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Abstract: The domestication of vines started in Asia 11,000 years ago, although it was not until the
19th century that oenology was established as a scientific discipline thanks to the research of Louis
Pasteur on the role of microorganisms in wine fermentation. At the present time, the progression in
next-generation sequencing (NGS) technologies is helping to facilitate the identification of microbial
dynamics during winemaking. These advancements have aided winemakers in gaining a more
comprehensive understanding of the role of microbiota in the fermentation process, which, in turn, is
ultimately responsible for the delivery of provisioning (wine features and its production), regulating
(such as carbon storage by vineyards, regulation of soil quality, and biocontrol of pests and diseases)
or cultural (such as aesthetic values of vineyard landscapes, scholarly enjoyment of wine, and a sense
of belonging in wine-growing regions) ecosystem services. To our knowledge, this is the first review
of the state of knowledge on the role of microbiota in the delivery of ecosystem services in the wine
sector, as well as the possibility of valuing them in monetary terms by operating logic chains, such as
those suggested by the SEEA-EA framework. This paper concludes with a review of management
practices that may enhance the value of microbiota ecosystem services and the role of smart farming
in this task.
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1. Introduction

The human transformation of nature on a global scale, especially in recent decades, has
led to a marked decline in indicators related to ecosystem health and biodiversity [1] and,
with it, a decline in the benefits that all humans derive from ecosystem services. Ecosystem
services can be defined as the conditions and processes through which natural ecosystems
and their component species sustain and enable human life [2,3]. The main classifications
group them into three broad categories: provisioning, regulating, and cultural [4,5]. The
ecosystem services concept is the main tool used for calculating the value of natural
capital [6].

Minimising the negative consequences of human transformations on the environment
requires that each production sector adopts practices to reduce (or even neutralise) its
net impact on ecosystems and biodiversity, while keeping (or even increasing) the flow
of benefits that we obtain from nature. One of the production sectors with the greatest
impact is agriculture, which is required to meet the food demands of the growing world
population [7,8]. In fact, one of the main challenges for agriculture in the 21st century
is the generation of multifunctional landscapes in which food is produced (provisioning
service) at the same time as it promotes the supply of many other regulating and cultural
services [9,10].

The wine sector is no stranger to this goal. Currently, vineyards occupy 7.3 million
hectares worldwide, producing up to 260 million hectolitres to satisfy an estimated world
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consumption of 236 million hectolitres [11]. Efforts are being made in different wine
regions in the form of pilot projects to integrate ecosystem services, biodiversity, and
multifunctionality as relevant elements in vineyard management decision making [12–17].
Nevertheless, despite being a provider of relevant ecosystem services, the role of microbiota
is commonly ignored in most approaches [18].

Agriculture that is not only environmentally friendly but also a producer of nature
has the potential to provide nature-based solutions. Within such a paradigm, this review
aims to compile and critically analyse the state of knowledge on the role of microbiota in
the provision of ecosystem services in the wine sector, especially in vineyards but also in
wineries. This review is structured into several sections, including a historical overview
of the main scientific advances on microbiota and wine, the concept of terroir and the
biogeography of the microbiota, the ecosystem services provided by the microbiota both in
vineyards and in wineries, the impact that agricultural management systems have on this
microbiota and therefore on ecosystem services, and methodologies for the quantification
of this contribution in economic terms. The potential and limitations of this approach are
also discussed, as well as the main lines of future research and possible applications.

2. Microbiota and Wine: The Evolution of Our Scientific Knowledge

Approximately 11,000 years ago, vines were domesticated in Western Asia to yield
table and wine grapes [19], with evidence of oenological practices around 7000 years ago
(5400–5000 BC) in the South Caucasus region [20]. These first wines were probably the
serendipitous combination of chemistry and biology, specifically the microbiota present
in grapes [21]. Domesticated varieties from Western Asia spread into other parts of the
world through early agricultural communities. In Egypt, archaeological remains have
provided evidence of grapevine cultivation on the Nile River since the Predynastic Pe-
riod (4000–3100 BC) [22]. Jars with tartaric acid and tartrate residues are also proof from
4000 years ago of wine fermentation and storage processes in China (Jiahu region) [23,24].
In Europe, vine cultivation spread along trade routes, with vineyards planted on the Iberian
Peninsula as early as the third millennium BC, even before the Phoenicians arrived [25]. In
Ancient Greece (800 BC), wine was considered a basic element of everyday life, prompting
the planting of vines in Greek colonies. However, the most advanced domestication of
wine took place in the Roman Empire. The Romans already made the first grafts in the
1st century BC [26], when they began to use not only traditional amphorae but also wooden
vats (51 BC) to preserve wine. However, considering microbiota, it has not yet been possible
to find samples of microorganisms from before 1000 BC, with Saccharomyces cerevisiae being
the first fermenting yeast to be identified [27,28].

Although oenology has evolved historically along with the production and elaboration
of wine itself, it was not established as a scientific discipline until the 19th century with
the research carried out by Pasteur on the role of microorganisms in wine fermentation.
Pasteur obtained the first patent on alcoholic fermentation in 1857 and described the role
of yeast strains in the production of different wines [29,30]. He also studied viticultural
diseases and obtained a patent on the preservation of wine through pasteurisation [31].
Thanks to his contribution, in 1890, Hermann Müller carried out the first inoculation
of grape must with a pure yeast culture, thus bringing forth the concept of controlled
fermentation, which has survived to the present day with certain improvements in the
control and reliability of the process [32]. Oenology has continued to evolve since then,
studying the interactions of microbiota in both alcoholic fermentation and malolactic
fermentation for wine production [33,34]. Another research effort has focused on the
process of the domestication of oenological yeast strains, i.e., the artificial selection of
strains with improved desirable characteristics that are adapted to environments with
different stress factors, such as changes in temperature, acidity, and oxidative stress [35,36].
Now we know that S. cerevisiae stands out among the large number of yeast species
involved in the different stages of fermentation due to its high fermentative capacity,
ethanol tolerance, and strong resistance to the toxicity of different metabolites, thus being



Agronomy 2024, 14, 131 3 of 23

able to prevail in the final stages of fermentation [37–40]. Considering these properties,
optimal hybrid starters formed by S. cerevisiae and Saccharomyces spp. or S. cerevisiae
and non-Saccharomyces have been created for controlled fermentation, guaranteeing the
predictability and reproducibility of wines over time [41,42]. At present, the use of starter
cultures is widespread in wineries, modulating the aromatic profile of the wine because of
their enzymes, such as esterase, β-glucosidase, proteolytic, and pectinolytic enzymes. In
addition, starters may increase the glycerol content and thus decrease the alcohol content
of wines [43,44]. At the same time, however, the use of starters represents a risk for the loss
of genetic diversity in indigenous yeast populations [45].

In recent years, next-generation sequencing of DNA (NGS) techniques has enabled
researchers to study the genomes of entire microbial communities, including those of
unculturable organisms. Particularly, the use of techniques based on high-throughput se-
quencing (HTS) and omics, such as metabarcoding, meta-transcriptomics, meta-proteomics,
and metabolomics, has opened up a new scenario in wine research. These technologies pro-
vide a powerful approach to a more complete understanding of the complexity of microbial
communities in different environmental niches, helping greater monitoring and diagnosis,
among other aspects [46–48]. Thus, HTS-based studies have allowed for the identification
of microbial dynamics during winemaking, helping winemakers better understand and
control the fermentation process and improve the final product’s quality [49–53]. In 1996,
S. cerevisiae was the first eukaryotic organism for which a complete genome sequence was
obtained [54]. It is now known that, as a result of the domestication process, more than 90%
of the fermenting yeasts of S. cerevisiae in wineries around the world come from the same
cluster as a consequence of their domestication [55]. The advances are even greater in the
role played by microbiota in vineyards. NGS has enabled the identification and characterisa-
tion of diverse microbial populations in the vineyard ecosystem, facilitating the description
of the virome [56], mycobiome [57], and bacteriome [58] of vineyards in different parts of
the world. These developments have provided insights into the potential of the microbial
communities that play essential roles in vineyards’ health and productivity [59] in pro-
cesses such as nutrient cycling, disease suppression, or plant–microbe interactions [60,61].
Moreover, NGS has aided in deciphering the microbial components that contribute to
the distinct characteristics of wines from different regions, the terroir [62–64]. New NGS
advances allow for an ever-deeper understanding of the microbiome of vineyards. For
example, the use of amplicon sequence variants (ASVs) instead of operational taxonomic
units (OTUs) since 2013 has allowed for a finer distinction between sequences, enabling
a more precise taxonomic identification, which is very useful for taxonomic groups that
have close taxa with different functionalities in vineyards [65–68]. However, synthetic
genomics—the construction of viruses, bacteria, and eukaryotic cells whose genome has
been completely synthesised in the laboratory [69]—allows for the design of a genera-
tion of industrial microorganisms that will introduce notable improvements in aspects
such as the organoleptic properties of wine or the reduction in ethanol concentration in
light-bodied wines [70–72]. In this regard, strains that favour certain aromas have already
been produced through the engineering of metabolic pathways and the fusion of synthetic
enzymes [70,73,74].

Overall, the information obtained through these methods has the potential to transform
vineyard management practices and contribute to more sustainable and efficient wine
production [75–77].

3. Terroir and Microbiota of Wine

When tasting a wine, some of the first perceived differentiating aspects (such as aroma,
acidity, and colour) are related to the area in which the physicochemical, biological, and
cultural interactions of the vineyard take place: the terroir [69,78,79]. This term is frequently
used nowadays, not without controversy and despite its poor widespread understand-
ing [76,80]. In the traditional definition of the International Wine Organisation (OIV),
the terroir initially referred to an “area in which collective knowledge of the interactions
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between the identifiable physical and biological environment and applied vitivinicultural
practices is developed”, including specific soil, topography, climate, landscape character-
istics, and biodiversity features (OIV/VITI Regulation 333/2010). Given advances in the
understanding of the role of microbiota in wine and vineyard distinctiveness, recent studies
within the literature already consider it an integral part of this terroir [81–83].

In biogeographical terms, since microorganisms operate in a particular ecological
niche with specific environmental conditions, spatial differences can be found in the mi-
crobial communities present in each region [49,84,85]. It has been demonstrated that the
distribution of the microbiota is influenced by geographical, environmental, and man-
agement factors, generating a region-specific microbial terroir that contributes distinctive
qualities to the wines [61,86–90] (Figure 1). Research on this microbial terroir has shown
that some OTUs of the microbiome can act as a geographical signature of a vineyard or
wine region [91].
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Figure 1. Factors such as climate, soil, and surrounding biodiversity condition the microbiome of
the specific microbial terroir in each vineyard (centre of the figure). These factors are shaped by
crop management practices (upper left corner). The interaction between these elements defines
a biogeography of microbiota in vineyards with differences expressed at different geographical
distances and in which fungi are more site-specific and bacteria tend to have more cosmopolitan
distributions (right side).

Differences in the spatial patterns of microbial communities in vineyards are expressed
at different scales. Considerable differences have been observed between vineyards in
different parts of the world [92] and between wine-growing regions [93–96]; however, land-
scape factors and local variations in the ecological niche are known to produce significant
differences at the local scale [97–100]. Intra-vineyard variability is also a significant factor
as differences in microbial composition can be even greater than between plots [101,102].
Hence, it is possible to identify a hierarchy within spatial distances, following a broad trend
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whereby the diversity of microbiota rises with the distance [63], while a common core of
genera, or even species, has been described globally [92] (Figure 1).

Isolation by geographic distance is somewhat shaped by environmental heterogeneity,
which defines microbiota spatial patterns in vineyards. Climate and soil differences be-
tween areas contribute to microbial community dissimilarities between vineyards [103,104].
At the wine-growing landscape scale, the factors behind these spatial patterns are also
related to vineyard practices [97,105–107], grape variety [85,92,98], and microclimate con-
ditions [98,99,108,109]. The surrounding ecosystems also seem to be involved in the com-
position of microbial communities in vineyards. Thus, nearby forests shape the fungal
communities in the vineyard, not only because of the natural yeasts they host but also
because of the social insects (e.g., wasps) that act as vectors for transporting microorganisms
from the forest to the grapes [110–113].

The microbiomes of vineyards have also shown significant differences between the
soil and the vines themselves. The soil acts as the main reservoir of microbiota and
shows a certain level of concurrence with the different parts of the vine (roots, leaves,
flowers, and grapes) [58,91]. While bacterial diversity decreases from the soil to the aerial
parts [82,114], the main change in fungal-specific diversity occurs between the soil and the
rhizosphere [115].

The variety of vines also conditions the microbial communities present in vineyards.
For example, bacterial species, such as Enterococcus, Massilia, Kocuria, Pseudomonadales, and
Pantoea, are more likely to appear in varieties, such as Merlot, Syrah, Cabernet Sauvignon,
and Zinfandel, while species such as Bacillus, Turicibacter, and Romboutsia have a greater
prevalence in Pinot Noir. As for fungal species, Cladosporium, Phoma, and Sporormiella
appear in Zinfander, Lon, and Gem [108,116,117].

The spatial patterns of fungi and bacteria generally differ, which is partly explained by
variations in responses to environmental effects or vineyard management practices [118–123].
On a global scale, although spatial distance explains beta diversity in both, climate is
more related to alpha diversity in fungi than in bacteria [63], with some bacteria also
responding to climate variables [104]. In addition, the dispersal of fungi by wind is
probably more limited than that of bacteria due to the larger spore size compared to
bacterial cells [112,124,125]. As a result, the diversity of fungal communities increases with
distance, a pattern that is much less marked in bacterial genera. Thus, while fungi are more
site-specific, bacteria tend to have more broad-based distributions but with notable local
and intra-vineyard differences at the same time [87,93,126]. Overall, the fungi, which are
more representative of each territory, define the microbial geographical signature of the
different winegrowing regions and vineyards to a greater extent [94,127].

Microbiome differences can appear not only in space but also in time. Although
inter-annual variations in the microbiota of a vineyard have barely been studied, some re-
search has found that vintage can significantly affect the biodiversity of vineyard-associated
microorganisms [85,128–130]. In contrast, other studies have shown that differences be-
tween vintages are not significant [102]. Moreover, during the vine growing period, alpha
diversity experiences a decline, while beta diversity undergoes an increase. This trend
implies that microbiomes are progressively reshaped by interactions between hosts and
microbes [104].

What happens in the vineyard is transferred to the winery. All ecological interactions
that take place between the microbiota, the plant, and the environment play an important
role in the outcome of wine fermentation. In fact, it has been shown that up to 60% of
microbial diversity must come from taxa derived from the soil, leaves, and grapes of the
vine [96,108,117,131], while the communities present in that which is freshly harvested
must be more similar to those found in berries; as fermentation progresses, they become
more and more similar to the communities present in the vine bark [94,132,133]. Thus,
it is possible to identify microbial biomarkers associated with each terroir among the
different stages of fermentation and for different wine grape varieties [96]. Moreover,
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winery surfaces harbour seasonally fluctuating populations of bacteria and fungi with
relevance to wine fermentation [134].

4. Ecosystem Services Provided by Microbiota in Vineyards and Wines

Microbiota provide ecosystem services both for vineyards and for the quality of the
final product, wine. This review uses the classification proposed by the United Nations
System of Environmental-Economic Accounting, which identifies three main groups: pro-
visioning, regulating, and cultural ecosystem services [5].

4.1. Provisioning Ecosystem Services

Within the category of provisioning ecosystem services, microbiota are closely linked
to wine production through fermentation. They also provide remarkable genetic diversity
that can benefit the wine industry and wine cultures.

4.1.1. Biomass (Crop) Provisioning Services

Without microbiota, humans would simply not have wine. It plays a fundamental
role in fermentation, transforming grape must into wine. Thanks to studies based on HTS,
the existence of a large microbial pool that includes fungi and bacteria in spontaneous
wine fermentation has been proven [47,51,53,135]. The different strains of oenological
yeast have been “domesticated” over the years, adapting by evolutionary mechanisms
to environments with many stress factors in the fermentation process [35,36,136]. Thus,
regarding alcoholic fermentation, indigenous species of the genera Hanseniaspora, Candida,
Pichia, and Metschnikowia are involved in the first steps of the process, producing secondary
metabolites (such as acids, alcohols, and esters) and enzymes (such as esterases, lipases,
and proteases) that can affect the final quality of the wine [137]. These species can grow at
low ethanol concentrations, but when this exceeds 5–7% and the abundance of fermented
sugars begins to decrease, they start to decline and die [138]. Other yeasts, such as species of
Brettanomyces, Kluyveromyces, Schizosaccharomyces, Torulaspora, and Zygosaccharomyces, may
also be present during fermentation and subsequently in wine, some of which are capable
of adversely affecting sensory quality [35]. Due to its high fermentation capacity, ethanol
tolerance, and strong resistance to the toxicity of different metabolites, S. cerevisiae prevails
in the final stages of fermentation [38,41], being nearly unique in those fermentations with
commercial starters, or else, accompanied by other species, such as Torulaspora delbrueckii,
Zygosaccharomyces fermentati, Kluyveromyces thermotolerans, Hanseniaspora guilliermondii, and
Dekkera anomala in spontaneous fermentation [49,96,137]. For malolactic fermentation,
Oenococcus oeni is the dominant species [139–141]. Apart from the gradual growth of
different yeast species during fermentation, the existence of the underlying successional
development of different strains within each species has also been described [138].

Microbiota play a remarkable role in the organoleptic characteristics of wine. For exam-
ple, beneficial yeast species of Debaryomyces may produce enzymes, such as β-glucosidases,
which increase the concentration of desirable organoleptic compounds in wines [142].
Lachancea thermotolerans, Pichia kluyveri, Rhodotorula mucilaginosa, and Metschnikowia spp.
may improve the flavour and aroma of wine [33,41,76,143]. Species of bacteria, such as
those included in the genus Lactobacillus, contribute to the synthesis of methyl and isobutyl
esters and the formation of red and black fruity wine fragrances. Fructobacillus is closely
related to the synthesis of aromatic alcohols and the generation of fruity flavours [144].

In spontaneous fermentation, the soil microorganisms that are present in grape berry
and those present only in berries (coming from insects, birds, etc.) produce wines with
greater complexity than those fermented with pure starters, providing a bouquet of flavours
perceived as more attractive to consumers [131,132,145,146]. These spontaneously fer-
mented wines are practically impossible to reproduce in later vintages or in some regions,
mainly due to terroir differences [21,42]. However, these wines are unpredictable due to
fermentation arrests and can deteriorate due to the appearance of certain undesirable yeast
species, such as Brettanomyces spp. [147].
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4.1.2. Genetic Material Services

The oenological microbiota constitutes a reservoir of great genetic diversity, with
a wide variety of Saccharomyces and non-Saccharomyces yeast species and strains, which
stems from mechanisms such as heterozygosity, nucleotide and structural variations, hor-
izontal gene transfer, and intraspecific hybridisation [39,148]. This genetic diversity is
likely to provide resilience to climate change in wine production [47,50,135] and can be
exploited to obtain higher quality wines [149–151] or to generate non-GMO hybrids to
be used as commercial starters that do not suppress the native microbial flora [152]. The
species most sought after are those that ferment well and produce less ethanol, more glyc-
erol, and more attractive aroma compounds. Some of these yeasts are non-Saccharomyces,
such as Hanseniaspora vineae and Metschnikowia fructicola [152], or other species of Saccha-
romyces belonging to the sensu stricto complex [153,154], such as S. kudriavzevii, which
can produce more aroma compounds and even higher amounts of other alcohols, such
as phenylethanol. Saccharomyces uvarum also produces more aromatic compounds, such
as alcohols and esters. Saccharomyces bayanus is cryotolerant, allowing for fermentation at
lower temperatures [32,155–159]. In addition, the sequential fermentation of S. cerevisiae
with non-Saccharomyces yeasts, such as Meyerozyma guilliermondii and Hanseniaspora uvarum,
enhances floral and fruity aromas in wines [150].

4.2. Regulating Ecosystem Services

The interactions between biological communities (including microbiota) and the phys-
ical and chemical properties of the soil environment are fundamental to the processes,
functions, and ecosystem services provided by nature in vineyards, such as carbon stor-
age [78], regulation of soil quality [160], formation of soil structure [161], or the biocontrol
of pests and diseases [78,162,163].

4.2.1. Carbon Storage

As vineyards are a potential source of carbon storage [164], with differences among
vine ages [165] and grape varieties [166], soil microorganisms are of great importance
in regulating organic carbon dynamics [167], as taxa such as Patescibacteria, Synergistetes,
Chloroflexi, Actinobacteria, Deinococcus-Thermus, and Atribacteria can degrade organic carbon
to produce organic acids [168].

4.2.2. Soil Quality Regulation Services

Microbial communities play a pivotal role in shaping soil nutrient dynamics, and any
shift in their activities and functions has the potential to jeopardise soil biogeochemical
cycles, ultimately impacting the availability of nutrients to plants [78,169–171]. Thus, there
are specific microbial consortia that lead to nitrogen fixation and nutrient mineralisation,
metabolising, for example, recalcitrant forms of N, K, and P to release these essential
elements for vine nutrition [172–174].

4.2.3. Soil and Sediment Retention Services

Given the characteristics of the crop, its management, and its location in topograph-
ically complex areas, vineyards present a particularly favourable context for soil loss
compared to other agricultural land [175,176]. The microbiome can contribute to reducing
this problem. In this regard, the arbuscular mycorrhizal fungi (AMF) of the subphylum
Glomeromycotina promote the formation of soil aggregates and thus the prevention of soil
erosion [177–181]. AMF develops a dense mycelial network in the soil [182,183], which,
together with the secretion of sticky substances comprised of proteins [184], can have a
binding action on soil particles and improve their structure, leading to increased structural
stability and soil quality [185–187]. Thus, a reduction in AFM is expected to increase the
risk of erosion [188].
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4.2.4. Biological Control Services

Understanding the microbial ecology of vineyards has implications for disease man-
agement and the development of more sustainable and eco-friendly approaches to pro-
tecting grapevines. Bacteria present in the rhizosphere and endosphere of vine shoots and
branches, such as Achromobacter xylosoxidans, Bacillus subtilis, and Pseudomonas fluorescens,
can produce siderophores that limit the availability of iron, thus reducing the presence
of pathogenic microorganisms. Some bacteria also degrade virulence factors (e.g., oxalic
acid) produced by plant pathogens, thus reducing the severity of damage [189]. By making
good use of the functionalities provided by the microbiome, chemical products are start-
ing to be replaced by selected bacterial strains, endophytic fungi, and yeasts that show
defensive responses to grapevine pathogens [190], such as powdery mildew (Uncinula
necator), downy mildew (Plasmopara viticola), or Botrytis cinerea, which can negatively affect
the quality of the final product [191,192]. This biocontrol is provided by species such as
Lysobacter capsici (AZ78), Trichoderma spp. [193–197], and Aureobasidium pullulans [198–200].
The use of these microorganisms instead of chemical fungicides helps in the production of
certified organic wines [201,202]. Biological control of microorganisms is an active field of
research in which significant progress is being made. For instance, strains of Arthrobacter
spp., Rhodococcus spp., and Bacillus mycoides with an excellent ability to reduce the growth of
mycotoxins from the fungi Aspergillus carbonarius, A. niger, and A. flavus have recently been
isolated from organic vineyard soils [203]. In addition, some yeasts derived from grape
must are also effective against pathogens such as B. cinerea [204], making them potential
candidates for industrial application as biological control agents.

4.2.5. Nursery Population and Habitat Maintenance Services

Microbiota can provide better soil conditions for vine development. For example, the
fungus Aerobasidium pullulans is known to metabolise inorganic sulphur used as a fertiliser
and pesticide and to absorb copper employed as a fungicide, which in high concentrations
is toxic to the plant [198,199].

4.3. Cultural Ecosystem Services

Beyond the provisioning services, an ancestral culture has been created around wine,
expressed in a rich tangible and intangible heritage that is ultimately based on the fermen-
tation process carried out by the microbiota. These cultural services are expressed in the
form of enotourism, the aesthetic values of vineyard landscapes, the scientific develop-
ment of oenology, the scholarly enjoyment of wine, the identity and sense of belonging in
wine-growing regions, symbolism, and even certain spiritual values [15,78,205].

4.3.1. Recreation-Related Services

Enotourism includes all tourist activities related to the world of wine: wine tasting,
visits to vineyards and wineries in different wine-growing regions, festivals, and other
organised wine-related events [206]. The differences between wine production terroirs
are what give “typicity” and “identity” to the wine produced in different territories and,
ultimately, a “sense of place” to the communities linked to its production.

4.3.2. Visual Amenity Services

The beauty of the landscape increases the market value of wine-related products [15,79,205].
Given that humans aesthetically prefer healthy plants and that the fungal and bacterial
diversity of leaves is closely related to the health status of grapevines [133], the microbiota
is also related to the visual appreciation of vineyard landscapes.

4.3.3. Education, Scientific, and Research Services

The diversity provided by the different terroirs encourages scientific research in the
field of oenological microbiology, aimed at unravelling the interactions between the micro-
biota, the vine, and the final product [78,207].
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4.3.4. Spiritual, Artistic, and Symbolic Services

Wine has been linked to various myths, rites, and religious cults for thousands of
years [208–211]. The Greek god Dionysus, reinterpreted as Bacchus in Roman mythology,
was the revealer of wine culture. Among Egyptian deities, Hathor, the goddess of wine,
was carved into the amphorae used to store it, while Osiris gave the people instructions
on how to harvest the vine and store the wine. The Sumerians incorporated the goddess
Geshtinanna, a name that means “mother vine”, as found in various inscriptions.

5. Economic Valuation of Microbiota Ecosystem Services in Vineyards and Wine

Ecosystem services provided by microbiota for vineyards and wine are valuable
because they increase society’s well-being. The conceptual connections between microbiota
natural capital and the enhancement of well-being can be thought of as a sequence that
links the ecosystems, the intermediate ecosystem services, the final ecosystem services, and
the value created for the beneficiaries, such as the one in Figure 2.
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Turning these value connections into monetary terms may be useful for decision-
making (see below). This can be done by operating standard economic valuation techniques,
which are frequently applied for the economic valuation of environmental assets and the
ecosystem services they provide. These techniques and their results are not without
debate; however, their general acceptance is higher if the value connections are clear, the
beneficiaries are identified, and the benefits for them can be assessed to some extent.

In March 2021, the United Nations Statistical Commission posed the UN System of
Environmental–Economic Accounting–Ecosystem Accounting (UN SEEA-EA) as the new
standard for countries to report the state of their natural capital. This framework is set to
define the common ground for the economic valuation of ecosystem services in the coming
years; thus, it is worth drawing from it when dealing with specific elements in this field.

The UN SEEA-EA advocates the use of real or inferred exchange prices as the main
source of information for the economic valuation of ecosystem services rather than esti-
mated shadow prices. Hence, valuation techniques based on market prices or costs are
preferred over beliefs and judgments, whether they come from experts or users. The
identification of logic chains for value assessment, such as the one shown in Figure 3, also
suggests that this new framework is a proper way to disclose and arrange the valuation
steps from the ecosystem service to its economic value.
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There are several reasons why estimating the economic value of ecosystem services
from microbiota may be useful. First, the use of monetary terms allows for the aggregation
of different physical flows. Second, it provides a framework in which the services from
diverse ecosystems can be weighed and compared. Third, it may be useful to make
informed preservation decisions. Fourth, it may help to identify new promising lines
for research.

To reach these goals, the economic valuation of the ecosystem services provided by
microbiota in vineyards and wines cannot cover the whole set of values from the entire
microbiota at once for a very simple reason: without microbiota, we would not have wine;
hence, we might obtain the wrong result that the value of microbiota equals the total value
added by the wine industry, neglecting the rest of the contributions and, of course, missing
the point [18]. Instead, we must necessarily focus on the value added by certain specific
microorganisms, i.e., the marginal added value to vineyards and wine due to their presence
or the marginal lost value due to their disappearance.

It is beyond the scope of this paper to provide economic valuations for the ecosystem
services of microbiota, but a few examples of applications and methods will help explain
the way in which they are calculated. In all cases, logic chains following the outline
in Figure 3 can be identified for each ecosystem service to produce an economic value
estimate once the benefits and beneficiaries have been bounded. The most visible case, of
course, is provisioning services since microbiota play a central role in fermentation or in
the production of enzymes that improve organoleptic characteristics. Provisioning services
are usually valued by market data, and microbiota are no exception. The easy way to do
this would be to start from the value of the final product (grapes or wine) and subtract all
values not provided by microbiota, including winery installations, machinery, labour, and
fertilisers. Since these latter values are usually hard to estimate, the most convenient way
to estimate the economic value of microbiota provisioning services, when possible, might
be from the comparison between the produced values with and without the presence of
a certain type of microbiota or from the extra premium consumers are willing to pay for
organic wines.

Regarding regulating ecosystem services, the main difficulty arises from the fact
that, in many cases, their effects are not directly noticeable; hence, the use of market
data is not so straightforward. The fraction of carbon storage that can be attributed to
microbiota, for instance, can be calculated in tonnes and then valued from the standpoint
of its replacement cost, i.e., the monetary cost of CO2 allowances needed to equalise such
a level of carbon storage. A different example is biological control services, which can be
valued by calculating the avoided cost, i.e., the cost of the chemical products that can be
replaced by bacterial strains, endophytic fungi, or yeasts that show defensive responses
to grapevine pathogens. The main obstacle is that substitutability rates have not yet been
clearly determined in the literature; thus, estimating actual cost avoidance becomes a
complex task.

The economic valuation of cultural ecosystem services Is also performed using sources
of information related to market data, although its use is not straightforward. Recreation
services can be valued by considering the cost of enjoying them, usually by applying travel
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cost methods. Hence, for instance, the value of cultural services from specific microbiota
may be assessed by calculating the differential amount of money that people are willing to
pay to visit organic vineyards or wineries using indigenous yeasts.

6. Vineyard Management and Microbiota Ecosystem Services

Differences in vineyard management can modify microbial communities [212] and,
by this means, have an impact on the type and quantity of ecosystem services provided.
Some studies suggest that, together with geographical location and climate, vineyard
management is related to the diversity of yeast taxa present in grapes [74,103,213,214].
In terms of bacterial composition, vineyard management seems to have a direct impact
on the composition of its communities [162,215]. These differences may also reach and
materialise in the must microbiome [216], although other authors have found no evidence
of change [107,212].

Management practices, such as cover crop use, tillage, and soil amendments, can
influence vineyard microbial communities [78]. Green cover in vineyards can increase
microbial biodiversity [217], enhance soil health and nutrient cycling, and promote a more
resilient and balanced vineyard ecosystem. The presence of green cover increases the input
of organic matter into the soil through plant residues and root exudates. As these materials
decompose, they provide a source of nutrients for the microbial community, improving
soil fertility and supporting the growth and health of grapevines. At the same time,
green cover contributes by preventing erosion, regenerating soil biodiversity [13,218], and
improving visual amenity services [219]. Nonetheless, empirical evidence has indicated that
the outcomes of inter-row management may fluctuate due to underlying edaphoclimatic
conditions [220]. Considering agricultural inputs, organic amendments, such as manure
and compost, are a direct source of carbon for soil microbiota and other organisms, leading
to increased plant growth and the return of plant residues to the environment [221,222].
Comparatively, organic fertilisation systems lead to a notable increase in microbial biomass,
induce shifts in the structure and composition of the soil microbial community, and enhance
microbial activity, as opposed to the inorganic fertilisation approach [223,224]. In addition,
the use of nitrogen fertilisers can lead to soil acidification, with considerable negative
effects on the microbiota present in the soil [225–227]. Fungicides alter the microbial
communities on the surface of grapes, with the effect of those used in organic agriculture
(sulphur, copper) being stronger than those used in conventional agriculture [221,228–230].
Chemical herbicides, such as glyphosate, have also been shown to induce alterations in soil
microorganisms [231].

Since management practices affect the microbiota, it is no surprise that the sort of
cultivation system, whether conventional, organic, or biodynamic, also plays a role, as
some research has shown [107,232–234]. Higher fungal diversity is found in organic and
biodynamic viticulture, which seems to be related to organic fertilisers [198,199]. In organic
vineyards, there is a higher presence of Aureobasidium pullulans (which can metabolise
inorganic sulphur and absorb copper), while in conventionally managed vineyards, Sporid-
iobolus pararoseus (carotenoid producer) is predominant [235]. However, higher levels of
pathogenic Alternaria spp. And yeasts Rhodotorula and Sporidiobolus have been detected
in conventional versus organic vineyards, forming a general pattern of reduced fungal
diversity with a predominance of a few fungal taxa in these conventional vineyards, proba-
bly because of the use of systemic fungicides [201]. Other types of management can also
affect vineyard microbiota. For instance, altered vineyard microclimates under rain shelters
reduce diseases caused by Alternaria and Colletotrichum spp. [130].

7. Towards Smart Farming: Microbiota as a Nature-Based Solution in Vineyards
and Wineries

In the coming decades, the agricultural sector will face major challenges in provid-
ing food for a growing world population, but intensive cropping based on the use of
mineral fertilisers, agrochemicals, and water will continue producing a negative impact
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on biodiversity and ecosystem services [236]. Wine production is no exception to these
environmental problems [237]. Indeed, in this type of crop, certain risks can prove to be
even more severe. The placement of vineyards on steep slopes, coupled with irregular
rainfall patterns (exacerbated by climate change), can lead to substantial soil erosion and
degradation, significantly compromising soil structure and overall productivity [238–240].

In this context, “smart farming” can bring cutting-edge technology into play to en-
hance agricultural production in terms of quality, quantity, and sustainability [241]. Since
the primary objectives of smart farming involve precise and location-specific interventions,
microbiota are called upon to play a major role in these advances [242]. By nurturing
a diverse and thriving microbial community, vineyard managers can promote environ-
mentally friendly grape cultivation practices. However, although there are already many
commercialised products based on the use of microbiota, such as biocontrol agents, bios-
timulants, and biofertilisers, intelligent management should go further and promote the
sort of microbiota that provides relevant ecosystem services, while reducing the one that
can provide negative functionalities as a nature-based solution in each vineyard. Therefore,
there is a need to move quickly from promise to practice [243], generalising the ecosystem
services approach to vineyard management practices, including microbiota.

There is still important work to be done in the identification of the taxa present in the
microbial communities of vineyards, with some poorly described groups in which it is not
yet possible to identify genera or species [63]. Furthermore, another major challenge is
still to assign species to ecosystem functions. This is not straightforward, as redundancies
are common and different microbial communities may provide the same function [244].
While NGS techniques allow for the identification of taxa, cultivable or not, present in
an environmental sample, they are not intended to define the roles that taxa play within
the microbial community in which they are part. Laboratory experiments with a given
taxon are only partially useful because, in the vineyard, this taxon is part of a complex
microbial community that can modify its functionality. In this sense, to study the role of
ecological, structural, and functional characteristics in a controlled way in the laboratory
without losing the complexity of the environmental samples, artificial synthetic communi-
ties are generated. These synthetic communities maintain the essential characteristics of the
communities found naturally in the vineyard while reducing the number of components.
Thus, it is possible to study the roles and functionality of the different taxa given the
interactions within the microbial community. The generation of these synthetic communi-
ties requires the isolation of microorganisms, either individually or by the encapsulation
of microspheres of a small number of microorganisms or by the sequential layering of
microbes in a synthetic biofilm [245,246], as a preliminary step to the complete study of the
metabolic interactions between different isolates [247–249]. The study of these synthetic
communities generates invaluable information on the contribution of the community to the
overall ecosystem function. However, there are still several limitations, including how to
manage the knowledge acquired in synthetic communities when dealing with naturally
established communities, intercellular communication between single and multiple species,
and how cell consortia can be optimised or controlled in the long term [250,251]. Once the
functionalities provided by specific taxa are identified, it is necessary to investigate how the
population dynamics of these taxa and of different microbial strains respond to different
agricultural practices. It is also necessary to further investigate the factors affecting the
microbiome—a set that is formed by microorganisms, their genes, and their metabolites in
each ecological niche—and the species composition of microbial communities, especially
those related to vineyard management practices (such as green soils, tillage, surrounding
vegetation, and soil amendments). This knowledge can enable the implementation of
advantageous strategies, for instance, considering the constraints imposed by the limited
dispersal of fungi and the significant influence of environmental conditions on bacteria [61].
The room for biotechnological applications and developments is also wide and very rele-
vant, exploiting microbial properties, such as the ability to sustain and replicate themselves
without requiring repeated inoculation [252]. More research efforts should focus on how
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this microbiota is finally transferred to the properties of the wine and contributes to its
quality and to the valorisation of the terroir, which involves improving our knowledge on
the value of ecosystem services.

In terms of the valuation of ecosystem services, apart from the use values related to
the provisioning, regulating, and cultural services, the maintenance of microbiota also
has an option value by keeping open the possibility of a future benefit from microbial
communities [253,254], be it in the form of provisioning, regulating, or cultural services.
Furthermore, microbiota in vineyards also offer an insurance value in terms of an increase
in ecosystem resilience, which serves as a safety net against global change, protecting
humans and ecosystems from potential welfare losses [255–258]. This insurance value
reduces the likelihood of future declines in the supply of ecosystem services resulting from
changes in microbial communities [255,259].

Overall, the analysis of the ecosystem services provided by microorganisms in vine-
yards and wine production reveals the essential contribution of these invisible communities
to the functioning and sustainability of viticultural systems. Microorganisms are key play-
ers in achieving optimal outcomes with their diverse influences, from soil health and vine
vitality to fermentation and the sensorial profile of wine. Their complex and symbiotic
interaction with the viticultural environment triggers a range of benefits, including the
enhancement of final product quality and vineyard resilience against adverse factors. This
analysis not only highlights the importance of a holistic approach to winemaking but also
the potential for future research to understand the mechanisms behind the delivery of
ecosystem services, thereby promoting more sustainable and resilient agricultural and
winemaking practices [260].
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