therefore, producing high-precision
cropland data through higher spatial resolution images combined with deep learning image
interpretation technology is of great significance to improving the accuracy of cropland
flooding mapping.

Generally, flooded areas have lower backscattering coefficients that present as dark ob-
jects in SAR images [21]. Researchers have developed several waterbody identification tech-
niques applied for flood mapping, such as image segmentation [23,24], classification [25,26],
flood index [4,27], and change detection [17]. Classification methods can achieve higher
accuracy but are limited by the availability of reliable SAR image samples [28]. In disaster
emergency response, classification methods lack automation. Jia et al. [29] inspired by the
NDVI and NDWI, introduced the Sentinel-1 dual-polarized water index (SDWI) based
on SAR image water features [30]. It can effectively suppress shadows and improve the
accuracy of water extraction [31]. Furthermore, radar shadows tend to have relatively
consistent forms and locations when monitoring with the same type of sensor in the same
area. For large-scale flood extent extraction and mapping, change detection (CD) meth-
ods provide a high level of automation and can detect changes in multi-temporal remote
sensing images [32].

The objective of this study was to develop a method to improve inundated cropland
delineation using high spatial resolution cropland masks. The proposed method extracted
sub-meter cropland masks by introducing the Proportional–Integral–Derivative Network
(PIDNet), and the SDWI method was combined with change detection (CD) to extract
cropland inundation areas. The rest of the paper is organized as follows. The materials
and methods are provided in Section 2. The experimental results are reported in Section 3.
The discussion of key issues is provided in Section 4. Finally, conclusions are shown in
Section 5.

2. Materials and Methods
2.1. Study Area Description

The study area is Fujian Province, which is located in southeastern China (Figure 1). It
extends from 20◦13′ N to 25◦31′ N latitude and 109◦39′ E to 117◦19′ E longitude and covers
approximately 124,000 km2. In total, 89.3% of the province’s area is occupied by mountain
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and hill areas. Fujian Province has 9319.93 km2 of cultivated land, which represents 10.64%
of its total area. The cropland features fragmented plots and a diverse range of crops.
Typhoons and heavy rain are common in summer and autumn in this region, which has
abundant precipitation. The annual average precipitation ranges from 800 to 1900 mm, and
the most precipitation occurs during May and June every year. During the study period
in June 2022, Fujian Province was hit by heavy rainfall and flooding. Until 20 June, the
agricultural losses in the province amounted to approximately CNY 1.69 billion [33].
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Figure 1. Geographical location of the study area (a) in China (b), and its elevation (c).

2.2. Materials
2.2.1. Sentinel-1 SAR Data

During and before the experiment, flood level -1 Ground Range Detected (GRD)
image products in the Sentinel-1 IW mode were used to detect floods (Table 1). The
Sentinel-1 images were freely downloaded from the European Space Agency (ESA) website
(https://scihub.copernicus.eu/dhus, accessed on 23 January 2023)) [34]. The GRD-mode
SAR imagery includes two polarization modes, VH and VV, with a spatial resolution of
10 m. We used the Sentinel Application Platform (SNAP v 9.0) [35] software officially
provided by the ESA for preprocessing to obtain the backscattering coefficient image
covering the study area.

Table 1. Information of the dataset used in this study.

Data Source Year (Month) Spatial Resolution

Sentinel-1 GRD 2022 (3/5/6) 10 m
GPM V6 2022 (6) 0.1◦ × 0.1◦

ESRI Land Cover (ESRI) 2022 10 m
ESA WorldCover (ESA) 2020 10 m

SRTM DEM 2017 30 m

2.2.2. Google Earth Images and Cropland Samples

The high spatial resolution remote sensing imagery used is the Google Earth 18th-level
product with a spatial resolution of 0.6 m. Google satellite images were first downloaded via

https://scihub.copernicus.eu/dhus
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Google Satellite service (http://mt1.google.com, accessed on 15 February 2022). The scale
of the Google imagery downloaded is at the 18-level, which is approximately 0.6 m/pixel
spatial resolution. The image data sources originated from multiple sensors, i.e., Worldview,
GeoEye, and Aerial Photography. During cropland segmentation, the imagery is processed
into WGS 1984 geographic coordinates. The geometric accuracy of Google imagery is
approximately within 2 m [36]. The spatial resolution of Sentinel-1A data is 10 m. Therefore,
the two datasets of Google imagery and Sentinel-1A were considered co-registered.

Randomly selected subregions of mountains and plains are based on Google Earth
images. A total of 12,027 cropland plots were collected and distributed in both Fujian
Province and the adjacent Guangdong Province. Samples were taken from the mountainous
regions of Guangdong Province, where the cropland structure is similar to that of Fujian
Province. All cropland plots were manually digitized; 70% of the cropland samples were
used for training and 30% for validation. The locations of all samples and some details are
shown in Figure 2.
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Figure 2. Distribution of cropland samples originating from both Fujian Province and Guangdong
Province is presented in detail for a portion of it.

2.2.3. GPM Dataset

This study collected Global Precipitation Measurement (GPM) v6 data for Fujian
Province in June 2022 and conducted summary statistics. The GPM is an international
satellite mission with its core observing satellites jointly launched by NASA (the United
States National Aeronautics and Space Administration) and JAXA (the Japan Aerospace
Exploration Agency) on 27 February 2014 [37,38]. These data can be freely accessed on the
NASA Data Center’s official website (https://urs.earthdata.nasa.gov/, accessed on 10 July
2023). GPM provides global rainfall and snowfall observations every three hours [39]. The
entire month of June’s rainfall data were downloaded for flood analysis.

2.2.4. Land Cover Data

As a reference for cropland accuracy comparison, land cover information from the
Environmental Systems Research Institute (ESRI) [40] and WorldCover from the European
Space Agency (ESA) [41] were used. Both of these products are based on Sentinel data and
have a spatial resolution of 10 m. ESRI land cover is a 2022 product, while the ESA World-

http://mt1.google.com
https://urs.earthdata.nasa.gov/
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Cover is from 2020. Despite the two-year gap, only a small portion of cropland boundaries
have changed [42], and the differences are not significant for the entire Fujian province.

2.2.5. DEM Data

DEM data were acquired from the Shuttle Radar Topography Mission (SRTM) with a
spatial resolution of 30 m. In DEM analysis, areas with elevation variations under 30 m
are classified as plains, while those with elevation variations over 30 m are classified as
mountains. All the datasets we used are summarized in Table 1.

2.3. Methods

The technical route of this study is shown in Figure 3, consisting of three main compo-
nents: (1) cropland extraction using PIDNet based on Google imagery; (2) flood extraction
and cropland inundation mapping; and (3) accuracy evaluation.
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2.3.1. Cropland Extraction Using PIDNet

The Proportional–Integral–Derivative Network (PIDNet) proposed by Jiacong Xu et al.
in 2023 [43] is a real-time semantic segmentation network architecture based on attention
guidance. It can fuse high-resolution spatial information and low-frequency context in-
formation while preserving image details. PIDNet uses pyramid dilated convolutions,
which help capture multi-scale contextual information and improve segmentation accuracy.
The PIDNet model architecture is shown in Figure 4. Unlike typical dual-branch network
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architectures, it includes proportional (P) and integral (I) controller components and adds a
derivative (D) controller component. The P controller focuses on the current signal, while
the I controller accumulates all past signals. Due to the inertia effect of integration, simple PI
controllers can exhibit overshooting when the signal changes in the opposite direction. As
a result, a D controller is usually introduced to regulate this. When the signal decreases, the
D component becomes negative, acting as a damper to prevent overshooting. In addition, S
and B represent semantics and boundaries, Add and Up represent element summation and
bilinear Upsampling operations, respectively. The pixel-attention-guided fusion module
(Pag) parallelizes the new pyramid pooling module (PPM). The boundary-attention-guided
fusion module (Bag) is used to smooth out detail and context. PID control usually shows
better stability and robustness in the face of disturbances, which helps improve the stability
of cropland extraction and reduce errors.
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It includes proportional (P) and integral (I) controller components and adds a derivative (D) controller
component. In addition, S and B represent semantics and boundaries, Add and Up represent element
summation and bilinear Upsampling operations, respectively. The pixel-attention-guided fusion
module (Pag) parallelizes the new pyramid pooling module (PPM).

The main idea of the PIDNet method in cropland extraction is to use a series of
algorithms to classify each pixel to construct the boundaries of cropland. To test the
semantic segmentation performance of the PIDNet model, the study first conducted pre-
training on the ImageNet 11k dataset [44,45]. The ImageNet 11k dataset is a subset of
the ImageNet project and includes 11,000 different image categories. For each trained
model, the study used b2 training weights to shorten training time while maintaining
accuracy. Then, the specific steps for cropland extraction based on Google Earth images are
as follows: (1) digitization: using Google Earth images as the base map, organize manpower
to manually mark and digitize cropland samples; (2) sample evaluation: according to each
evaluation sample the number of type polygons and the proportion of their area in the total
area of the study area facilitate the subsequent formulation of different training strategies;
(3) sample pooling: use the above cropland samples as model input to perform global
average pooling and pyramid pooling; (4) model training: use PIDNet deep learning model
training to build a cropland plot prediction model and predict cropland boundary masks
in Fujian Province. Finally, the cropland mask data GPC (Cropland extracted with Google
imagery and PIDINet segmentation) was obtained.

2.3.2. Flood Extraction and Cropland Inundation Mapping

The study selected Sentinel-1 images from June and March 2022 to extract flood areas
since there were no flood reports in March. The water bodies occurring in both June and
March were considered non-flood, while water bodies in June that were not present in
March were defined as floods. In order to represent the surface condition before and during
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the disaster, images captured before and during the disaster were stitched together based
on the maximum Sentinel-1 dual-polarized water index (SDWI). Computational Formula
(1) of the SDWI is as follows:

SDWI = ln (10 × VV × VH) − 8, (1)

DI = SDWIJune − SDWIMarch, (2)

The flood disaster area was obtained by calculating the image difference of the before
and during disaster SDWI results, as shown in Formula (2), where DI is the difference
between them. Based on the different images, a threshold was applied to identify flood
pixels. After adjusting multiple times, the best results were achieved when SDWI > 0.7 [30].
After flood mapping, the study focused on extracting inundated croplands based on the
croplands mask.

2.3.3. Accuracy Assessment

The accuracy assessment of the results included two parts: (1) accuracy assessment
and inter-comparison of cropland mask, and (2) accuracy assessment of flood.

In this study, Intersection over Union (IoU) was used to assess the accuracy of PIDNet’s
cropland mask extraction results based on the validation samples. In addition, in order to
compare the performance of GPC with other cropland data, i.e., ESA and ESRI, we unified
the resolution of each cropland layer to 10 m so that the GPC was upscaled from 0.6 m
to 10 m resolution, and the accuracy of the cropland data was compared in two ways:
(1) comparing the total area of cropland masks with official statistical data; (2) calculating
the consistency of cropland mask data between plains and mountainous regions using IoU.

To obtain accurate flooding validation samples distributed in the study area, we
collected the validation samples from RGB images synthesized by using multi-temporal
SAR data. The RGB images were synthesized using RGB (red, green, and blue color model)
based on the differences between images before and during the event, which has been
proven to be effective in identifying floods in previous studies [13,46]. Validation samples
were collected through systematic sampling using manual interpretation. In addition to
the validation, we used Sentinel-2 imagery as auxiliary references to ensure the reliability
of the validation samples. After several ground sampling distances (GSDs), we selected
a distance of 0.1◦ to validate the flood maps because it provided a reasonable number
of sample points. Then, we used Precision, Recall, and F1-score metrics to evaluate the
accuracy of the results and the effectiveness of the cropland mask.

The calculation formulas for each indicator are as follows:

IoU = TP/(TP + FP + FN), (3)

Precision = TP/(TP + FP), (4)

Recall = TP/(TP + FN), (5)

F1-score = 2 (Precision · Recall)/(Precision + Recall), (6)

Among these, TP represents true positives, and TN represents true negatives, both
indicating correct cases. FP and FN are cases of misjudgment, with FP being a type II
statistical error and FN being a type I statistical error. An algorithm’s overall effectiveness
can be evaluated by using the F1-score, which is the harmonic average of Precision and
Recall. F-scores range from 0 to 1, with 1 indicating the best effect [47].

3. Results
3.1. Cropland Extraction Results

The results of cropland mapping were evaluated based on test sample sets, and the
IoU was achieved to 89.38%, which indicated that the PIDNet model can accurately extract
cropland. In addition, the extracted cropland mask of Fujian province was compared with
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the two existing cropland data derived from ESA and ESRI land cover products, and the
distribution of the three cropland results is shown in Figure 5.
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3.1.1. Cropland Spatial Distribution

The cropland mask extracted in this study can accurately extract cropland with spatial
details, especially in areas of rugged terrain and fragmented crop parcels, while ESA and
ESRI products have more misclassifications and omissions. Via visual interpretation, the
study compared it with ESRI and ESA cropland classification data in terms of details.
Figure 5 shows that the cropland results of ESRI had the smallest area, while the results
of ESA and GPC were similar. Figure 6 shows the cropland details in four typical loca-
tions in the study area. It can be seen from Figure 6 that the ESA product offers more
details (Figure 6e,g,h) and can correctly distinguish roads (Figure 6e,h) but includes more
permanent water bodies than ESRI (Figure 6l). Mountainous areas and roads were misclas-
sified as cropland by the ESRI product (Figure 6i,k), while GPC can better segment roads
(Figure 6m), garden land (Figure 6o) and permanent water bodies (Figure 6m,p).

3.1.2. Statistics of Cropland Area

Table 2 shows three points of information. Firstly, the cropland areas in GPC, ESA,
and ESRI are all lower than the statistical data. This is because orchards are also considered
in official statistics but are not included in our definition of cropland. Secondly, among the
three cropland classification results, GPC and ESA’s area estimates are more reasonable. The
GPC and ESA cropland areas account for 61.87% and 64.10% of the cropland area reported
in Fujian Province’s third national land survey in 2021 [48]. Cropland data from ESRI
are severely underestimated, accounting for only 34.87% of the official statistics. Thirdly,
in spite of the fact that ESA’s results are higher than GPC, Figure 6f–h shows that some
permanent water bodies and mountainous areas are included erroneously in ESA’s results.
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Table 2. The area of 3 cropland data of Fujian compared with the official reported cropland area.

Statistics Data Official Statistics GPC ESA ESRI

Area (km2) 9319.93 5766.30 5974.36 3249.49
Proportion (%) 100 61.87 64.10 34.87

3.1.3. Consistency Analysis

Based on terrain relief information, the consistency between the three cropland masks
was analyzed (Table 3). The IoUs between the cropland classification results in plain areas
are higher than in mountainous regions in rugged areas. In addition, the IoU between ESA
and GPC is higher than that between ESRI and GPC.

Table 3. The IoU of the 3 croplands’ data.

Terrain Relief GPC-ESA GPC-ESRI ESA-ESRI

<30 m (plain) 54.49% 38.91% 36.17%
≥30 m (rugged) 43.20% 22.38% 23.25%

3.2. Flood Map and Accuracy Assessment

The results of the flood area (Figure 7a) and cropland inundation area (Figure 7b)
extracted based on SDWI are shown in Figure 6, respectively. A considerable number
of flood areas can be identified using SDWI, but they contain a large number of radar
shadows (Figure 7c). After we superimposed the flood area with the GPC mask, the
flooded cropland areas can be accurately extracted (Figure 7d). Additionally, due to the
inconsistent acquisition times of the images, there were some jagged edges in the extraction
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results (Figure 7a), which can be eliminated mostly using the cropland mask method
proposed in this study.
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(b) cropland inundation map; (c) flooded areas without cropland mask filtering; (d) inundated
croplands after filtering by using cropland mask. The red boxes shown that inundated croplands
after filtering effectively filters the radar shadow.

We set the GSD to 0.1◦ and collected a total of 1105 sample points, which were divided
into four categories: cropland non-flood area, inundated cropland area, non-cropland
non-flood area, and non-cropland flood area (Figure 8). The F1-score of the flood extraction
results before masking was 66.67%, while the F1-score for inundated croplands extraction
after masking was 82.35% (Table 4). In the validation results, we found that the precision
was higher than recall, which can be attributed to the conservative choice of the SDWI
threshold. The low proportion of the flood area also influenced the results [49]. Overall,
the research suggests that with a high-accuracy cropland mask product, filtered flood maps
are reliable.

Table 4. Accuracy comparison of flood extraction results based on Sentinel-1 images and inundated
cropland results after cropland masking.

Result Precision Recall F1-Score

Flooded 81.95% 56.67% 66.67%
cropland Inundated 100% 70% 82.35%
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3.3. Flood Event Analysis

We performed summary statistics and visualized the daily GPM rainfall data in June
2022 (Figure 9). Overlaying these extracted inundated croplands results, it can be seen that
they match quite well. It was found from the rainfall data that in Fujian Province in June,
rainfall was mainly concentrated in the northwest region, with the highest rainfall observed
in Sanming and Nanping. In the southern part, rainfall was lower, which is consistent
with our research results. Additionally, there was evidence of rainfall in the central part
of Fuzhou, but our results did not detect it. Due to the limited revisit period of 6–12 days,
Sentinel-1 data returns may not be available during heavy rainstorms [50].

To better understand how the recent rainfall has affected cropland in different cities
of Fujian Province, the study overlaid the inundated cropland extent with administrative
boundaries and conducted spatial analysis and geo-statistics by city (Figure 10). Summary
statistics of the affected cropland area and monthly rainfall of each city are provided.
According to the study’s findings, regions in northern Fujian, such as Nanping and Sanming
cities, were severely affected, which aligns with the rainfall data. Although there may be
some discrepancies in the order of cities based on total monthly rainfall as compared to
cropland damage, the overall trends remain the same. The study determined that a total
of 254.88 km2 of cropland was affected. Among the affected areas, Nanping, Sanming,
and Fuzhou had the largest areas of cropland damage, accounting for 82.21% of the total
cropland damage in the province.
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GPM in each city of Fujian Province.

4. Discussion
4.1. Croplands Extraction Based on Deep Learning

Based on Google Earth imagery, this study employed PIDNet to extract cropland
masks in Fujian Province and developed a comprehensive methodology for identifying
inundated cropland events in mountainous areas. The rugged terrain and complex cropland
patterns pose challenges for traditional 10–30 m spatial resolution products, which may
fail to capture many crop parcels [47,51]. In contrast, the sub-meter-level extraction helps
capture these fine-grained cropland units while eliminating noise interference from radar
shadows and permanent water bodies. The cropland identification results were upscaled to
fit the flood map at 10 m resolution. Several typical locations were selected to compare the
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performance of cropland results (Figure 11). In Fujian Province, cropland plots are relatively
fragmented, and plain areas are relatively concentrated. It can be seen that the extraction
effect of flat cropland plots (Figure 11a,c) is better than terraced fields (Figure 11b,d). For
the bare land (Figure 11e) and garden land (Figure 11f), the three cropland products can be
well identified as non-cropland. ESRI has omissions (Figure 11d,f); the cropland extraction
results of GPC and ESA have obvious advantages in detail.
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and plain areas. DEM-plain is an area with terrain relief less than 30 m. (a–c) are plain areas, (d) is
cropland in areas with high terrain, (e) is bare land, and (f) is garden land.

Deep learning models rely heavily on labeled samples [6,52,53]. To ensure consistency
between the samples and labels, this study used a manual digital approach to acquire
cropland plots and eliminate the misguidance of non-cropland samples. However, due to
the diversity of crop types and variations in their appearance in imagery, it is necessary
to include diverse examples in the training dataset to ensure that the model generalizes
well. This entails covering various regions, crop types, phenological stages, post-harvest
scenarios, and more. A shortage of training samples may impact the accuracy of the
study [54,55]. Therefore, efforts will be made to increase the sample data to provide a more
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accurate mapping of mountainous croplands, which is essential for disaster assessment,
flood monitoring, and mountain cropland management.

4.2. Uncertainty in Flood Extraction

Remote sensing data are widely used in large-scale water extraction. In contrast to
optical images, SAR data are not affected by clouds and are a very effective data source
in cloudy mountainous areas [30]. SDWI combines different polarization data and is an
effective technical means to extract large areas of water.

This study used SDWI combined with CD to extract floods. After applying the
cropland mask, the F1 score accuracy reached 82.35%. The recall was 70%, indicating a
certain degree of underestimation during water body extraction. It might be associated
with the diverse topography in Fujian, primarily characterized by mountains and hills [42].
The province has relatively narrow rivers and water levels are low, failing to accurately
detect some water bodies. Furthermore, floods recede rapidly, and the SAR data revisit
time of 6–12 days may result in flood events being missed [45]. To address these issues,
future improvements will focus on utilizing other radar data sources, such as GF-3 data, to
generate time series observations for enhanced disaster monitoring capabilities. At last,
there was a lack of measured data in the study. In the future study of flood events, we
will consider using the unoccupied airborne system (UAS) to take useful measured data as
far as possible during or after the flood to verify the results [56], which will also make the
results more reliable.

4.3. Impact of Flood Events on Crops

Flood disasters, especially flash floods, are a common phenomenon in Fujian Province;
approximately 95% of the land area and 84% of the population are threatened by flash
floods [57]. The occurrence of floods has hindered crop production and caused considerable
damage [58,59]. Crop damage or destruction due to flooding is estimated to account for
57% of all natural disaster crop losses [59]. Using remote sensing and artificial intelligence
technology to quickly and automatically extract the extent of cropland inundation is an
important technical means for emergency response to cropland disasters.

The study’s findings reveal that the 2022 precipitation in Fujian Province led to ap-
proximately 254.88 km2 of cropland being inundated. The most severely affected areas
were in the northwestern regions, particularly in Nanping and Sanming cities. Rice is the
primary crop cultivated in these two cities, and June is a critical period for rice cultiva-
tion [60]. Therefore, it is crucial to implement effective flood defense measures and focus
on post-disaster cropland drainage and recovery to mitigate the impact of flooding on
agricultural production. The phenological stages of different crops are different, causing
them to be affected by floods to varying degrees. Our follow-up study will consider further
refined classification of crops in Fujian province to evaluate the sensitivity of different crops
to flooding in depth.

5. Conclusions

This study proposed a method for inundated cropland mapping using high-precision
cropland masks and SAR imagery, addressing the challenges of SAR-based cropland
inundation monitoring in rugged terrain. The results showed that the proposed cropland
mask outperformed the existing products in terms of accuracy and spatial details, especially
in mountainous areas. The flood event we studied was in June 2022 in Fujian Province,
China. This article reveals that Sentinel-1 SAR data combined with high-precision cropland
mask data can be used to map cropland inundation ranges with an F-score of 82.35%, which
provides reliable information for inundated cropland mapping. Furthermore, this flood
was mainly concentrated in the northwest of Fujian Province, causing a great impact on
local cropland. These results demonstrated that this approach provides a practical and
accurate solution for inundated cropland mapping. The generated inundated cropland



Agronomy 2024, 14, 138 15 of 17

map can serve as crucial data support for emergency response agencies and agricultural
insurance loss assessment work.
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9. Martinis, S.; Plank, S.; Ćwik, K. The Use of Sentinel-1 Time-Series Data to Improve Flood Monitoring in Arid Areas. Remote Sens.
2018, 10, 583. [CrossRef]

10. Uddin, K.; Matin, M.A.; Meyer, F.J. Operational Flood Mapping Using Multi-Temporal Sentinel-1 SAR Images: A Case Study
from Bangladesh. Remote Sens. 2019, 11, 1581. [CrossRef]

11. Klemas, V. Remote Sensing of Floods and Flood-Prone Areas: An Overview. J. Coast. Res. 2015, 314, 1005–1013. [CrossRef]
12. Dasgupta, A.; Grimaldi, S.; Ramsankaran, R.; Pauwels, V.R.; Walker, J.P. Towards operational SAR-based flood mapping using

neuro-fuzzy texture-based approaches. Remote Sens. Environ. 2018, 215, 313–329. [CrossRef]
13. Carreño Conde, F.; De Mata Muñoz, M. Flood Monitoring Based on the Study of Sentinel-1 SAR Images: The Ebro River Case

Study. Water 2019, 11, 2454. [CrossRef]
14. McCormack, T.; Campanyà, J.; Naughton, O. A methodology for mapping annual flood extent using multi-temporal Sentinel-1

imagery. Remote Sens. Environ. 2022, 282, 113273. [CrossRef]
15. Dasgupta, A.; Grimaldi, S.; Ramsankaran, R.; Pauwels, V.R.; Walker, J.P.; Chini, M.; Hostache, R.; Matgen, P. Flood mapping

using synthetic aperture radar sensors from local to global scales. In Global Flood Hazard: Applications in Modeling, Mapping, and
Forecasting; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 55–77.

16. Schlaffer, S.; Chini, M.; Giustarini, L.; Matgen, P. Probabilistic mapping of flood-induced backscatter changes in SAR time series.
Int. J. Appl. Earth Obs. Geoinf. 2017, 56, 77–87. [CrossRef]

17. Tavus, B.; Kocaman, S.; Gokceoglu, C.; Nefeslioglu, H.A. Considerations on the use of Sentinel-1 data in flood mapping in urban
areas: Ankara (Turkey) 2018 floods. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 575–581. [CrossRef]

18. Shrestha, R.; Di, L.; Yu, E.G.; Kang, L.; Shao, Y.-z.; Bai, Y.-q. Regression model to estimate flood impact on corn yield using MODIS
NDVI and USDA cropland data layer. J. Integr. Agric. 2017, 16, 398–407. [CrossRef]

https://doi.org/10.1016/j.catena.2019.03.002
https://doi.org/10.1038/s44221-023-00155-9
https://doi.org/10.1016/j.isprsjprs.2020.06.011
https://doi.org/10.1016/j.scitotenv.2017.10.037
https://doi.org/10.1016/j.ophoto.2021.100005
https://doi.org/10.1016/j.isprsjprs.2017.11.006
https://doi.org/10.1016/j.rse.2013.08.029
https://doi.org/10.3390/rs10040583
https://doi.org/10.3390/rs11131581
https://doi.org/10.2112/JCOASTRES-D-14-00160.1
https://doi.org/10.1016/j.rse.2018.06.019
https://doi.org/10.3390/w11122454
https://doi.org/10.1016/j.rse.2022.113273
https://doi.org/10.1016/j.jag.2016.12.003
https://doi.org/10.5194/isprs-archives-XLII-5-575-2018
https://doi.org/10.1016/S2095-3119(16)61502-2


Agronomy 2024, 14, 138 16 of 17

19. Zhang, M.; Liu, D.; Wang, S.; Xiang, H.; Zhang, W. Multisource Remote Sensing Data-Based Flood Monitoring and Crop Damage
Assessment: A Case Study on the 20 July 2021 Extraordinary Rainfall Event in Henan, China. Remote Sens. 2022, 14, 5771.
[CrossRef]

20. Soliman, M.; Morsy, M.M.; Radwan, H.G. Assessment of Implementing Land Use/Land Cover LULC 2020-ESRI Global Maps in
2D Flood Modeling Application. Water 2022, 14, 3963. [CrossRef]

21. Qin, X.; Shi, Q.; Wang, D.; Su, X. Inundation Impact on Croplands of 2020 Flood Event in Three Provinces of China. IEEE J. Sel.
Top. Appl. Earth Obs. Remote Sens. 2022, 15, 3179–3189. [CrossRef]

22. Zhang, C.; Dong, J.; Ge, Q. Quantifying the accuracies of six 30-m cropland datasets over China: A comparison and evaluation
analysis. Comput. Electron. Agric. 2022, 197, 106946. [CrossRef]

23. TD/T 1033-2012; Chinese Standard for Construction of High Standard Basic Farmland. Ministry of Land and Resources: Beijing,
China, 2012.

24. Pulvirenti, L.; Chini, M.; Pierdicca, N.; Boni, G. Use of SAR data for detecting floodwater in urban and agricultural areas: The role
of the interferometric coherence. IEEE Trans. Geosci. Remote Sens. 2015, 54, 1532–1544. [CrossRef]

25. Amitrano, D.; Di Martino, G.; Iodice, A.; Riccio, D.; Ruello, G. Unsupervised Rapid Flood Mapping Using Sentinel-1 GRD SAR
Images. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3290–3299. [CrossRef]

26. Tanguy, M.; Chokmani, K.; Bernier, M.; Poulin, J.; Raymond, S. River flood mapping in urban areas combining Radarsat-2 data
and flood return period data. Remote Sens. Environ. 2017, 198, 442–459. [CrossRef]

27. Cian, F.; Marconcini, M.; Ceccato, P. Normalized Difference Flood Index for rapid flood mapping: Taking advantage of EO big
data. Remote Sens. Environ. 2018, 209, 712–730. [CrossRef]

28. Samat, A.; Gamba, P.; Du, P.; Luo, J. Active extreme learning machines for quad-polarimetric SAR imagery classification. Int. J.
Appl. Earth Obs. Geoinf. 2015, 35, 305–319. [CrossRef]

29. Jia, S.; Xue, D.; Li, C.; Zheng, J.; Li, W. Study on new method for water area information extraction based on Sentinel-1 data.
Yangtze River 2019, 50, 213–217.

30. Du, Q.; Li, G.; Chen, D.; Qi, S.; Zhou, Y.; Wang, F.; Cao, Y. Extracting water body data based on SDWI and threshold segmentation:
A case study in permafrost area surrounding Salt Lake in Hoh Xil, Qinghai-Tibet Plateau, China. Res. Cold Arid Reg. 2023, 15,
202–209. [CrossRef]

31. Li, L.; Su, H.; Du, Q.; Wu, T. A novel surface water index using local background information for long term and large-scale
Landsat images. ISPRS J. Photogramm. Remote Sens. 2021, 172, 59–78. [CrossRef]

32. Shen, X.; Wang, D.; Mao, K.; Anagnostou, E.; Hong, Y. Inundation Extent Mapping by Synthetic Aperture Radar: A Review.
Remote Sens. 2019, 11, 879. [CrossRef]

33. Continuous Heavy Rainfall Caused Agricultural Losses Exceeding 1.6 Billion Yuan, Fujian Province accelerated Post-Disaster
Production Recovery. Available online: https://m.gmw.cn (accessed on 3 October 2023).

34. Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M. GMES
Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [CrossRef]

35. Zuhlke, M.; Fomferra, N.; Brockmann, C.; Peters, M.; Veci, L.; Malik, J.; Regner, P. SNAP (Sentinel Application Platform) and the
ESA Sentinel 3 Toolbox. Sentin.-3 Sci. Workshop 2015, 734, 21.

36. Cheng, P.; Chaapel, C. Pan-sharpening and geometric correction: Worldview-2 satellite. GeoInformatics 2010, 13, 30.
37. Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The global

precipitation measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [CrossRef]
38. Liu, Z. Comparison of integrated multisatellite retrievals for GPM (IMERG) and TRMM multisatellite precipitation analysis

(TMPA) monthly precipitation products: Initial results. J. Hydrometeorol. 2016, 17, 777–790. [CrossRef]
39. Pradhan, R.K.; Markonis, Y.; Godoy, M.R.V.; Villalba-Pradas, A.; Andreadis, K.M.; Nikolopoulos, E.I.; Papalexiou, S.M.; Rahim,

A.; Tapiador, F.J.; Hanel, M. Review of GPM IMERG performance: A global perspective. Remote Sens. Environ. 2022, 268, 112754.
[CrossRef]

40. Karra, K.; Kontgis, C.; Statman-Weil, Z.; Mazzariello, J.C.; Mathis, M.; Brumby, S.P. Global Land Use/Land Cover with Sentinel 2
and Deep Learning. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels,
Belgium, 11–16 July 2021; pp. 4704–4707.

41. Zanaga, D.; Van De Kerchove, R.; De Keersmaecker, W.; Souverijns, N.; Brockmann, C.; Quast, R.; Wevers, J.; Grosu, A.; Paccini,
A.; Vergnaud, S. ESA WorldCover 10 m 2020 v100. Available online: https://viewer.esa-worldcover.org/worldcover (accessed on
15 June 2023).

42. Chen, J. Agriculture. In Fujian Statistical Yearbook—2022; China Statistics Press: Beijing, China, 2022.
43. Xu, J.; Xiong, Z.; Bhattacharyya, S.P. PIDNet: A Real-Time Semantic Segmentation Network Inspired by PID Controllers. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2023;
pp. 19529–19539.

44. Pournaras, A.; Gkalelis, N.; Galanopoulos, D.; Mezaris, V. Exploiting Out-of-Domain Datasets and Visual Representations for
Image Sentiment Classification. In Proceedings of the 2021 16th International Workshop on Semantic and Social Media Adaptation
& Personalization (SMAP), Washington, DC, USA, 4–5 November 2021; pp. 1–6.

45. Wu, B.; Chen, W.; Fan, Y.; Zhang, Y.; Hou, J.; Liu, J.; Zhang, T. Tencent ml-images: A large-scale multi-label image database for
visual representation learning. IEEE Access 2019, 7, 172683–172693. [CrossRef]

https://doi.org/10.3390/rs14225771
https://doi.org/10.3390/w14233963
https://doi.org/10.1109/JSTARS.2022.3161320
https://doi.org/10.1016/j.compag.2022.106946
https://doi.org/10.1109/TGRS.2015.2482001
https://doi.org/10.1109/TGRS.2018.2797536
https://doi.org/10.1016/j.rse.2017.06.042
https://doi.org/10.1016/j.rse.2018.03.006
https://doi.org/10.1016/j.jag.2014.09.019
https://doi.org/10.1016/j.rcar.2023.08.002
https://doi.org/10.1016/j.isprsjprs.2020.12.003
https://doi.org/10.3390/rs11070879
https://m.gmw.cn
https://doi.org/10.1016/j.rse.2011.05.028
https://doi.org/10.1175/BAMS-D-13-00164.1
https://doi.org/10.1175/JHM-D-15-0068.1
https://doi.org/10.1016/j.rse.2021.112754
https://viewer.esa-worldcover.org/worldcover
https://doi.org/10.1109/ACCESS.2019.2956775


Agronomy 2024, 14, 138 17 of 17

46. Refice, A.; Capolongo, D.; Pasquariello, G.; D’Addabbo, A.; Bovenga, F.; Nutricato, R.; Lovergine, F.P.; Pietranera, L. SAR and
InSAR for Flood Monitoring: Examples With COSMO-SkyMed Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7,
2711–2722. [CrossRef]

47. Masoud, K.M.; Persello, C.; Tolpekin, V.A. Delineation of agricultural field boundaries from Sentinel-2 images using a novel
super-resolution contour detector based on fully convolutional networks. Remote Sens. 2019, 12, 59. [CrossRef]

48. Main Data Bulletin of the Third Land Survey of Fujian Province. Available online: http://zrzyt.fujian.gov.cn (accessed on 11
October 2023).

49. Liang, J.; Liu, D. A local thresholding approach to flood water delineation using Sentinel-1 SAR imagery. ISPRS J. Photogramm.
Remote Sens. 2020, 159, 53–62. [CrossRef]

50. Guan, H.; Huang, J.; Li, L.; Li, X.; Miao, S.; Su, W.; Ma, Y.; Niu, Q.; Huang, H. Improved Gaussian mixture model to map the
flooded crops of VV and VH polarization data. Remote Sens. Environ. 2023, 295, 113714. [CrossRef]

51. Li, Z.; Chen, S.; Meng, X.; Zhu, R.; Lu, J.; Cao, L.; Lu, P. Full Convolution Neural Network Combined with Contextual Feature
Representation for Cropland Extraction from High-Resolution Remote Sensing Images. Remote Sens. 2022, 14, 2157. [CrossRef]

52. Mikołajczyk, A.; Grochowski, M. Data Augmentation for Improving Deep Learning in Image Classification Problem; IEEE: Washington,
DC, USA, 2018; pp. 117–122.

53. Kaushal, V.; Iyer, R.; Kothawade, S.; Mahadev, R.; Doctor, K.; Ramakrishnan, G. Learning from Less Data: A Unified Data Subset
Selection and Active Learning Framework for Computer Vision; IEEE: Washington, DC, USA, 2019; pp. 1289–1299.

54. Wang, H.; Zhang, X.; Hu, Y.; Yang, Y.; Cao, X.; Zhen, X. Few-Shot Semantic Segmentation with Democratic Attention Networks;
Springer: Berlin/Heidelberg, Germany, 2020; pp. 730–746.

55. Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and
assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [CrossRef]

56. Lippitt, C.D.; Zhang, S. The impact of small unmanned airborne platforms on passive optical remote sensing: A conceptual
perspective. Int. J. Remote Sens. 2018, 39, 4852–4868. [CrossRef]

57. Xiong, J.; Pang, Q.; Fan, C.; Cheng, W.; Ye, C.; Zhao, Y.; He, Y.; Cao, Y. Spatiotemporal Characteristics and Driving Force Analysis
of Flash Floods in Fujian Province. ISPRS Int. J. Geo-Inf. 2020, 9, 133. [CrossRef]

58. Chen, H.; Liang, Q.; Liang, Z.; Liu, Y.; Xie, S. Remote-sensing disturbance detection index to identify spatio-temporal varying
flood impact on crop production. Agric. For. Meteorol. 2019, 269, 180–191. [CrossRef]

59. Fao, F. The Impact of Disasters and Crises on Agriculture and Food Security; FAO: Rome, Italy, 2018.
60. He, Y.; Dong, J.; Liao, X.; Sun, L.; Wang, Z.; You, N.; Li, Z.; Fu, P. Examining rice distribution and cropping intensity in a mixed

single-and double-cropping region in South China using all available Sentinel 1/2 images. Int. J. Appl. Earth Obs. Geoinf. 2021,
101, 102351. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/JSTARS.2014.2305165
https://doi.org/10.3390/rs12010059
http://zrzyt.fujian.gov.cn
https://doi.org/10.1016/j.isprsjprs.2019.10.017
https://doi.org/10.1016/j.rse.2023.113714
https://doi.org/10.3390/rs14092157
https://doi.org/10.1016/j.rse.2014.02.015
https://doi.org/10.1080/01431161.2018.1490504
https://doi.org/10.3390/ijgi9020133
https://doi.org/10.1016/j.agrformet.2019.02.002
https://doi.org/10.1016/j.jag.2021.102351

	Introduction 
	Materials and Methods 
	Study Area Description 
	Materials 
	Sentinel-1 SAR Data 
	Google Earth Images and Cropland Samples 
	GPM Dataset 
	Land Cover Data 
	DEM Data 

	Methods 
	Cropland Extraction Using PIDNet 
	Flood Extraction and Cropland Inundation Mapping 
	Accuracy Assessment 


	Results 
	Cropland Extraction Results 
	Cropland Spatial Distribution 
	Statistics of Cropland Area 
	Consistency Analysis 

	Flood Map and Accuracy Assessment 
	Flood Event Analysis 

	Discussion 
	Croplands Extraction Based on Deep Learning 
	Uncertainty in Flood Extraction 
	Impact of Flood Events on Crops 

	Conclusions 
	References

