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Abstract: Accurate estimation of wheat leaf nitrogen concentration (LNC) is critical for characteriz-
ing ecosystem and plant physiological processes; it can further guide fertilization and other field
management operations, and promote the sustainable development of agriculture. In this study, a
wheat LNC test method based on multi-source spectral data and a convolutional neural network
is proposed. First, interpolation reconstruction was performed on the wheat spectra data collected
by different spectral instruments to ensure that the number of spectral channels and spectral range
were consistent, and multi-source spectral data were constructed using interpolated, reconstructed
imaging spectral data and non-imaging spectral data. Afterwards, the convolutional neural network
DshNet and machine learning methods (PLSR, SVR, and RFR) were compared under various scenar-
ios (non-imaging spectral data, imaging spectral data, and multi-source spectral data). Finally, the
competitive adaptive reweighted sampling (CARS) and successive projections algorithm (SPA) were
used to optimize the LNC detection model. The results show that the model based on DshNet has the
highest test accuracy. The CARS method is more suitable for DshNet model optimization than SPA.
In the modeling scenario with non-imaging spectral, imaging spectral, and multi-source spectral,
the optimized R2 is 0.86, 0.82, and 0.82, and the RMSE is 0.29, 0.31, and 0.31, respectively. The LNC
visualization results show that DshNet modeling using multi-source spectral data is conducive to
the visualization expansion of non-imaging spectral data. Therefore, the method presented in this
paper provides new considerations for spectral data from different sources and is helpful for related
research on the chemometric task of multi-source spectral data.

Keywords: hyperspectral; convolution neural network; interpolation reconstruction; multi-source
spectral data; leaf nitrogen content

1. Introduction

Wheat plays an important role in world agricultural production and strategic grain
reserves [1]. However, when wheat is deficient in nitrogen, it not only affects crop yield
but also reduces its quality. Conversely, excess nitrogen nutrition can cause environmental
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pollution in water and the atmosphere [2]. Therefore, an accurate and scalable assessment
of leaf nitrogen concentration (LNC, %) is increasingly important for improving N use
efficiency. The hyperspectrum contains hundreds of continuous wavebands with rich
reflectance spectral information about different chemical components and molecular struc-
tures of the sample to be measured. In recent years, it has been widely used in the fields of
water environment [3], quality control [4], and biomedicine [5]. Similarly, hyperspectral
technology provides new opportunities for real-time, non-destructive detection of nitrogen
in wheat in smart agriculture.

Machine learning, including deep learning, has been widely used in different areas
of plant science, such as plant breeding [6], in vitro culture [7], stress phenotyping [8],
stress physiology [9], plant systems biology [10], plant identification [11], and pathogen
identification [12]. Partial least squares regression (PLSR), artificial neural networks (ANN),
k-nearest neighbor (k-NN), random forest regression (RFR), and support vector machines
(SVM) are some classical machine learning methods [13,14]. However, the performance of
the model depends on the applied preprocessing technology and requires the experience of
experts [15]. In recent years, on the basis of ANN, researchers have added concepts such as
local connections, weights, convolutional nuclei, and attention mechanisms and increased
the depth of the network, thus developing various types of deep neural networks [16]. Due
to the characteristic learning ability of deep learning, it has become an alternative method to
seek better performance in classification and regression [17]. Recently, it has been reported
that depth learning is applied to regression problems in spectral data analysis [18,19].
Zhang et al. [20] used near-infrared hyperspectral imaging technology combined with a
CNN model to determine the total phenolic, total flavonoid, and total anthocyanin content
in dried black wolfberry and compared it with partial least squares and least squares
support vector machines. The results show that the deep learning method achieves good
performance comparable to traditional methods. Ni et al. [21] used spectroscopy and an
improved one-dimensional convolutional neural network (VWCNN) to predict the nitrogen
content of the leaves of Pinus massoniana seedlings and found that the classical shallow
CNN prediction model had better prediction accuracy and robustness compared to other
machine learning models. These studies show that, compared with other machine learning
methods, deep learning for regression can achieve the same or even better effects.

In addition, it is worth noting that most current studies use data collected using the
same hyperspectral camera. For example, Yu et al. used a spectral range of 400–1000 nm
with 256 spectral bands at a spectral resolution of 2.8 nm; the imaging spectrum of lettuce
soluble solid (SSC) was studied, and the prediction accuracy R2 reached 0.90 [22]. Song et al.
used non-imaging spectroscopy with a spectral range of 325–1075 nm and 750 spectral
bands at a spectral resolution of 1 nm to study maize chlorophyll. The prediction accuracy
R2 reached 0.78 [23]. Their research has achieved good results. But in recent years, as a
result of the continuous development of spectroscopic devices and spectroscopy technology,
portable spectroscopy products have become increasingly accessible. Accompanying this is
multi-source data [24], such as non-imaging and imaging data. The resulting problem is
that the models established for imaging spectral data and non-imaging spectral data cannot
be universal, and the data cannot be used interchangeably without hindrance [25] because
the spectral information collected by different instruments has different spectral ranges,
spectral channels, and spectral resolutions. Similarly, as far as we know, the development
of a wheat LNC detection model using spectral information from different sources is still
an urgent problem to be solved, especially imaging spectral data and non-imaging spectral
data.

Given the aforementioned circumstances, the research aims are as follows: (1) Utilize
interpolation reconstruction to make the spectral range and spectral channel numbers of
imaging spectral data consistent with non-imaging spectral data and construct a multi-
source dataset using the reconstructed imaging spectral data and non-imaging spectral data.
(2) Convolutional neural networks DshNet for wheat LNC detection were established, and
(3) the obtained detection results of the established model were systematically compared
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to the respective outcomes from the traditional methods (PLSR, SVR, and RFR), thus
establishing a method for estimating nitrogen content in wheat leaves using multi-source
data.

2. Materials and Methods
2.1. Wheat Experiment Design

This study conducted experiments in two groups of fields, including different years,
different nitrogen treatment levels, different wheat varieties, and different planting densi-
ties. The specific schemes are as follows: From 2019 to 2021, it was carried out in Harbin
(44◦04′–46◦40′ N, 125◦42′–130◦10′ E), Heilongjiang Province. As shown in Figure 1, the
experiment set two planting densities, the row spacing was 20 cm and 40 cm, the test
varieties were ‘Yangmai 12′ and ‘Yumai 34′, and the three nitrogen levels were 0 kg/hm2

(N0), 150 kg/hm2 (N1) and 300 kg/hm2 (N2) pure nitrogen. Nitrogen fertilizer is used at
50% as the base fertilizer, with 50% topdressing at the jointing stage. Phosphate fertilizer
(P2O5) is applied per hectare at 120 kg, and potash fertilizer (K2O) applied per hectare is
135 kg. All phosphorus and potassium fertilizers are used as base fertilizers. The size of
each area is 4 m × 5 m. The experiment was repeated three times. Field sampling occurred
during the jointing and heading periods.
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2.2. Data Collection

Both the non-imaging and imaging spectrometers require whiteboard correction prior
to data acquisition, and the principle is essentially the same: the raw data were calibrated
using a section of the whiteboard and were then transformed into reflectance data. Each
pixel underwent the reflectance change using Equation (1) [26].

Re =
DRaw − DDark
DWhite − DDark

(1)

Re is a pixel’s reflectance data, DRaw is that pixel’s raw data, DDark is the current value
obtained from the dark frame, and DWhite is the average value of the chosen white reference
zone.

The collection method and specific parameters are as follows: The non-imaging spec-
trum used the ASD Fieldspec Pro FR2500 hyperspectral radiometer produced by the
American Analytical Spectral Device (ASD) company. Because of its equipment structure
and spectrum acquisition method, non-imaging spectrum is also called single-point spec-
trum. The band is 350–1000 nm with a spectral sampling interval of 1.4 nm, the spectral
resolution is 3 nm, and the number of spectral channels is 651. Combined with related
studies [27], the day when the weather is clear and cloudless is selected, and the canopy
spectrum is measured from 10 am to 2 pm. When measured, the fiber optical probe is
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vertically downward, the field of view of the spectrometer is 25◦, and the measurement is
performed at a height of 1 m from the wheat. Take 10 spectra as a set of sampled spectra and
use their average value as the spectral reflectance value of the observation point. Correction
of the whiteboard was performed before and after each acquisition target.

The imaging spectrometer used a Dualix Spectral Imaging Gaiafield Pro-V10E hyper-
spectral imager (Jiangsu Dualix Spectral Imaging Technology Co., Ltd., Beijing, China). The
spectral range is 400–1000 nm, and the spectral resolution is 2.8 nm. The number of spec-
tral channels is 468, and the number of pixels (space dimension × spectral dimension) is
1936 × 1440. Weather conditions are clear and windless for collecting wheat hyperspectral
canopy image data, just as they are for collecting non-imaging wheat canopy data. The time
range was from 10 am to 2 pm, and the lens was positioned vertically downward during
measurement. The vertical height from the top of the canopy is 1 m, and the whiteboard is
placed at the starting position of the scan and collected by each plot. In order to get spectro-
scopic data that accurately represents the samples, a specific portion of the wheat plant was
selected as the area of interest for nitrogen assessment. Then, the spectrum information was
retrieved from this region. Subsequently, a ratio picture (grayscale image) was generated
by dividing the wavelength images obtained at the highest and lowest spectral values of
the sample. This division was performed to highlight the notable disparity between the
sample and the background. The grayscale picture that was acquired then underwent a
conversion process to transform it into a mask image (binary image). This mask image
was then used to segregate the sample region of the original hyperspectral image from the
surrounding backdrop. After that, the sample spectrum was obtained by calculating the
spectral average of all pixels in the sample hyperspectral picture.

2.3. Determination of Nitrogen Content in Wheat Leafs

Synchronous with the spectrum measurement, 20 representative wheat plants were
taken from each plot, separated by organs (leaf, stem, and ear), placed in an oven at 105 ◦C
for 30 min, dried at 80 ◦C, finely ground and homogenized with an MM 400 mixer mill
(Retsch, GmbH, Haan, Germany), and stored in airtight containers. The leaf layer nitrogen
content was measured with an automatic element analyzer EA3000 from Italy Euro Vector
company (Foggia, Italy).

2.4. Linear Interpolation Reconstruction

Construct a simple function as an approximation of a function that is inconvenient to
process or calculate, and then obtain an approximation result of the function by processing
the simple function. When an approximation function is required to take given discrete
data, this processing method is called the interpolation method.

Let function y = f (x) give a series of function values on the interval [a, b].

yi = f (xi), i = 0, 1, . . . , n (2)

Here a ≤ x0 < x1 < . . . < xn ≤ b, select a function ϕ(x) that satisfies.

ϕ(xi) = yi, i = 0, 1, . . . , n (3)

As an approximate expression of function, y = f (x) is called an interpolation problem.
ϕ(x) that satisfies the relationship is called the interpolation function of f (x), and f (x) is
called the interpolated function. The point x0, x1, . . . , xn is called an interpolation node. The
interval [a, b] is called an interpolation interval. In this way, the value of the interpolation
function ϕ(x) is calculated as an approximation of the interpolated function f (x) given x.
This process is called interpolation, and point x is called the interpolation point. Linear
interpolation refers to the interpolation method in which the interpolation function ϕ(x) is
a polynomial of degree one, and the interpolation error on the interpolation node is zero.
Compared with other interpolation methods, such as nearest interpolation and trilinear
interpolation, linear interpolation has the advantages of speed, strong convergence, good
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numerical stability, and easy programming on the computer. Therefore, in this study,
linear interpolation is used to reconstruct the data range and spectral channel of imaging
spectrum and non-imaging spectrum data to keep the imaging spectrum and non-imaging
spectrum data consistent, which is conducive to the construction of multi-source data and
the visual expansion of a non-imaging spectrum.

2.5. Principal Component Analysis of LNC Spectral Diversity in Wheat

To explain the variation in wheat spectral reflectance with different sampling methods
and the relationship between the spectral reflectance of wheat samples and LNC, the
spectral reflectance principal component (PC) of wheat samples in different spectral regions
can be extracted, and the LNC spectral diversity of varying sampling methods can be
analyzed by PCA. The PC coefficients represent the variation in the spectral reflectance
of wheat samples in different spectral regions, and they are related to the biochemical
and structural characteristics of wheat and its interaction with N. Therefore, the variation
trend of pc along the wavelength demonstrates how the wheat sample reflectance responds
to sampling methods and LNC. In addition, PCA results can reflect differences in wheat
spectra among interpolated reconstructed datasets and provide interpretable portability of
multi-source data LNC detection models across different datasets.

2.6. Data Analysis
2.6.1. Partial Least Squares Regression (PLSR)

Partial least squares regression (PLSR) is a multivariate statistical technique. In order
to address the issue of collinearity among predictors, a proposed approach involves de-
composing the spectral matrix and the property matrix into latent variables (LVs) that are
mutually orthogonal and uncorrelated. Subsequently, a regression model is constructed
using these LVs. The PLSR model is established based on the obtained reflectance of the
wheat canopy and leaf nitrogen content (LNC) as follows:

U = J ∗Vt + Q (4)

I = J ∗ Zt + M (5)

The reflectivity and leaf nitrogen content (LNC) of the wheat canopy are denoted by
U (k × y) and I (k × 1) correspondingly. Here, k and y represent the LNC and reflectivity
band numbers. The matrix J (k× h) represents the U-scores, whereas Q (k× y) and M (k × 1)
denote the error terms. The loading matrixes of U and I are denoted as V (y × h) and
Z (1 × h), respectively. The variable h represents the number of latent variables (LVs) in
the partial least squares regression (PLSR) model, which is estimated using the projected
residual sum of squares (PRESS) [28]. In order to construct the PLSR model for estimating
LNC and mitigate the issues of over-fitting or under-fitting, a 10-fold cross-validation
technique was used to train the PLSR model. The optimal number of latent variables (LVs)
was found based on the criteria of minimizing the root mean square error (RMSE) and
the Akaike Information Criterion (AIC) during the training process. Ultimately, the most
favorable latent variables (LVs) were used to construct the correlation between U and I.

2.6.2. Support Vector Regression (SVR)

SVR is a machine learning method based on statistical learning theory. Structural risk
minimization is adopted as the optimization criterion to seek a compromise between the
accuracy of the data approximation and the complexity of the approximation function to
obtain the best model generalization ability. To map the original data to a higher dimension,
the kernel function is also exploited, which takes advantage of non-linear mapping. Thus,
the solution to problems that cannot be handled in linear space can be facilitated. In
addition, the SVR does not require an excessive number of samples for training, which is
advantageous for scenarios with a small sample size [29–31].
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2.6.3. Random Forest Regression (RFR)

Random forest regression is a decision-tree-based algorithm that integrates multiple
trees using the concept of ensemble learning. The random forest algorithm is based on
statistical learning theory, and it extracts multiple samples from the original sample using
the bootstrap resampling method, constructs a decision tree for each bootstrap sample, and
then uses the best results in the decision tree as the final test result [32,33].

2.6.4. Convolutional Neural Networks (DshNet)

CNN is a typical feed-forward neural network that essentially extracts the charac-
teristics of input data by building multiple filters. These filters convolute and pool the
input data layer by layer, extracting the topological features contained in the input data
layer by layer. As the number of layers of the network increases, eventually robust features
that are invariant to translation and rotation are extracted from the original input data. A
1D-CNN deep neural network framework, DshNet, was developed to train and test wheat
LNC detection from a multi-source dataset based on hyperspectral characteristics. The
convolutional neural network DshNet is shown in Figure 2. The specific model process is
shown in Figure S2. The input to the DshNet network is spectral reflectance data, and the
output is the LNC. DshNet has six modules, and the first five modules are convolutional
layers. Specifically, in the convolution layer, the convolution kernel convolutes the feature
vectors of the previous output layer and constructs the output feature vectors using the
non-linear activation function ReLU. The output of each layer is the convolution result of
multiple input features. Its mathematical model can be described as follows:

xl
j = f

 ∑
i∈Mj

xl−1
i × kl

ij + bl
j

 (6)

where Mj is the input feature vectors, l is the layer l network, k is the convolution kernel, b is
Network bias, and xl−1

j is the layer l input. Layer-by-layer extraction of input data features
is performed by alternately utilizing convolutional and pooling layers (max pooling),
ending with a fully connected layer before the network output layer. The feature map
is flattened into a one-dimensional vector before being sent to the full-connection layer.
The dropout regularization method was used to prevent overfitting. The data are further
abstracted and recombined by the features through the full-connection layer, and the model
output can be obtained by activating the function. In this study, the convolution kernel size
of the convolution layer was set to 3, and the step size was 1. An optimal learning rate of
0.0001 was utilized based on the forecast results. The backpropagation algorithm was used
to randomly initialize and train the ownership values. We used minibatches of size 30 and
trained the network with no data augmentation. The number of iterations was set to 500,
and the callback function (ModelCheckpoint) was used to monitor the test loss value at
each epoch. When the predicted loss value of the iteration is less than the value of the
previous time, the model parameters are recorded, and finally, the 500-epoch optimal model
parameters are retained. Among them, PLS, SVM, and RFR are all implemented in scikit-
learn (0.24.2). The DshNet is based on Google’s Tensorflow(2.4.0), using Tensorflow-GPU,
and the graphics card is NVIDIA GEFORCE GTX 1650.

2.6.5. Train and Test Set

In this study, refer to Chu Xiaoli’s method of dividing samples [34]. Specifically,
it was divided according to the concentration gradient of the nitrogen content, and the
train (calibration) and test (prediction) sets were divided according to 2:1. As shown in
Table 1, the train set and test set were divided by a non-imaging spectrometer, an imaging
spectrometer, and mixed data (multi-source). Among them, there are 429 train sets and
212 test sets of multi-source data; the minimum value of the train set is 1.38%, the maximum
value is 4.84%, the minimum value of the test set is 1.51%, and the maximum value is
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4.73%. The coefficient of variation (CV) between the train set and the test set differs only
by 0.01, indicating that the sample partition is reasonable. In addition, in order to obtain
reliable models, this study used 10-flod cross validation to evaluate model performance.
The cross-validation process can be seen in Supplementary Materials, Figure S3.
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Table 1. The statistical parameters of the train and test sets for the wheat LNC.

Spectral Type Dataset Number of Samples Minimum (%) Maximum (%) Mean (%) SD CV

Non-imaging Train 293 1.54 4.73 3.12 0.75 0.24
Test 142 1.51 4.84 3.06 0.79 0.25

Imaging Train 138 1.38 4.52 3.00 0.69 0.23
Test 68 1.51 4.22 2.85 0.68 0.24

Multi-source
Train 429 1.38 4.84 3.05 0.75 0.25
Test 212 1.51 4.73 3.05 0.74 0.24

Note: A multi-source spectral dataset refers to a dataset that combines interpolated reconstructed imaging spectral
data with non-imaging spectral data.

2.7. Model Optimization

The model can be made simpler via wavelength selection by lowering the number
of wavelength variables. Furthermore, by removing extraneous or non-linear variables, it
is possible to derive a corrective model that exhibits a high degree of prediction accuracy
and good robustness. Additionally, the process of model optimization by means of wave-
length selection enables expedited detection in real-world scenarios. The CARS method,
developed by Li et al. is a variable selection algorithm based on the simple yet efficient
premise of ‘survival of the fittest’ [35]. The absolute values of the regression coefficients of
a PLSR model are used as indexes in CARS to evaluate the relevance of each variable. It
picks N subsets of variables by repeating N sample runs to produce the optimum subset
variables with the lowest RMSECV value. Variables with tiny absolute values of regression
coefficients are removed using exponentially declining functions (EDFs) and adaptive
reweighted sampling (ARS) [36].

The successive projections algorithm (SPA) was initially proposed for constructing
multivariable calibration models, aiming to select variables for use in the multiple linear
regression model. In this case, the collinearity avoidance mechanism embedded in the SPA
reduces the propagation of measurement noise during calibration. SPA uses the projection
analysis of the vector, by projecting the wavelength to other wavelengths, compare the
size of the projection vector, take the maximum wavelength of the projection vector as
the selected wavelength, and then select the final characteristic wavelength based on the
correction model. The initial iteration vector is xk(0), the variable to be extracted is N, and
the spectral matrix is column J. The brief steps of the algorithm are as follows:

(1) A column of the spectral matrix (column Jth) is randomly selected, and column Jth of
the modeling set is assigned to xj, denoted as xk(0).



Agronomy 2023, 13, 2387 8 of 19

(2) The set of unselected column vector positions is denoted as s:

s = {j, 1 ≤ j ≤ J, j /∈ {k(0), k(1), . . . , k(n− 1)}} (7)

(3) The projection of xj onto the remaining column vectors is calculated separately.

pxj = xj −
(

xT
j xk(n−1)

)
xk(n−1)

(
xT

k(n−1)xk(n−1)

)−1
(8)

(4) The spectral wavelength of the maximum projection vector is extracted.

pxj = xj −
(

xT
j xk(n−1)

)
xk(n−1)

(
xT

k(n−1)xk(n−1)

)−1
(9)

(5) Let xj = pxj, j ∈ s
(6) n sum, if n < N, then it shall be calculated circularly according to Equation (7).

Finally, the extracted variable is
{

xk(n) = 0, 1, . . . , N − 1
}

. Corresponding to k(0)
and N in each cycle, multiple linear regression analysis (MLR) models are established
respectively, and the root mean square error (RMSECV) of the modeling set interactive
verification is obtained, which corresponds to different phenological subsets, where k(0)
and N corresponding to the minimum RMSECV value are the optimal values.

2.8. Model Assessment

The performance of all models was evaluated based on the following parameters:
They are the determination coefficient (R2), the root mean square error of train (RMSEC),
the root mean square error of test (RMSEP), and residual test deviation (RPD).

RMSEC =

√√√√√ n
∑

i=1

(
yi,actual − yi,predicted

)2

n− 1
(10)

yi,actual is the measured LNCi, yi,predicted is the predicted LNCi and n is the number of
samples. The smaller the RMSEC, the better the model established by the model train set.
The smaller the RMSEP, the better the test of the model’s ability.

R2 = 1−

n
∑

i=1

(
yi,actual − yi,predicted

)2

n
∑

i=1

(
yi,actual − yi,actual

)2 (11)

where yi,actual is the measured LNCi, yi,predicted is the mean of predicted LNCi and yi,actual is
the mean of measured LNCi. The range of R2 is 0~1. The closer to 1, the better the model’s
performance.

RPD =
SD

RMSEP
(12)

SD is the standard deviation. When RPD is greater than 2.0, it indicates that the model
has good predictive ability. When 1.4 < RPD < 2.0, it indicates that the model can roughly
estimate the sample. When RPD < 1.4, it indicates that the model cannot predict the sample.

3. Results and Discussion
3.1. Spectral Properties of Wheat Samples and Spectral Interpolation

Depending on the method used to obtain spectral data, the reflectance curve of wheat
varies. However, the general trend of the wheat spectrum of different LNCs is similar. At
350–680 nm of the visible light band, the reflectivity of wheat is low, as shown in Figure 3a,
and the curve initially increases before decreasing. Following this, the spectral reflectance
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swiftly increases in the 680–750 nm band, which is a distinctive spectral characteristic of
green plants. The spectral reflectance of the near-infrared band (750–940 nm) was stable
and then progressively decreased between 940 and 1000 nm. Moreover, despite the fact
that spectral data from various sources exhibit similar trends, imaging spectral data exhibit
more noise and baseline drift.
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Specifically, several reflection peaks can also be observed, reflecting the prominent
spectral characteristics shown in Figure 3a. The band around 550 nm is related to xantho-
phylls [37]. The 680–750 nm (red-edge) and 700 nm bands are related to chlorophyll. Many
weak peaks were recorded at 760–980 nm, mainly reflecting the tensile vibration of the
third overtone of the O-H bond and C-H bond [38]. From the results obtained, it can be
concluded that these observed differences can further serve as the basis for determining
LNCs in wheat.

However, different instrument manufacturers have different spectral ranges and
spectral channels, which affect the generalization and robustness of LNC detection models.
Therefore, when the two sets of data (non-imaging spectrum data and imaging spectrum
data) are transformed into a 400–1000 nm range using the linear interpolation technique,
the number of spectral channels is 601. The effect of the interpolation is shown in Figure 3b,
and it can be seen that the wheat spectral range and number of spectral channels have
undergone significant changes after transformation; however, there was no significant
change in the spectral morphological characteristics, which are still retaining valuable
characteristic information.

3.2. Preliminary Investigation by PCA

Leaf spectral diversity reflects the variation trend of wheat leaf reflectance after dif-
ferent sampling methods (imaging or non-imaging) and interpolation reconstructions
and reflects whether spectral information is lost after interpolation reconstruction [39].
Figure 4a,c reflects the variation trend of wheat leaf reflectance under different sampling
methods. In general, different sampling methods were relatively consistent in PC1 and
PC2, but PC3 showed different patterns. Since PC1 and PC2 account for more than 99% of
the variation in leaf reflectance, it can be seen that spectral information specific to LNC is
acquired with different sampling methods and that PC3 may reflect differences in different
sampling methods. In the PCA diagram, after interpolation reconstruction of the original
spectrum (Figure 4b,d), it can be found that the spectral information did not change signifi-
cantly and that the interpolation reconstruction retained the characteristic information of
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the original spectrum. Both the non-imaging and the image spectral data show the same
trend change as the original spectral PCA.
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3.3. Establishment of Models for Predicting LNC and Comparison
3.3.1. PLSR

When performing PLSR, it is particularly important to determine the number of LVs
in the regression. If the number of LVs is too small, more useful information about the
original spectrum will be lost. When the number of LVs is too large, an excessive amount
of noise information will be included, and the model’s predictive ability will suffer. Shown
in Figure 5a,c,e are 10-fold cross-validation PRESS graphs, and the number of LVs was
determined by the AIC during training. The number of LVs in non-imaging spectral data,
imaging spectral data, and multi-source spectral data are 16, 5, and 16, respectively. On this
basis, PLSR modeling is conducted, and the results are shown in Figure 5b,d,f.

3.3.2. SVR and RFR

SVR and RFR need to select hyperparameters when extracting features to build a
model. This article uses grid search hyperparameters, the GridSearchCV function in scikit-
learn, and 10-fold cross validation and selects R2 as the evaluation function. Shown in
Figure 6a,c,e are the scatter plots of the train set and test set of the SVR model. Figure 6b,d,f
are scattered plots of the RFR model train and test sets.
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3.3.3. DshNet

DshNet feature extraction and model building also need to set hyperparameters.
Adam is considered the most suitable optimizer for spectral analysis [40]. Shown in
Figure 7a,c,e are the loss function curves of the train and test sets of DshNet. From 300
to 500 epochs, the loss function of the train and test sets tends to be stable. Figure 7b,d,f
shows the scatter plots of the train and test sets of the DshNet model.
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3.3.4. Comparison of PLSR, SVR, RFR and DshNet Establish LNC Model

For PLSR, SVR, RFR, and DshNet, this study used non-imaging spectra, imaging
spectra, and mixed spectra as input and used the same train set to build models to compare
these four algorithms (Table 2). For non-imaging spectra, the LNC model established by its
DshNet is the best; the R2 of its train set reaches 0.85, the predicted R2 reaches 0.78, and
the RPD is 2.30. The second is the PLSR-established LNC model. The predictive ability
of SVR is slightly lower than that of PLSR, and the overall accuracy is not significantly
different. There is still a certain overfitting phenomenon after gridding and screening of
hyperparameters, consistent with Yao et al.’s [27] research on the LNC detection method,
regardless of whether non-imaging, imaging, or multi-source were used to build models.
For imaging spectra, the R2 of the LNC model test set established by DshNet is only
0.01 higher than that of the model established by PLSR, and its RPD is only increased
by 0.04, which is not a significant improvement. Because deep learning requires a large
number of samples to perform learning, while there are only 138 imaging spectra, there
is no advantage over traditional machine learning methods. Yang et al. [40] reported the
same conclusion in deep learning for vibration spectrum analysis. Using mixed spectra
for modeling, the LNC model established by SVR has a higher predictive ability than the
model established by PLSR because the resolution of non-imaging spectra and imaging
spectra is inconsistent, the nonlinearity of the spectrum increases, and PLSR is a linear
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model, so the LNC model established by SVR has a better predictive ability than the model
established by PLSR. Even if the nonlinearity of the spectrum increases, the convolutional
layer and pooling layer of the DshNet are used to mine the depth characteristics of the
spectrum. By 0.1, the RPD of the LNC model established by DshNet was higher than that of
the model established by SVR. On the whole, when the sample size is relatively small, the
predictive ability of the LNC model established by DshNet and the traditional algorithm
is not substantially different. When the sample size increases, the predictive ability of
DshNet’s LNC model outperforms that of the traditional algorithm. Yang et al. used a
convolutional neural network model (CNN) based on the PyTorch framework to obtain
depth features. Spectral characteristics were obtained by using position features (PFs) and
a vegetation index (VIs). It is found that the accuracy of the LNC estimation model based
on the gradient boosting decision tree GBDT model is the best (calibration set R2 = 0.975,
verification set R2 = 0.861) after feature extraction by CNN, indicating the advantage of
CNN in feature extraction [41].

Table 2. The LNC models based on PLSR, SVR, RFR, and DshNet.

Model
Train Set Test Set

R2 RMSEC R2 RMSEP RPD

Non-imaging

PLSR 0.83 0.31 0.78 0.37 2.15
SVR 0.78 0.35 0.78 0.37 2.12
RFR 0.93 0.19 0.66 0.46 1.70

DshNet 0.85 0.29 0.81 0.34 2.30

Imaging

PLSR 0.68 0.39 0.75 0.34 1.99
SVR 0.73 0.36 0.73 0.35 1.91
RFR 0.89 0.23 0.63 0.42 1.63

DshNet 0.73 0.36 0.76 0.33 2.03

Multi-source

PLSR 0.78 0.50 0.75 0.37 2.01
SVR 0.79 0.34 0.78 0.35 2.13
RFR 0.94 0.19 0.70 0.41 1.83

DshNet 0.85 0.29 0.80 0.33 2.23
Note: A multi-source spectral dataset refers to a dataset that combines interpolated reconstructed imaging spectral
data with non-imaging spectral data.

3.3.5. Comparison of Non-Imaging, Imaging and Multi-Source Spectra Data to Establish
the LNC Model

As shown in Table 2, the model was built using four methods (PLSR, SVR, RFR,
and DahNet) on different datasets (non-imaging spectral data, imaging spectral data, and
multi-source spectral dataset). In a comprehensive comparison of R2, RMSEC, RMSEP, and
RPD, the LNC model established by DshNet provides the best performance. Therefore,
we compared the DshNet models of the non-imaging, imaging, and multi-source spectra.
In the training phase, non-imaging spectra and the LNC model were derived from mixed
spectra, both of which are 0.85. In the test phase, the R2 of the LNC model established by
the non-imaging spectra is 0.01 higher than that of the LNC model established by the mixed
spectra, and its RPD is 0.07 higher. Taken together, we can find that when multi-source
spectra are used for modeling, the predictive ability of its LNC model is only reduced
by 0.07 compared to the best model established by non-imaging spectra, and its RPD
reaches 2.23, which still has a good predictive ability and can predict the data from two
data sources. Jia et al. used the hyperspectral data measured in the field to design a variety
of spectral indexes for predicting wheat LNC, and the maximum R2 obtained was 0.66 [42].
Based on UAV hyperspectral images, Zhang et al. used PLSR, GA-PLSR, RF, XGBoost, and
other methods to predict LNC, and the maximum R2 of the four methods was 0.55 [43].
Compared with previous studies, the results of our methods (DshNet, PLSR, SVR, and
RFR) are all in a reasonable range, and the combination of multi-source spectral data with
convolutional neural networks increases the degree of data utilization.
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3.4. Optimization of the LNC Test Model Based on the CARS and SPA Extraction of
Characteristic Wavelengths

The LNC test model was optimized using the characteristic wavelength obtained using
CARS and SPA techniques. As seen in Figure 8, there is a difference in the characteristic
wavelength between the non-imaging and imaging spectra, as well as between the original
spectrum and linear interpolation spectrum. In this study, the typical wavelengths of the
spectral data were used for the construction of an LNC test model. Figure 9 presents a sum-
mary of the anticipated outcomes derived from the optimized DshNet model. The results
indicate that the models using CARS for extracting distinctive wavelengths outperform
the models utilizing the whole spectrum range (full wavelength). However, it is important
to note that the utilization of CARS leads to a reduction of over 85% in the number of
spectral channels. The coefficient of determination (R2) for the optimized non-imaging
spectra, imaging spectra, and multi-source spectra are 0.86, 0.82, and 0.82, respectively. The
root mean square errors (RMSE) for the three cases are 0.29, 0.31, and 0.31, respectively.
In comparison to full-wavelength modeling, the values of R2 show an increase of 6.17%,
7.89%, and 2.25%, correspondingly. The root mean square error (RMSE) shows a reduction
of 14.70%, 6.06%, and 6.06%. The performance of the feature wavelength derived by SPA
is comparable to that of the model using the entire spectrum. However, both of these
performances are inferior to that of the model generated by CARS. Obviously, DshNet
model performs better after the characteristic wavelength selection of CARS.
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Compared with previous studies, Abdel-Rahman used EO-1 Hyperion hyperspectral
data to predict sugarcane LNC by RF model, and the prediction accuracy R2 was 0.67 [44].
Zhai et al. estimated nitrogen content in leaves of different plants by partial least squares
regression and support vector machine regression using visible light and near-infrared
reflectance spectra in the laboratory and found that SVR (R2 = 0.706) had a better prediction
effect than PLSR (R2 = 0.663) [45]. Min and Lee used the diffuse reflection data of a spec-
trophotometer at 400–2500 nm in the laboratory environment and used stepwise multiple
regression (SMLR) and partial least squares regression (PLS) to predict the nitrogen con-
centration of leaves, and the prediction accuracy R2 was 0.839 and 0.828, respectively [46].
These studies have all achieved good results; however, these methods show different
prediction accuracy with different pretreatments [15]. In our study, convolutional neural
networks DshNet and CARS were used to predict LNC using multi-source data without
any preprocessing algorithm, and the accuracy R2 was between 0.82 and 0.86, indicating
that CNN has great potential for wheat LNC detection.

3.5. Spatial Distributions of Predicted LNC

In this work, the distribution map and potential distribution pattern of the anticipated
LNC were generated using a DshNet model using multi-source spectra data. In ENVI
5.4 software (Research Systems Inc., Co., Melbourne, FL, USA), the background data and
specular reflection were removed using a binary mask before creating a distribution map.
Then, the wheat spectrum of each pixel was interpolated and reconstructed. A wheat
sample hypercube was subjected to the DshNet model, and identically predicted values
were generated for pixels with similar spectral features. Python 3.7 (Python Software
Foundation, Wilmington, DE, USA) is used to carry out this operation. This made it easier
to collect concentration data from each and every area of the wheat sample and gave
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pertinent information on its heterogeneity. Figure 10 depicts the LNC visualization of the
wheat sample at the jointing stage. Different colors correspond to different LNCs; dark red
areas denote higher LNCs, and dark blue areas denote lower LNCs. The color progressively
shifts from dark blue to dark red as the LNC rises. Hyperspectral imaging makes it easier
to implement visualization of arbitrary local regions in wheat samples than non-imaging
detection methods do, while multi-source spectral data modeling makes it possible to
obtain larger visual areas of non-imaging spectral data. The LNC across wheat samples
and between distinct regions within the same sample is shown by these distribution maps.
This made it easier to see how concentrations changed between samples and even within
the same sample. As long as a precise DshNet model is established, it is possible to obtain
such chemical images online.
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4. Conclusions

In this study, a non-imaging spectrograph and an imaging spectrograph were used to
collect wheat hyperspectral information in different periods, and the linear interpolation
method was used to build multi-source spectral data. The convolutional neural network
DshNet and classical machine learning models (PLSR, SVR, and RFR) were established
to predict wheat LNC, and the modeling performances of DshNet, PLSR, SVR, and RFR
in different source spectral data were compared. It was found that the test results using
DshNet are better than PLSR, SVR, and RFR under any spectral data modeling condition.
The CARS method is more suitable for DshNet model optimization than the SPA. In
the modeling scene of the non-imaging spectrum, imaging spectrum, and multi-source
spectrum, the optimized R2 is 0.86, 0.82, and 0.82, respectively. The RMSE is 0.29, 0.31, and
0.31, respectively. The LNC visualization map shows that the method we proposed for
detecting nitrogen content in wheat leaves using multi-source spectral data is helpful for
the visualization expansion of non-imaging spectral data. The above results show that our
DshNet outperforms traditional modeling methods. However, whether this method can be
applied to low-altitude remote sensing of UAVs and satellite remote sensing levels needs
further research. In addition, this method can provide an additional reference for research
related to the chemometrics task of multi-source spectral data.
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chart of wheat LNC test with DshNet; Figure S3: Cross-validation diagram.
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