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Abstract: The coupling coordination of agricultural technology innovation with food security is of
great significance for high-quality agricultural development. By identifying the coupling coordination
relationship between the two systems and the influencing factors, this paper aims to promote the
virtuous cycle of coordinated development between regional agriculture and technology, as well
as accelerate the realisation of high-quality development of Chinese agriculture. Therefore, this
paper explores the spatial and temporal coupling characteristics of the two using the entropy value
method, coupling coordination degree model, and exploratory spatial data analysis, and it screens
for important influencing factors using the grey correlation model. The main results show that 1⃝ the
coupling coordination relationship between agricultural technology innovation and food security in
China is at a dissonant stage, but the value of the coupling coordination degree increases from 0.2076
to 0.3437 during the period of study, and the level of coordination gradually improves. 2⃝ The degree
of coupling coordination in the provincial space exhibits a distribution pattern of “high in the east
and low in the west”. The areas of high value are primarily situated in the provinces of Shandong,
Jiangsu, and other provinces along the southeastern coast of China, while the areas of low value are
mainly located in the provinces of Qinghai, Ningxia, and other provinces in inland northwest China.
3⃝ The Moran’s index of provincial coupling coordination is greater than 0, showing a certain positive

correlation, and there is a significant pattern of spatial aggregation. 4⃝ The correlation coefficients
between the influencing factors and the degree of coupling coordination are all greater than 0.35,
indicating a moderate or high correlation, but the significance of technological support capacity and
food distribution security increased over time.

Keywords: agricultural technology innovation; food security; coupled coordination; sustainable
development; China

1. Introduction

Food security is a critical strategic concern that affects people’s livelihoods and the na-
tional economy, and it forms the foundation of national security [1–3]. It is often defined as
a region or country’s ability to produce enough food for its own consumption [4], ensuring
that every individual has access to sufficient, wholesome, and safe food at all times [5]. In
recent years, China has experienced successive growth in grain production [6]. However,
because of the rising demand for grain consumption, China’s external dependence on
grain has continued to increase [7]. From 2008 to 2020, China’s food self-sufficiency rate
decreased by over ten percentage points, and the issue of food security continues to face
enormous pressure and challenges [8]. Scholars have studied the interaction between food
security and other areas in China. Liu et al. [9] investigated the interaction model between
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food security and agro-ecological protection using the coupling coordination degree model.
Cai et al. [10] investigated the spatial and temporal characteristics of coordinated devel-
opment of grain production capacity and cropland utilisation intensity in the three major
grain-producing regions of China. The above research took the main grain-producing areas
as the research unit and carried out coupled and coordinated research on food security from
the perspectives of agroecology and arable land utilisation, which provides a reference for
studies on the relationship between agricultural technology innovation and food security
in China. The Outline of the Fourteenth Five-Year Plan states that the fundamental solution
to the food problem lies in technological innovation. However, China’s level of agricultural
technology innovation is relatively low [11]. Furthermore, the structure of agricultural tech-
nology, and R&D output varies greatly among provinces [12,13]. According to the National
Statistical Office, China’s agricultural science and technology progress contributed 60% in
2020. Nevertheless, this is still significantly lower than that of developed countries [14].
Therefore, research on the relationship between agricultural technology innovation and
food security in China is of great theoretical and practical significance in promoting the
coordinated development of technology and agriculture [15].

For research on the relationship between agricultural technological innovation and food
security, scholars have mainly investigated the unidirectional effect of agricultural techno-
logical innovation on food security. On the one hand, agricultural technological innovation
has the potential to solve problems in the food production process and foster sustainable
agriculture [16]. Zhu and Begho [17], Begho and Zhu [18] argued that the development
of alternative foods is an important part of the sustainable development of regional food
security in China, reducing the negative impact of fertiliser use on the environment. Bigin
et al. [19] and Abecassis et al. [20] proposed the use of biotechnology to improve disease resis-
tance in cereals and increase grain yield and quality [21]. Lei et al. [22] suggested relying on
technological innovation to overcome the difficulties in agricultural land and water scarcity.
Furthermore, Wakweya [23] stated that the employment of climate-smart agricultural tech-
nologies could enhance climatic and environmental conditions in the sub-Saharan region
and alleviate urban food insecurity. On the other hand, agricultural technology innovation
have been used in all phases of food production [24], consumption, and distribution, making
a significant contribution to the sustainable development of agriculture [25] and ensuring
food security [26]. Gui et al. [27] and Tian et al. [28] asserted that technological innovation
played a critical role in the food production chain to ensure food security. They further
posited that the use of technological innovation, including genomics, accelerated the iterative
upgrading of food varieties [29], and, ultimately, boosted food production [30]. Liu and
Ren [31] argued that digital financial inclusion could help ensure food security and lead to
higher crop yields [32]. Wolfert et al. [33] and Mantravadi and Srai [34] proposed the use
of digital technology to improve the efficiency of the food consumption and distribution
chain, pointing out the importance of developing the Internet of Things in the food industry
chain [35–38]. In addition, Frota et al. [39], Alam et al. [38], and John et al. [40] proposed
that the promotion of food value could be achieved through advances in food distribution
channels [41]. As can be seen, the one-way relationship between technological innovation
in agriculture and food security has been well documented in existing studies. However,
ensuring food security would also promote advances in agricultural technology innovation.
Unfortunately, this matter has not yet received adequate attention.

In summary, numerous scholars in agricultural technology innovation and food secu-
rity have conducted extensive research. The research results primarily concentrated on the
unidirectional role of agricultural technological innovation in food security. Considering
that food security could also have a positive effect on agricultural technological innova-
tion, this paper intended to study the coordination and influencing factors of agricultural
technological innovation and food security in China, starting from the two-way interactive
relationship. Innovations mainly include the following three aspects: Firstly, for evaluation
indicators, existing studies have adopted single indicators to evaluate the level of technolog-
ical innovation, such as Internet of Things technology and genomics technology, and single
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indicators to evaluate the level of food security, such as food production. In contrast, this
study constructed a systematic comprehensive evaluation index system for the coupling of
“agricultural technology innovation and food security”, which can reflect the current situa-
tion of agricultural technology innovation and food security in China more comprehensively
and objectively and further enhance the scientific and accurate evaluation of the results.
Secondly, from a research perspective, unlike the previous one-way role perspective, this
study explored the two-way role relationship between agricultural technology innovation
and food security in China based on the coupled coordination perspective. The study
identified the degree of coordination between agricultural technology innovation and food
security in China. In addition, the spatial and temporal characteristics of coupled provincial
coordination were revealed. Thirdly, with regard to influencing factors, existing research has
focused on the impact of agricultural technological innovation on the relationship between
the two, with little attention paid to the role of food security. On the basis of the analysis
of the coupling and coordination of agricultural technology innovation and food security
in China, this study utilised a grey correlation degree model to classify the correlation
levels of their respective indicators. It identified key factors influencing the development of
coordination between agricultural technology innovation and food security in China.

The purpose of this study was to investigate the coupling coordination relationship
between agricultural technology innovation and food security in China’s provincial areas
and identify the influencing factors and provide decision-making references for promoting
provincial agricultural technology innovation and accelerating the coordinated develop-
ment of regional agriculture and science and technology. This paper proposes the following
hypotheses based on previous research results: (1) The degree of coordination between agri-
cultural technology innovation and food security in China undergoes regular changes over
time. (2) Spatial differentiation characterises the level of coordination between agricultural
technology innovation and food security in China. The spatial distribution of neighbouring
provinces and districts’ coupling coordination can be aggregated or dispersed. (3) The level
of innovation in agricultural technology in China and the level of food security significantly
affect the degree of coordination between the two systems.

2. Research Methodology and Data Sources
2.1. Construction of the Indicator System

Drawing on the principles of systematicity, scientificity and measurability, and using the
expertise of relevant scholars in constructing indicators systems for agricultural technology
innovation and food security [42–44], a comprehensive evaluation system for the coupling and
coordination of agricultural technology innovation and food security in China (Table 1). Ten
indicators were selected to represent the level of innovation in agricultural technology in terms
of support capacity and input capacity. Ten indicators were selected to represent the level of
food security in terms of production security, consumption security and distribution security.

Table 1. Coupled coordination indicator system for agricultural technology innovation and food
security in China.

Module Normative Level Indicator Level Property Entropy
Value Redundancy Weights

Technology
innovation

Input
capacity (X1)

Local finance expenditure on science and technology (X11) + 0.894 0.106 0.097
Effective irrigated area of farmland (X12) + 0.945 0.055 0.050
Total agricultural machinery power (X13) + 0.939 0.062 0.056

R&D internal expenditure (X14) + 0.898 0.102 0.093
Expenditure on technological transformation of

high-tech industries (X15) + 0.837 0.163 0.149

Support
capacity (X2)

Number of enterprises in high-tech industries (X21) + 0.878 0.122 0.111
Number of agricultural technicians (X22) + 0.961 0.039 0.035

Number of patents granted for inventions (X23) + 0.865 0.136 0.123
Number of patent applications received (X24) + 0.874 0.126 0.115

Technology market turnover (X25) + 0.812 0.188 0.171
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Table 1. Cont.

Module Normative Level Indicator Level Property Entropy
Value Redundancy Weights

Food
security

Production
security (Y1)

Gross agricultural output (Y11) + 0.949 0.051 0.255
Fertiliser application rate (Y12) − 0.992 0.008 0.041

Food production per capita (Y13) + 0.953 0.047 0.236
Affected area (Y14) − 0.998 0.002 0.010

Consumption
security (Y2)

Consumer price index for food for the population (Y21) − 0.993 0.007 0.037
Proportion of children under five years of age

experiencing moderate to severe malnutrition (Y22) − 0.991 0.009 0.048

Pesticide usage (Y23) − 0.987 0.013 0.067

Distribution
security (Y3)

Rural disposable income per capita (Y31) + 0.962 0.038 0.193
Urban road space per capita (Y32) + 0.984 0.016 0.079

Agricultural production price index (Y33) − 0.993 0.007 0.035

Note: “+” is a positive indicator, and “−” is a negative indicator.

2.2. Data Sources

On the basis of the principles of the accessibility of research data and comparability of
indicators, a total of 30 provinces were selected as basic research units for this study, using
the provincial administrative divisions of China as the benchmark. The Tibet Autonomous
Region, Hong Kong Special Administrative Region, Macao Special Administrative Region
and Taiwan Province were excluded. The basic data on the effective irrigated farmland
area, pesticide usage, total agricultural machinery power and R&D internal expenditure
were obtained from the China Statistical Yearbook, China Rural Statistical Yearbook, and
China Science and Technology Statistical Yearbook. Data for two indicators, the agricultural
production price index and local financial expenditure on science and technology, were
obtained from the official website of the National Bureau of Statistics of China (http:
//www.stats.gov.cn/, accessed on 2 July 2022). Data for two indicators, the proportion
of children under five years of age experiencing moderate to severe malnutrition and the
affected area, were extracted from the Zhejiang Statistical Yearbook and EPS data platform
(https://www.epsnet.com.cn/index.html#/Home, accessed on 18 July 2022). Missing year
data were supplemented with interpolation and smoothing calculations.

2.3. Research Methodology
2.3.1. Entropy Method

The entropy method assigns weights based on the characteristics of the data them-
selves and avoids the influence of subjective factors. Zhang et al. [45] used the entropy
method to determine the weights of the indicators and conducted a study on the coupling
and coordination of population, industry and building land. In this study, the entropy
method was utilised to assess the indicators of innovation in agricultural technology, as
well as food security [46]. To determine the degree of indicator dispersion, entropy was
calculated by examining the entropy characteristics [47]. A greater degree of dispersion
of the indicators has a substantial impact on the comprehensive evaluation. The steps for
calculating entropy value are explained below [48]:

(1) Indicator selection: The indicator value of the jth indicator in the λth year in the ith
province is denoted as xλij. The study includes 13 years, 30 provinces, and 20 mea-
surement indicators.

(2) The indicators in the indicator system were dimensionless by the standard method of
extreme deviation:
Zλij =

(
xλij − xmin

)
/(xmax − xmin) (forward indicator), Zλij =

(
xmax − xλij

)
/(xmax − xmin)

(reverse indicator), where j = 1, 2, 3......, n and i = 1, 2, 3......, m are the total number
of evaluation indicators and evaluation objects, respectively. xmax and xmin are the
maximum and minimum values of the different indicators j for all evaluation objects.
Zλij and xλij are the indicator values of the different indicators i after and before
dimensionless quantification.

http://www.stats.gov.cn/
http://www.stats.gov.cn/
https://www.epsnet.com.cn/index.html#/Home


Agronomy 2024, 14, 123 5 of 18

(3) Normalisation of indicators: Pλij = Zλij/ ∑h
λ=1 ∑m

i=1 Zλij.
(4) Calculation of the entropy value for each index: Ej = −k ∑h

λ=1 ∑m
i=1 PλijlnPλij, where

k = 1/ ln(h × m).
(5) Calculation of the redundancy of the entropy value for each indicator: Dj = 1 − Ej.
(6) Calculation of the weight of each indicator: Wj = Dj/ ∑n

j=1 Dj.
(7) Calculation of the comprehensive evaluation index for each province per year:

Mλi = Zλij × Wj, and calculation of China’s annual comprehensive evaluation index:
Sλi = Pλij × Wj.

To ensure that the comprehensive evaluation index of China’s agricultural technology
innovation and food security is between [0, 1], in this study, the total index, Sλi, for each
year in China was treated as the product of the weights and normalised treatment values,
and the index, Mλi, for each year in the provinces was treated as the product of weights
and dimensionless treatment values.

2.3.2. Coupling Coordination Degree Model

The coupling coordination degree model is one of the most important methods of
studying the two-way interaction between two systems. Using this method, Liu et al. [9]
and Cai et al. [10] studied the coupled and coordinated relationship between food security
and agro-ecological protection and cropland use intensity, and Chen et al. [49] studied the
coupled and coordinated relationship between agricultural modernisation and regional
economic development. Coupling C refers to the interactive influence between the two and
can reflect the degree of interdependence between the systems [50]. The higher the C value,
the greater the coupling; the lesser the C value, the lower the coupling. To compensate for
the limitation that the C-value cannot determine whether the systems promote each other
at a higher level or are closely linked at a lower level, the coupling coordination degree
D-value needs to be further calculated. The coupling coordination degree D (i.e., the degree
of benign coupling in the coupled interaction mechanism) can indicate the strength of the
coordination situation. Its specific calculation steps are as follows [51]:

(1) Calculation of the coupling degree using Excel 2016 64-Bit Edition software:

C =

[
∏n

i=1 Ui

( 1
n ∑n

i=1 Ui)
n

] 1
n

,

where n is the number of system layers, n = 2; Ui is the value of each system with a

distribution interval of [0, 1], so C =

√
U1U2(

U1+U1
2

)2 = 2
√

U1U2
U1+U2

.

(2) Calculation of the coupled coordinated level of development index: T = ∑n
i=1 αi ×

Ui,∑n
i=1 αi = 1,

where Ui is the normalised value in the ith system layer, and αi is the weight in the ith
system layer. The weighting is based on most of the academic literature and assumes
that the two strata of indicators are equally important, each with a weight of 0.5.

(3) Calculate the degree of coupling coordination: D =
√

C × T

This study uses the delineation methods of scholars to classify the levels of the coupling
coordination, D, into 10 categories [52]. The details are as follows: 0.000~0.099 (extreme
disorder); 0.100~0.199 (severe disorder); 0.200~0.299 (moderate disorder); 0.300~0.399 (mild
disorder); 0.400~0.499 (imminent disorder; 0.500~0.599 (barely coordinated); 0.600~0.699
(primary coordination); 0.700~0.799 (intermediate coordination); 0.800~0.899 (good coordi-
nation); and 0.900~1.000 (high-quality coordination).

2.3.3. Exploratory Spatial Data Analysis

Exploratory spatial data analysis is a collection of data analysis methods and vi-
sualisation techniques for performing spatial statistical analysis, typically using global
autocorrelation analysis and local autocorrelation analysis to perform spatial correlation
analyses of data within the study area. Hou et al. [53] used exploratory spatial data analysis
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methods to reveal the spatial differentiation characteristics of the coordinated relationship
between urbanisation and food production in China. In this paper, global autocorrelation
and local autocorrelation analyses of the degree of coupling coordination of the 30 provinces
in this study were carried out using the exploratory spatial data analysis (ESDA) method
with ArcGIS 10.8 and GeoDa 1.20 software.

(1) Global autocorrelation analysis:

Global autocorrelation can determine the overall degree of association between Chi-
nese agricultural technology innovation and food security in the study area, which is usually
expressed by Moran’s I index [54]. Its specific calculation steps are as follows [55,56]:

I =
N
So

×
∑N

i=1 ∑N
j=1 Wij

(
Xi − X

)(
Xj − X

)
∑N

j=i
(
Xi − X

)2

where i ̸= j, and N is the number of study areas; Xi is the observed data, and X is the mean
value of Xi; Wij is the spatial weight matrix of region i and region j. The spatial adjacency
is 1, and spatial disjacency is 0. The index I is between [−1, 1], with I > 0 indicating
positive spatial autocorrelation of the coupling coordination (i.e., spatial agglomeration);
I < 0 indicating negative spatial autocorrelation of the coupling coordination (i.e., spatial
dispersion); and I = 0 indicating no correlation and spatial random distribution [57].

(2) Local autocorrelation analysis:

To compensate for the limitations of global autocorrelation in studying spatial atypical
characteristics, we also used the local autocorrelation analysis indicator LISA to analyse
the local spatial correlation of each province in China regarding agricultural technology
innovation and food security. This approach provides a more specific reflection of the
degree of local spatial agglomeration in each region and clarifies the exact location of
spatial agglomeration [58]. The specific calculation steps are as follows:

Ii = Zi

N

∑
i=1

WijZj

where Zi and Zj are normalised to the observed data in region i and region j, and Wij
represents the spatial weights. A positive value of Ii indicates that region i belongs to a
neighbouring region with high values surrounded by high values or low values surrounded
by low values. A negative value of Ii indicates that region i belongs to a neighbouring
region with a low value surrounded by a high value or a high value surrounded by a
low value.

2.3.4. Grey Correlation Model

The grey correlation model can better deal with the uncertainty and incompleteness
in actual data, and it is an important methods for revealing the magnitude of the degree
of influencing factors. Using this method, Li et al. [59], Geng et al. [60] and Hu et al. [61]
investigated the important factors influencing the coordinated development of the two
systems. Therefore, this study introduced the grey correlation model, which has few
constraints and accurate calculation results, for the computational analysis. The calculation
formula is presented below [62]:

ξj(i) =
∆min + ρ∆max

∆j(i) + ρ∆max

Rj =
1
m

m

∑
i=1

ξ j(i)

where ξj(i) is the grey correlation coefficient; ∆j(i) is the absolute difference between
the standardised value of the jth indicator in China’s agricultural technology innovation



Agronomy 2024, 14, 123 7 of 18

or food security evaluation system and the agricultural technology innovation or food
security index; ∆min and ∆max are the minimum and maximum of the absolute difference,
respectively; ρ is the resolution coefficient; and the grey correlation, Rj, represents the
correlation strength. The larger the value, the greater the intersystem correlation. It is
usually divided into three levels according to the degree of strength [63]: high correlation
(0.75, 1.00), medium correlation (0.35, 0.75), and low correlation [0, 0.35].

3. Results

By applying the above research methods, this paper conducted a study on the coupled
and coordinated relationship between agricultural technology innovation and food security
in China and the factors influencing it. The main findings are as follows:

3.1. Comprehensive Evaluation Index of Agricultural Technology Innovation and Food Security
in China

The index demonstrates changes in China’s agricultural technology innovation system
and food security system from 2008 to 2020, as shown in Figure 1 and Table 2. In terms
of the process of change, the evolution of China’s agricultural technology innovation
is divided into a steady growth phase I (2008–2014) and a rapid development phase II
(2015–2020). In Phase I, the level of innovation in agricultural technology grew steadily.
The comprehensive evaluation index grew from 0.0363 in 2008 to 0.0694 in 2014, with an
average annual growth rate of 0.47%. In Phase II, the level of innovation in agricultural
technology is rising rapidly. The composite evaluation index grew from 0.0807 in 2015 to
0.1364 in 2020, with an average annual growth rate of 0.93%. The level of development
of China’s food security system is on a steady upward trend. The Composite Evaluation
Index grew steadily from 0.0512 in 2008 to 0.1023 in 2020, with an average annual growth
rate of 0.40%.
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Table 2. The phased characteristics of technological innovation and the food security development
level in China.

Stage Phase Initial Value Terminal
Value

Annual
Increment

Level of innovation in
agricultural technology

Steady growth Phase I 2008–2014 0.0363 0.0694 0.0047
Rapid development Phase II 2015–2020 0.0807 0.1364 0.0093

Level of food security Steady growth Phase 2008–2020 0.0512 0.1023 0.0040

3.2. Evolution of Spatial and Temporal Patterns
3.2.1. Chronological Evolution

The change in the degree of the coupling coordination between China’s agricultural
technology and innovation and food security from 2008 to 2020 is shown in Figure 2.
It can be seen that the degree of coupling coordination between China’s agricultural
technology innovation and food security in the research period shows a steady growth
trend. Combined with the calculation results, the development the coupling degree of
China’s agricultural technology with innovation and food security can be divided into two
stages. From 2008 to 2016, the degree of coupling increased from 0.2076 to 0.2964, which is
in the stage of moderate disorder, where the degree of agricultural technology innovation
is low, the development of food security is slow, and the impact of agricultural technology
innovation is not significant, resulting in the mutual support between the two. From 2017
to 2020, the degree of coupling coordination exceeded 0.3 and increased from 0.3044 to
0.3437, improving to the stage of mild disorder. This shows that the interaction between
agricultural technology innovation and food security in China continues to strengthen,
with a coordinated development trend.
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3.2.2. Evolution of Provincial Spatial Pattern

The spatial distribution of the coupling degree of agricultural technology innovation
and food security in Chinese provinces in 2008, 2012, 2016 and 2020 is shown in Figure 3.
From a spatial dimension, the overall pattern of coupling degree distribution was “high in
the east and low in the west”. The number of high-value areas was increasing and showed
a tendency to spread to coastal provinces. The number of low-value areas was decreasing,
and the value of the coupling coordination degree showed an increasing trend. Overall, the
geographical differences in the spatial distribution of the coupling degree of agricultural
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technology innovation and food security in China’s provincial areas are more obvious,
showing a certain trend of polarisation. From a temporal perspective, the mean values of
the degree of coupling coordination increased in 2008, 2012, 2016 and 2020. The average
value of the index was 0.349, 0.404, 0.454 and 0.499, respectively, with the highest increase of
15.76%. Overall, the degree of coordination between agricultural S&T innovation and food
security in China’s provinces has basically changed from a “comprehensive dissonance
pattern” to a “semi-coordinated and semi-dissonant pattern” during the study period.
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Figure 3. Spatial and temporal situations of the coupling coordination of provincial agricultural
technology innovation and food security in China.

Specifically, it can be seen that in 2008, only one province, Jiangsu Province, was in
the barely coordinated stage of coupling coordination between agricultural technology
innovation and food security. This indicates that in Jiangsu Province there is a more benign
interaction of technological agricultural development, and it was the first to enter the
initial stage of development compared to the other provinces. The number of provinces
with mild disorder was highest at 56.70%. Provinces with imminent disorder are the
next most numerous, accounting for 20% of the total. Moderately dysfunctional and
severe disorder provinces accounted for 13.30% and 6.70%, respectively. In 2011, Jiangsu,
Shandong and Guangdong provinces entered the phase of coupling coordination to varying
degrees. Among them, the level of coupling coordination in Jiangsu Province increased
to the primary coordination stage, ahead of other provinces in the country during the
same period. The number of provinces with imminent disorder was the highest at 43.30%.
Mild disorder provinces were the next largest, accounting for 36.70%. The only moderate
disorder provinces were Qinghai, Ningxia and Hainan. In 2016, 10 provinces entered the
coupling coordination phase. Among them, Jiangsu, Shandong and Guangdong reached
the primary coordination stage, and neighbouring provinces such as Zhejiang, Anhui and
Henan reached the barely coordinated stage. The number of provinces in the imminent
disorder stage was the highest at 40%. The number of mild disorder provinces fell from 11
to 5. Moderate disorder provinces remained unchanged. By 2020, the numbers of provinces
in the coordinated and dissonant stages were basically the same. Among them, Guangdong
and Jiangsu provinces were the first to reach the intermediate coordination stage. Primary
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coordination and barely coordinated provinces accounted for 10% and 30%, respectively.
The number of provinces with imminent disorder was the highest at 36.67%. Mild disorder
and moderate disorder provinces accounted for 6.67% and 10% respectively. Overall, the
provinces that were in the coupling coordination stage are mainly located in the eastern
coastal and central regions of China, with the eastern coastal provinces being in the region
with the highest values, and the provinces in the coupling dissonance stage are mainly
located in the inland region of northwest China.

3.3. Spatial Autocorrelation
3.3.1. Global Spatial Autocorrelation

The global Moran’s I degree of the coupled coordination of agricultural technology
innovation and food security in China is shown in Table 3. It is evident that the Moran’s I
index was positive during the study period, and all Z-values exceeded the critical value
of 1.96 at a confidence level of 0.05, indicating the significance of the test. This shows that
from a spatial perspective, the degree of coupling and coordination between agricultural
technology innovation and food security in China exhibits a certain positive correlation.
There is a significant spatial agglomeration pattern of “high–high” and “low–low” agglom-
erations. That is, for provinces with a high degree of spatial coupling coordination, their
neighbouring provinces also experience a high degree, and provinces with a low degree of
coupling coordination also have neighbouring provinces with a low degree. Specifically,
the global Moran’s I values were 0.192, 0.212, 0.229 and 0.214 in 2008, 2012, 2016 and 2020,
respectively. This shows a general trend of growth, indicating that the degree of spatial
coordination of the degree of coupling coordination was relatively stable, and provincial
agricultural technology innovation and food security were in a process of continuous
synergistic development.

Table 3. China’s agricultural technology innovation and food security coupling coordination degree
overall Moran’s I from 2008 to 2020.

Indicator
Year

2008 2012 2016 2020

Moran’s I 0.192 0.212 0.229 0.214
Z-value 1.994 2.171 2.311 2.169

3.3.2. Local Spatial Autocorrelation

The study selected cross-sectional data for 2008, 2012, 2016 and 2020 to draw a LISA
cluster map of the coupling coordination, and it classified spatial agglomeration types into
five categories: nonsignificant, low–low, high–low, high–high and “low–high” agglomera-
tion (Figure 4).

Specifically, the scope of the “low–low” agglomeration area expanded, from Gansu
in 2008 to Gansu and Xinjiang provinces in 2020. The spatial concentration was deeper
in northwest China. The pole of the “high–low” agglomeration was Sichuan Province,
and the changes in the types of agglomerations in the surrounding provinces were stable.
The scope of the “high–high” agglomeration area fluctuated significantly. From Liaoning,
Shandong, Anhui, Jiangsu, Shanghai and Zhejiang provinces in 2008, it developed into
Shandong, Henan, Anhui, Jiangsu, Shanghai, Zhejiang, Fujian and Hubei provinces in 2016.
By 2020, there were six provinces: Henan, Anhui, Jiangsu, Shanghai, Zhejiang and Hubei.
The spatial distribution of the “low–high” agglomerations was scattered and unstable. The
scope of this type of area goes through the process of enlarging, shrinking and expanding
again. The spatial distribution eventually changed from Beijing in 2008 to Jiangxi and
Fujian provinces in 2020. Overall, over time, the interaction between provinces increased,
the degree of coupling and coordination increased, and the effect of spatial agglomeration
was significantly enhanced.
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3.4. Analysis of Influencing Factors

To advance the coordinated progression of China’s agricultural technology innovation
and food security, it is vital to analyse and summarise the factors that affect various
stages of coordinated development. Taking the various subsystems of China’s agricultural
technology innovation and food security as influencing factors, a grey correlation analysis
was carried out to analyse the factors influencing coupling coordination at different stages
(Table 4).

Moderate disorder stage, 2008–2016: In the agricultural technology innovation system,
the X13 indicator of the total power of agricultural machinery had the greatest influence
on the coordinated development of China’s agricultural technology innovation and food
security, with a correlation of 0.984, which is highly correlated. In addition, other indicators
that were highly correlated with the coordinated development of the two are in the follow-
ing order of influence: X15 > X12 > X21 > X22 > X14 > X11. The indicator with the smallest
correlation with the coordinated development of the two is the indicator of the number of
patents granted for inventions of X23, with a correlation of 0.637. This shows there was a
moderate correlation and is consistent with the X25 and X24 indices. In the food security
system, the Y32 urban road space per capita indicator had the greatest impact on the co-
ordinated development of agricultural technology innovation and food security in China,
with a correlation of 0.955, which indicates high correlation, as with the Y13, Y12 and Y23
indicators. The indicator with the smallest correlation with the coordinated development of
the two was the Y22 proportion of children under five years of age experiencing moderate
to severe malnutrition indicator, with a correlation of 0.601, which is a medium correlation.
In addition, the other indicators moderately associated with coordinated development
were Y21 > Y33 > Y11 > Y14 > Y31.
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Table 4. Grey correlation analysis of the influencing factors and the coupling coordination degree at
different stages of coordinated development.

Module Normative Level Indicator Level

Moderate
Disorder Stage

Mild
Disorder Stage

Relatedness Rank Relatedness Rank

Technology
innovation

Input
capacity (X1)

Local finance expenditure on
science and technology (X11) 0.769 7 0.796 9

Effective irrigated area of
farmland (X12) 0.956 3 0.906 4

Total agricultural machinery
power (X13) 0.984 1 0.939 1

R&D internal expenditure (X14) 0.769 6 0.816 8
Expenditure on technological
transformation of high-tech

Industries (X15)
0.957 2 0.837 7

Support
capacity (X2)

Number of enterprises in
high-tech industries (X21) 0.946 4 0.933 2

Number of agricultural
technicians (X22) 0.933 5 0.888 6

Number of patents granted for
inventions (X23) 0.637 10 0.902 5

Number of patent applications
received (X24) 0.667 9 0.910 3

Technology market turnover (X25) 0.747 8 0.605 10

Food
security

Production
security (Y1)

Gross agricultural output (Y11) 0.623 7 0.823 3
Fertiliser application rate (Y12) 0.847 3 0.651 9

Food production per capita (Y13) 0.850 2 0.784 5
Affected area (Y14) 0.608 8 0.819 4

Consumption
security (Y2)

Consumer price index for food for
the population (Y21) 0.745 5 0.743 6

Proportion of children under five
years of age experiencing

moderate to severe
malnutrition (Y22)

0.601 10 0.661 7

Pesticide usage (Y23) 0.809 4 0.574 10

Distribution
security (Y3)

Rural disposable income per
capita (Y31) 0.608 9 0.656 8

Urban road space per capita (Y32) 0.955 1 0.938 1
Agricultural production price

index (Y33) 0.693 6 0.885 2

Mild disorder stage, 2017–2020: In the agricultural technology innovation system, the
X13 indicator of the total power of agricultural machinery still had the greatest influence
on the coordinated development of China’s agricultural technology innovation and food
security, which was highly correlated. However, the relatedness fell to 0.939, a decrease
of 4.57%. In addition, other indicators that were highly correlated with the coordinated
development of the two were in the following order of influence: X21 > X24 > X12 > X23
> X22 > X15 > X14 > X11. Only the X25 technology market turnover indicator showed a
moderate correlation, with the lowest correlation of 0.605 found in its association with the
coordinated development of the two variables. The correlations of the indicators X23, X24,
X14 and X11 showed increases of 41.60%, 36.43%, 6.11% and 3.51%, respectively, compared
to the moderate disorder stage. In the food security system, the Y32 urban road space per
capita indicator still had the greatest impact on the coordinated development of agricultural
technology innovation and food security in China and was highly correlated. However,
the relatedness fell to 0.938, a decrease of 1.78%. In addition, other indicators that are
highly correlated with the coordinated development of the two were in the following
order of influence: Y33 > Y11 > Y14 > Y13. The indicator with the smallest correlation
with the coordinated development of the two was the indicator Y23 pesticide usage, with
a correlation of 0.574, which is a medium correlation. In addition, the other indicators
moderately associated with coordinated development were Y21 > Y22 > Y31 > Y12. The
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correlation of the indicators Y14, Y11, Y33, Y22, and Y31 showed increases of 34.70%, 32.10%,
27.71%, 9.98%, and 7.89%, respectively, compared with the moderate disorder stage.

Overall, within the agricultural technology innovation system, the indicators of the
X1 input capacity layer had a significant impact on the coordinated development of both.
However, over time, the correlation between the indicators of the X2 support capacity layer
and the coordinated development of the two gradually increased. Within the food security
system, indicators in the Y1 production security criterion layer had a significant impact on
the coordinated development of the two. However, over time, there has been a gradual
increase in the correlation between the indicator Y3 distribution security criterion layer and
the coordinated development of the two.

4. Discussion

The empirical results indicate that China’s agricultural technological innovation and
food security exhibited a positive trend from 2008 to 2020, both in terms of their respective
levels of development and the degree of coupling and coordination between them. This
confirms Huang et al.’s [64] conclusion about the changing trend of food security in China.
Additionally, this can be attributed to China’s recent commitment to the policy of basic
food self-sufficiency [65] and vigorous promotion of agricultural technology innovation.
As a result, the modernisation of agricultural science and technology is beginning to bear
fruit. However, we found that the level of coordination between agricultural technology
innovation and food security in China remains dysfunctional, and there is significant room
for improvement.

Concerning spatial evolution, coordinated innovation in agricultural technology and
food security in China results in various agglomerations. We found that the changing char-
acteristics of the “high–high” agglomeration area primarily result from the Yangtze River
Delta region’s ability to drive the coordinated development of neighbouring provinces.
This creates a growth pole with complementary advantages and a win–win situation, as
Wu et al. [66] found in their analysis of the role of the Yangtze River Delta agglomeration.
The change in the “low–low” agglomeration area results primarily from the geographical
location of Gansu and Xinjiang provinces in Northwest China, where issues such as un-
derdeveloped infrastructure, severe soil erosion, and an inflexible agricultural industry
structure prevail. This also coincides with other scholars’ studies of the Northwest [67].
Furthermore, we found that the ongoing depletion of social capital and human resources
resulted from an inadequate level of socioeconomic development. This is also a significant
factor contributing to the change in the “low–low” agglomeration area.

In terms of influencing factors, during the moderate disorder stage, indicators at the
input capacity level and the production security level have a significant influence on the
coordinated development of the two. This suggests that promoting their coordinated devel-
opment depends primarily on technological inputs and food production. On the one hand,
the allocation and spending of funds enhance the construction of urban infrastructure, in-
cluding roads and other components, mitigating economic and geographical shortcomings.
This is corroborated by the studies of Melketo [68] and Zhuang et al. [69]. On the other
hand, the economy drives progress in agricultural technological innovation, which bolsters
the total agricultural machinery power, thereby boosting food production. As the level of
coordination between the two further increases, the importance of technological support
capacity and food distribution security becomes increasingly evident. During the mild
disorder stage, infrastructure, such as per capita urban road area, improves further. Further-
more, there is a surge in patent applications and authorisations, along with the continual
integration of novel products and technologies into every facet of food manufacturing and
distribution. This contributes significantly to the virtuous circle between the two systems.

5. Conclusions and Policy Recommendations

On the basis of the analysis of the coupled coordination and influence factors of
agricultural technology innovation and food security in China, this paper summarises the
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key conclusions and makes relevant recommendations to provide a reference for policy
formulation of high-quality agricultural development in China.

5.1. Conclusions

This study developed a comprehensive evaluation index system for China’s agricul-
tural technology innovation and food security. The coupling and coordination relationship
between these systems was explained in depth using the implementing entropy value
method, coupling coordination model, and exploratory spatial data analysis method. In
addition, significant influencing factors were dissected with a grey correlation model. The
main findings are as follows:

From 2008 to 2020, China’s agricultural technology innovation and food security
development levels have generally increased. However, the development of technology
innovation has outpaced that of food security. The degree of coupling coordination between
the two systems is low and is generally in the dissonance stage. However, in the time
dimension, the coupling coordination degree increased rapidly. It transitioned from a
“comprehensive dissonance pattern” to a “semi-coordinated and semi-dissonant pattern”.
In the spatial dimension, the overall coupling coordination degree showed a significant
“east high, west low” distribution pattern. High-value areas were primarily found in the
eastern coastal provinces of China. The areas with low values were mainly located in the
inland northwest provinces of Qinghai, Ningxia and Hainan. These areas showcase signifi-
cant regional variations in their spatial distribution. The degree of coupling coordination
between agricultural technology innovation and food security in China showed a certain
positive correlation, and there was a significant pattern of spatial aggregation. At various
stages, indicators of agricultural technology and innovation and food security systems
were moderately or highly linked to the coordinated development of the two systems. At
the moderate disorder stage, the coordinated development of the two depends mainly
on inputs from technology and food production. However, the growing importance of
technological support capacity alongside food distribution security has become increasingly
apparent over time.

5.2. Policy Recommendations

In light of the study’s findings, this research presents a set of recommendations for
finance, human resources, and coordinated regional development to strengthen sustainable
regional agriculture.

(1) Governments should continue to intensify their efforts to coordinate regional financial
resources. First, local authorities should improve their investment models. Financial
investment should be used to entice market capital, with a focus on upgrading
infrastructure, such as the amount of road space per person in urban areas. Second,
for regions with low levels of agricultural technology development, build a diversified
investment and financing system. Finally, the government should focus on supporting
patented technologies, particularly in the seed sector, to accelerate the increase in the
overall performance of agricultural machinery.

(2) Governments should focus on strengthening the regional agricultural workforce. First
of all, local governments should establish a sound talent introduction mechanism.
Improve the construction of the talent recruitment platform and optimise the talent ser-
vice guarantee system. Second, vigorously innovate the mode of training agricultural
talents. Strengthen agricultural skills training for farmers and accelerate adaptation to
the needs of modern agricultural development. Finally, scientific management of the
agricultural talent team. Improve the evaluation system of agricultural talents and
rationally innovate the talent selection mechanism.

(3) The government should proactively establish a cohesive system for provincial agri-
cultural development. First, local governments should target the development of
regional synergistic development strategies among themselves. Second, efforts will
be made to promote the flow of agricultural production factors across provinces. Take
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enterprises as the main body, open up interregional circulation channels for special
agricultural products, and constantly explore new modes of grain circulation. Finally,
under the impetus of “One Belt, One Road” [70], the regional gap between the eastern
and western parts of agriculture should be balanced and the sharing of resources and
the complementarity of advantages promoted.

While this study has produced results, there were limitations in the construction of
the indicator system and the optimisation of the research methodology. The lack of sound
statistical information in the field of agricultural technology has resulted in limited access
to data. In the follow-up study, the agricultural technology innovation index system will be
improved by supplementing the research data to enhance the scientificity and credibility of
the research conclusions. In addition, the coupling coordination degree model reveals the
interaction relationship between two systems but tends to ignore the complexity within
the system. In this paper, we quantified the relationship between factors within the system
by introducing a comprehensive evaluation index system, but the scientificity of the index
system needs to be further improved. The grey correlation model is able to classify the
correlation level of each indicator and has a strong explanatory power in terms of the
degree of influence. However, the correlation values obtained are all positive, which cannot
reflect whether there is a positive or negative correlation between things, and this part will
be further explored in subsequent research.
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