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Abstract: Agricultural Jiaosu (AJ) is a method of recycling agricultural wastes for improving soil
properties, promoting plant growth, and enhancing plant stress resistance. However, the underlying
mechanism by which AJ improves plant stress resistance needs to be determined. Therefore, in this
study, two treatments of AJ spraying and water spraying were set up to determine the enzyme activi-
ties related to the stress resistance of pak choi after 30 days of growth, and the potential mechanism
of AJ’s influence on the stress resistance of pak choi was revealed by transcriptome, metabolome,
and rhizome microbiome analyses. Microbial community analysis revealed that the application
of AJ does not alter microbial abundance in the rhizosphere; however, it can improve microbial
diversity and enrich Actinobacteriota, Proteobacteria, and Firmicutes in the pak choi rhizosphere.
Metabolomic analysis revealed that these phyla were significantly positively correlated, with highly
upregulated metabolites. Our findings suggest that AJ recruits beneficial microorganisms (BMs) in
the rhizosphere and stimulates the expression of genes and metabolites involved in phenylpropanoid
and glucosinolate biosynthesis, as well as glutathione and alpha-linolenic acid metabolism pathways.
The use of AJ could considerably minimise the use of pesticides and fertilisers and improve the
quality of the ecological environment.

Keywords: agricultural Jiaosu; transcriptome; metabolome; rhizosphere bacteria; multiomics joint
analysis; antioxidant enzyme activity

1. Introduction

Environmental pollution and the destruction of agricultural ecosystems can seriously
affect normal plant growth [1–3]. Drought, low temperatures, high salt, and other adverse
conditions affect plant growth and development, which, in turn, affects crop yield and qual-
ity [4–7]. Hence, plants have a complete system at the molecular and physiological levels
to resist adverse environments [8]. Exploring the mechanisms of plant stress resistance is
critical for growing plants under adverse conditions and increasing crop yield.

To improve plant stress resistance, there are many strategies available, such as the
development of stress-resistant plant varieties. Hybrid breeding is a conventional method
to develop resistant varieties [9]. It is also possible to screen existing varieties for stress
resistance [10,11]. Moreover, advancements in modern biotechnology have facilitated the
breeding of novel stress-resistant varieties using in vitro tissue [12,13], cell culture tech-
niques [14], and genetic engineering [15,16]. However, these methods are currently limited
to laboratory research and are still far from being applied practically [17,18]. Additionally,
plant stress resistance can be enhanced by improving cultivation practices. Presoaking treat-
ment of corn and cotton seeds in a 3% NaCl solution with 100 µM sodium nitroprusside (an
NO donor) improves salt tolerance [19,20]. Alternate fertilising methods, such as increasing
the use of organic fertilisers, can also improve plant stress resistance [21]. Exogenous
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reactive oxygen species (ROS) scrubbers, such as paclobutrazol (PP333), brassinosteroids
(BR-120), and complex alcohols, can effectively mitigate waterlog damage; however, these
measures have some limitations in the field [22]. Several studies have been conducted in
recent years to improve plant stress resistance by inoculating beneficial microorganisms
(BMs), typically plant-growth-promoting rhizobacteria, in plants [23–25]. Additionally,
the inoculation of Ochrobactrum cytisi IPA7.2 induces salinity and drought-resistance in
plants and helps them recover following stress [26]. AJ is defined as a microbial ecosystem
composed of acid-based substances and BMs [27]. It has a pH below 4 and a large number
of live microorganisms. In practice, AJ has been shown to promote plant growth and
control root rot [28]. Therefore, further exploration of the role of AJ in plant stress resistance
has scientific significance for agricultural production.

Studies on plant-stress-resistance mechanisms can be classified into two categories: anal-
ysis of changes in growth habits and analysis of physiological and biochemical changes [29].
The primary focus of a majority of physiological and biochemical research has been ion
balance and osmotic regulation, antioxidant enzyme activity and related proteins, sig-
nal transduction, and transcriptional regulation. Most stresses, such as salt and drought,
cause water deficiency and induce osmotic stress in plant cells [30]. Plants maintain ion
balance and resist adverse conditions by pumping harmful ions out of their cells [31].
Plant resistance can also result from the modulation of the poly (ADP–ribose) polymerase
enzyme [32]. Additionally, osmotic regulators, such as proline, glycine betaine, sorbitol,
and mannitol, can protect plants from stress-induced damage [33–35]. Plants produce
abundant ROS in adversity [36]. However, ROS can be degraded by plant catalase (CAT)
and superoxide dismutase (SOD) to improve plant stress resistance [37]. Antifreeze proteins
can reduce the freezing point of the solution, modify ice crystal morphology, and inhibit
recrystallisation [38]. Additionally, stress has been shown to regulate hydrated protein
molecules in Arabidopsis thaliana [39]. Protein kinases are primarily responsible for signal
transduction, with the mitogen-activated protein kinase signal cascade pathway being
the most common [40–42]. The regulation of transcription factors can be classified into
abscisic-acid (ABA)-dependent and ABA-independent pathways [43]. These pathways
differ by the presence of an ABA-responsive element or dehydration-responsive element in
the promoter region [44].

With advancements in sequencing technology and bioinformatics, a combined multi-
omics analysis technique was used to reveal the mechanism of plant stress resistance [45–47].
At the RNA level, transcriptomes can rapidly and accurately reveal specific biological
processes and molecular mechanisms. Transcriptomics is currently being used to re-
veal the stress-resistance mechanisms in barley, sorghum, rape, and other crops [48–51].
Metabolomics, a new omics technology that emerged after transcriptomics, was used to
study the amount and type of endogenous metabolites in organisms. Combined tran-
scriptomic and metabolomic analysis can be used to reveal the underlying molecular and
regulatory mechanisms responsible for changes in plants under stress conditions. For
example, transcriptomic and metabolomic analyses were used to reveal the ROS-dependent
adaptation mechanism of rice to low-temperature environments [52]. Moreover, transcrip-
tomic and metabolomic analyses of oat roots revealed ion emission strategies under P
deficiency and abundance [53]. As the ‘second genome’ of plants, rhizosphere microor-
ganisms have received considerable attention from researchers. Many studies have shown
that rhizosphere microorganisms can help plants resist abiotic stresses and increase crop
yield [25,54,55].

The aim of this study was to investigate the effects of AJ on plant stress tolerance using
transcriptome, metabolome, and rhizosphere microbiome analyses. Pak choi was selected
as the study material owing to its ease of planting. AJ was sprayed as a treatment and
water as a control. First, we tested the activity of antioxidant enzymes in pak choi under
two different treatments. We used transcriptomics and metabolomics to reveal the changes
in plants after AJ application and 16S sequencing to reveal the changes in rhizosphere
microorganisms to test our hypothesis that plant–microbial interactions are responsible for
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plant stress resistance. Finally, through joint transcriptomic and metabolomic analysis, we
revealed the mechanism by which AJ improves the stress resistance of pak choi, providing
a scientific basis for the popularisation and application of AJ on plants.

2. Materials and Methods
2.1. Plant Materials and Conditions of Planting

Two treatments were used in this study: water spray (CK) and AJ (diluted 200 times).
AJ was made from fermented mixed fruits as previously described [27]. Pak choi (Brassica
rapa L. subsp. chinensis) was planted in plastic pots with a diameter of approximately 7 cm
and placed in the greenhouse of China Agricultural University. The growth medium was
1:1 mixture of nutrient soil (from Denmark) and vermiculite (purchased from Jiputeng
Biological Company, Beijing, China). The temperature of the growing environment was
in the range of 25–28 ◦C and the relative humidity was 70%. The lighting time was 16 h;
alternately arranged cold and warm lamps were used to simulate the lighting. Direct
sowing of the seeds, covering them with plastic wrap after sowing, removing the plastic
wrap after emergence, and sporadic watering were sufficient to ensure normal growth of the
plants. Following 30 d, the aboveground parts of pak choi were tested for enzyme activity,
metabolome, and transcriptome. The 16S sequencing was performed on the rhizosphere
soil in the same period (Figure 1).
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2.2. Measurement of Peroxidase, SOD, and CAT Activities

SOD activity was assessed using SOD biochemical kits (NMKD0101, Norminkoda
Biotechnology Co., Ltd., Wuhan, China), CAT was assayed using CAT biochemical kits
(NMKD0102, Norminkoda Biotechnology Co., Ltd., Wuhan, China), and peroxidase (POD)
was assessed using POD biochemical kits (NMKD0103, Norminkoda Biotechnology Co., Ltd.,
Wuhan, China).

2.3. Transcriptome Analysis

Total RNA was extracted from the pak choi using a pure RNA isolation kit (Tiangen,
China) following the instructions of the manufacturer. The prepared cDNA libraries were
sequenced on the Illumina sequencing 2500 platform by Metware Biotechnology Co., Ltd.
(Wuhan, China). In this study, six samples were subjected to transcriptome sequencing
analysis. Low-quality reads containing adapters and ploy-N were removed from the raw
data. Further, 42.26 GB of clean data was obtained using the Illumina platform, with
the Q30 base percentage > 94%. DESeq2 v1.22.1 was used to analyse the differential
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expression between the two groups. The adjusted p value and |log2foldchange| were
used as the significant differential expression threshold. Based on the hypergeometric
test, the enrichment analysis was performed. For the Kyoto encyclopaedia of genes and
genomes (KEGG), the hypergeometric distribution test was performed with the unit of the
pathway, whereas for the gene ontology (GO), it was performed based on the GO term.
ClusterProfiler was used for the GO enrichment analysis.

2.4. Metabolome Analysis

Three thirty-day-old pak choi from each of the two treatment groups were selected
randomly for the metabolome analysis. The freeze-dried sample was ground using a
mixer mill (MM 400, Retsch, Haan, Germany) with a zirconia bead for 1.5 min at 30 Hz.
Lyophilised powder (100 mg) was dissolved in 1.2 mL of a 70% methanol solution, vortexed
for 30 s at every 30 min for six times in total, and subsequently stored overnight in a refrig-
erator at 4 ◦C. Following centrifugation at 12,000 rpm for 10 min, the extracts were filtered
(SCAA-104, 0.22 µm pore size; ANPEL, Shanghai, China, http://www.anpel.com.cn/,
accessed on 10 February 2021). Thereafter, the sample extracts were analysed using an
ultra-performance liquid chromatography–electrospray ionisation–tandem mass spectrom-
etry system (UPLC, SHIMADZU Nexera X2, https://www.shimadzu.com.cn/; accessed
on 15 February 2021 MS, Applied Biosystems 4500 Q TRAP, https://www.thermofisher.
cn/cn/zh/home/brands/applied-biosystems.html accessed on 15 February 2021). Based
on the database of Metware Bio-Tech Co. (Wuhan, China), metabolites were identified
and quantified. Significantly regulated metabolites between groups were determined us-
ing VIP ≥ 1 and absolute log2FC (fold change) ≥ 1. The KEGG COMPOUND database
(http://www.kegg.jp/kegg/compound/ accessed on 1 March 2021) was used to anno-
tate the identified metabolites, and the annotated metabolites were mapped to the KEGG
PATHWAY database (http://www.kegg.jp/kegg/pathway.html accessed on 1 March 2021).
Pathways with considerably regulated mapped metabolites were then fed into metabolite
sets for the enrichment analysis, and the p-values of the hypergeometric test were used to
determine their significance.

2.5. Rhizosphere Microbial Analysis

The genomic DNA of the samples was extracted using cetyltrimethylammonium bro-
mide [56], and the purity and concentration of the DNA were detected using 2% agar–agar
gel electrophoresis. The appropriate amount of sample DNA was transferred to a centrifuge
tube and diluted with water to a concentration of 1 ng/µL. Using diluted genomic DNA as
a template, specific primers with barcodes were used to perform polymerase chain reaction
(PCR) amplification according to the selection of sequencing region, and a 2% concentration
of agar–agar gel was used for electrolysis detection. The qualified PCR products were
purified using magnetic beads, quantified using enzyme labelling, and mixed in equal
proportions based on their concentration. Following thorough mixing, the PCR products
were detected using 2% agar–agar gel electrophoresis. The library was constructed using
the TruSeq® DNA PCR-Free sample preparation kit. The constructed library was quan-
tified using quantum bit and quantitative PCR. Thereafter, NovaSeq6000 was used for
on-machine sequencing.

Using the UPARSE algorithm (UPARSE v7.0.1001, http://www.drive5.com/uparse/
accessed on 20 March 2021) for all samples of all the effective clustering tags by de-
fault, sequences were clustered into operational taxonomic units (OTUs) with a 97%
identity. The multiple sequence comparison by log-expectation (version 3.8.31, http:
//www.drive5.com/muscle/ accessed on 20 March 2021) software was used to rapidly
align multiple sequences and obtain all OTUs for the sequence of the system. The Chao1 and
Shannon indices were computed using QIIME software (version 1.9.1), and an unweighted
pair group method with arithmetic mean (UPGMA) sample clustering tree was constructed.
The intergroup difference analysis of Chao1 and Shannon indices was performed using
R software (version 2.15.3). The t-test and Wilcox test were used for parametric and non-
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parametric testing. The linear discriminant analysis effect size (LEfSe 1.0) software was
used for the LEfSe analysis. The filter value of default linear discriminant analysis score
was 4.

2.6. Quantitative Real-Time PCR

The Tb Green® Premix Ex Taq™ II (Takara, Beijing, China) was used for quantitative
real-time (qRT)-PCR analysis of 20 genes. β-actin was used as the internal reference
gene [57]. Table S3 shows the primers for 21 genes. The relative expression of these genes
was calculated using the 2−∆∆Ct method [58].

2.7. Statistical Analysis

IBM statistical package for social sciences (version 25.0, IBM Corp, Armonk, NY, USA)
was used to analyse the POD, SOD, and CAT significance at a confidence level of p < 0.05
or p < 0.01. All data were shown as means of triplicates. Spearman correlation analysis
was performed using ‘cor’ function of R (v. 4.0.3) software and the significance test was
performed using corPvalueStudent function of R package ‘WGCNA’. Some analyses, such
as canonical correlation analysis (CCA) and clustering heat map analysis, were performed
on the free online platform of the Metware cloud platform (https://cloud.metware.cn
accessed on 25 March 2021).

3. Results
3.1. Effects of AJ on Pak Choi Stress Resistance

The representative stress-resistance indices, including SOD, POD, and CAT, were
investigated to determine the effect of the AJ treatment on stress resistance in pak choi. Pak
choi treated with AJ had considerably higher SOD, POD, and CAT activities than those
treated with water (Figure 2A–C). This indicates that the AJ treatment has the potential to
improve the stress resistance of pak choi. Additionally, we assessed the growth and devel-
opment indices of pak choi and found that AJ can increase plant height, fresh weight, root
length, and soil plant analysis development; however, the improvement is not substantial
(Table 1).
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CK stands for water treatment; ** stands for significant difference (p < 0.01). CAT, catalase; POD,
peroxidase; SOD, superoxide dismutase.

Table 1. Results of growth and development indexes of pak choi.

Group Name Plant Height (cm) Fresh Weight (g) Root Length (cm) SPAD

CK 12.40a 3.16a 4.80a 27.60b
AJ 12.80a 3.62a 7.60a 28.40a

a means that the average is the largest; b means that the average is less than a, and the difference is significant.

3.2. Rhizosphere Microbial Community Analysis

To determine the effect of AJ on the underground microbiota of pak choi and further
explore the relationship between microorganisms and plants, we selected six strains of
pak choi treated with water and six strains of pak choi treated with AJ, and subjected

https://cloud.metware.cn
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the rhizosphere microorganisms to 16S sequencing. Overall, 827,932 effective reads were
obtained from 10 samples. Furthermore, effective reads of all the samples were clustered
into OTUs with a 97% identity. The analysis found that the AJ and CK samples contained
4887 and 4468 OTUs, respectively (Figure S1). Based on the results of the OTU analysis of
the 16S sequencing data, the α-diversity, β-diversity, and phylum-level species analyses
were performed to reveal the similarities and differences in the rhizosphere microbial
communities between the CK and AJ treatment groups.

Notably, the AJ treatment greatly enhanced the Shannon index of the rhizosphere
microorganisms more than the CK treatment; however, there was no significant difference
in the Chao1 index (Figure 3A,B). The UPGMA clustering method was used to analyse
the β-diversity of the samples, revealing that the CK and AJ samples were clustered. The
relative abundance of species at the phylum level was analysed, and the 10 most abundant
species were Proteobacteria, Bacteroidota, unidentified bacteria, Myxococcota, Actinobac-
teria, Firmicutes, Chloroflexi, Verrucomicrobiota, Acidobacteriota, and Actinobacteriota.
Among these, the populations of Proteobacteria, Actinobacteria, and Firmicutes increased
considerably after the AJ treatment, whereas those of Bacteroidota and Myxococcota wit-
nessed a decline (Figure 3C). We conducted an intergroup t-test to assess different species at
the phylum level; the results showed that Bacteroidota, Actinobacteria, Verrucomicrobiota,
Actinobacteriota, Gemmatimonadota, Candidatus Kaiserbacteria, and Chlamydiae differed
significantly between the two groups. Specifically, the number of Actinobacteria, Acti-
nobacteriota, and Gemmatimonadota was significantly higher in AJ than in CK (Figure 3D).
Additionally, the LEfSe analysis tool was used to identify and interpret high-dimensional
biomarkers between the two groups. The results showed that the biomarker for CK was
Bacteroidota, whereas that for AJ was Gammaproteobacteria (Figure 3E).
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of the circle represent the 95% confidence intervals between the means. On the far right, p-values
of the between-group significance test for the corresponding difference species; (E) LEfSe analysis
of differential species; bifurcation diagram of different species evolution; the circles spreading from
inside to outside represent taxonomic levels from phylum to species. ** means the difference is very
significant, ns means the difference is not significant.
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3.3. Transcriptome Analysis of AJ-Treated Pak Choi

In order to evaluate the responsiveness of pak choi seedlings to the AJ treatment
and further understand the metabolic processes generating changes in pak choi seedling
metabolites at the molecular level, we conducted comparative transcriptome analyses on
three CK and three AJ samples. Overall, 42.26 GB clean reads were obtained after removing
reads containing adapters, ploy-N, and low-quality reads. The percentages of Q30 and
guanine-cytosine content in each library were higher than 94.38% and 46.86%, respectively,
indicating that the transcriptomic data were of high quality and could be used for further
differentially expressed gene (DEG) analysis (Table S1, Supplementary File S2). More than
88.18% of clean reads in each library could be mapped to the pak choi reference genome
(Table S2, Supplementary File S2). A principal component analysis (PCA) revealed that
the CK and AJ samples were clustered (Figure S2, Supplementary File S1). It was clear
that there were differences in gene expression between the AJ and CK samples. DEGs
were screened based on a threshold of |log2FC| ≥ 1 and false discovery rate < 0.05. The
transcriptome comparative analysis revealed 1211 identified DEGs (576 upregulated and
635 downregulated genes), indicating higher differential expression patterns in the AJ
treatment group than in the CK treatment group (Figure 4A). According to heat map
analysis, the DEGs in the CK and AJ treatment groups differed considerably (Figure 4B).
We performed the GO and KEGG enrichment analyses of DEGs to further reveal their
biological functions in pak choi under AJ treatment. The results showed that the DEGs
were divided into 49 functional GO terms. In the cellular component processes, the most
abundant terms were ‘cell part’, ‘cell’, and ‘organelle’. In the molecular function category,
‘binding’, ‘catalytic activity’, and ‘transcription regulator activity’ were the most highly
represented terms. In the biological processes, the most abundant terms were ‘cellular
process’, ‘metabolic process’, and ‘response to stimulus’ (Figure 4C). Additionally, the
results of the KEGG pathway enrichment analysis revealed that all DEGs were successfully
assigned to 111 KEGG pathways. For demonstration, we selected 20 pathway items with
the most substantial enrichment (Figure 4D). Specifically, ‘plant–pathogen interaction’
(ko04626), ‘phenylpropanoid biosynthesis’ (ko00940), ‘protein processing in endoplasmic
reticulum’ (ko04141), ‘glucosinolate biosynthesis’ (ko00966), and ‘2-oxocarboxylic acid
metabolism’ (ko01210) were significantly enriched (p < 0.05). These findings indicate that
the DEGs related to the aforementioned secondary metabolite biosynthesis pathways in
pak choi seedlings may be regulated by the AJ treatment.
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3.4. AJ Treatment Alters the Metabolic Pathway of Pak Choi

We selected three pak choi seedlings from each treatment group for nontargeted
metabolomic sequencing to reveal the physiological and molecular mechanisms of the
response of pak choi to AJ. The coefficient of variation (CV) values of the QC (a quality
control sample prepared from the mixture of samples extracts) samples were calculated to
determine the dispersion degree of the samples. The proportion of samples with CV values
< 0.3 was >75%, indicating that the experimental data were very stable (Supplementary
Figure S3). In the metabolomics results, the PCA analysis of metabolites across all samples
revealed that the difference between the groups is clear and the repeatability within each
group is good (Supplementary Figure S4A). Overall, 994 metabolites were identified in the
CK and AJ treatment samples. These metabolites were categorised into 11 groups based
on the total cluster plot analysis (Supplementary Figure S4B, Supplementary File S1). The
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differentially expressed metabolites (DEMs) were screened based on the FC ≥ 2 or ≤0.5
and VIP ≥ 1 criteria. Overall, 91 DEMs were screened, out of which 22 were upregulated
and 69 were downregulated (Figure 5A). These DEMs were classified into 10 categories,
mainly including flavonoids (22), lipids (18), others (13), phenolic acids (11), alkaloids (10),
organic acids (5), amino acids and derivatives (4), terpenoids (4), lignans and coumarins
(3), and nucleotides and derivatives (1). Figure 5B shows their classification and heat
map expression analysis. Furthermore, according to KEGG pathway enrichment analysis,
these DEMs were primarily considerably enriched in the alpha-linolenic acid metabolism,
glutathione metabolism, linoleic acid metabolism, and flavone and flavonol biosynthesis
pathways (Figure 5C).
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Figure 5. Metabolite analysis of pak choi seedlings under CK and AJ treatments. (A) Analysis of the
identified up- and downregulated differentially expressed metabolite (DEM) levels; (B) Classification
and heat map results according to the first-class classification of the identified DEMs; (C) KEGG
pathway analysis of the DEMs.

3.5. Integrated Transcriptome and Metabolome Analyses

KEGG enrichment analysis revealed that DEGs and DEMs in the phenylpropanoid
biosynthesis (ko00940), glucosinolate biosynthesis (ko00966), glutathione metabolism
(ko00480), and alpha-linolenic acid metabolism (ko00592) pathways were substantially
enriched when combined with transcriptome and metabolome data (Figure 6A). We cal-
culated the correlation between DEMs and DEGs and selected DEMs and DEGs with a
Pearson correlation coefficient > 0.80 and p-value < 0.05, as indicated by the correlation
network diagram of the above four pathways. Figure 6B–E show the results. The findings
suggest that the AJ treatment may be involved in a complex network regulation relationship
with phenylpropanoid biosynthesis, glucosinolate biosynthesis, glutathione metabolism,
and alpha-linolenic acid metabolism, thus promoting the accumulation of these metabolites,
and making pak choi resistant to environmental disturbance.
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Figure 6. Combined transcriptome and metabolome analyses. (A) KEGG enrichment analysis bubble
plot. The abscissa represents the enrichment factor (diff/background) of the pathway in different
omics, whereas the ordinate represents the name of the KEGG pathway. The red–yellow–green
gradient represents the change in the significance of enrichment from high–medium–low; the shape
of the bubble represents different omics; the size of the bubble represents the number of DEMs or
DEGs. The larger the number, the larger the point; (B–E) Relationship between DEMs and DEGs
in glutathione metabolism pathway (ko00480), alpha-linolenic acid metabolism pathway (ko00592),
phenylpropanoid biosynthesis pathway (ko00940), and glucosinolate biosynthesis (ko00966). DEMs
and DEGs are denoted by green and red squares, respectively. Solid and dashed lines represent
positive and negative correlations, respectively.

3.6. Combined Microbiome and Metabolome Analysis

To further explore the relationship between rhizosphere microbial changes and pak
choi growth, we analysed the combined results of 16S sequencing and pak choi metabolome
detection. Spearman correlation hierarchical clustering analysis was performed on the
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differential microorganisms at the phylum level and differential metabolites to reveal
the similarities and differences in the expression patterns of differential microorganisms
and DEMs. Spearman correlation |r| ≥ 0.8 and p-value < 0.05 were used to screen
DEMs and differential microorganisms at the phylum level. The results showed that
Bacteroidota, Chlamydiae, Verrucomicrobiota, and Candidatus Kaiserbacteria exhibited
comparable expression patterns and were positively correlated with the downregulated
DEMs and negatively correlated with the upregulated DEMs. Actinobacteria, Firmicutes,
and other microorganisms were positively correlated with the upregulated DEMs and
negatively correlated with the downregulated DEMs (Figure 7A). The screened results
were subsequently analysed using CCA. The same result was obtained comparable to that
of Spearman correlation analysis (Figure 7B).
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Figure 7. Combined analysis of 16S sequencing and metabolomics results. (A) Spearman correlation
analysis; (B) Canonical correlation analysis. * means significant difference, ** means extremely
significant difference.

3.7. qRT-PCR

A total of 20 DEGs were randomly selected for the qRT-PCR verification. These
genes, which were involved in phenylpropanoid biosynthesis, glucosinolate biosynthesis,
glutathione metabolism, and alpha-linolenic acid metabolism pathways, yielded the same
results as the transcriptome analysis (Figure 8), thereby indicating the reliability of the
transcriptome results.
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4. Discussion
4.1. Multiple Composition Guarantees Long-Term Effectiveness

Generally, abiotic stress reduce crop yields, leading to food crises [59]. Several plant-
stress-resistant studies have focused on applying chemical regulators or BMs to improve
plant stress resistance [60,61]. AJ, an integrated ecosystem of microorganisms and their
metabolites, has been shown to improve soil and prevent root rot, among other things [28].
AJ has the dual functions of chemical regulatory substances and microorganisms. Further-
more, it is an efficient and environmentally friendly biological agent because it can be made
from organic waste. In this study, we found that the application of AJ could improve the
activity of antioxidant enzymes in pak choi (Figure 2). Hence, we hypothesize that the
application of AJ might lead to changes in the transcription and metabolism of pak choi
and affect rhizosphere microorganisms.

Our findings suggest that continuous application of AJ, rather than the addition of
certain chemicals or microorganisms alone, can substantially boost antioxidant enzyme
activity; however, it has no consequential effect on pak choi growth and development
indicators. There are several biological control agents, organic amendments, and so forth;
however, most do not thrive in soil and are inactive after a month [62]. In contrast, AJ can
continue to function even after 30 d of pak choi growth. This may be due to the multiple
components contained in AJ, such as mineral nutrients, organic acids, plant hormones, and
effective live bacteria [63]. In addition, increasing the activity of antioxidant enzymes can
enhance plant stress resistance [64,65] and promote plant tolerance to adversity [66,67]. In
this study, the application of AJ considerably increased the activities of SOD, POD, and
CAT enzymes, which is consistent with the findings from previous studies. Therefore, we
believe that AJ has the potential to enhance plant stress resistance.

4.2. AJ Drives Stress Resistance by Altering Transcriptional and Metabolic Pathways

The application of AJ brought about differential expression of genes and metabolites
with multiple functions, resulting in corresponding functional changes in the plants. In this
study, phenylpropanoid biosynthesis, glucosinolate biosynthesis, glutathione metabolism,
and alpha-linolenic acid metabolism pathways have received additional attention. In
these four pathways, a large number of DEGs and DEMs underwent considerable en-
richment. C2H2, MYB, AP2/ERF-ERF, and other transcription factors were found to be
upregulated in transcriptome analysis. Numerous studies have shown that these genes can
help induce stress resistance in plants. For example, the expressions of MYB, AP2/ERF-
ERF, C2H2, and other genes in Eutrema salsugineum increased considerably under salt
stress [68]. Additionally, exogenous melatonin activated AP2/ERF-ERF, MYB, NAC, and
bZIP, thereby improving maize drought tolerance [69]. The expression levels of phenolic
acid and flavonoid metabolites in AJ treatment group were upregulated. These two sub-
stances are the key players in plant response to stress [70]; they are both endproducts of
the phenylpropanoid pathway [71,72]. Numerous studies have demonstrated that glucosi-
nolate biosynthesis is another metabolic pathway related to plant stress resistance. For
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example, BrPP5.2 can regulate the heat tolerance of transgenic Brassica rapa by inducing
glucosinolate biosynthesis [73]. Mild osmotic stress in Arabidopsis thaliana can promote the
biosynthesis and accumulation of glucosinolates [74]. The glutathione metabolism pathway
in yeast responds to the D-fructose stress [75]. Furthermore, alpha-linolenic acid responds
to early chilling stress in pumpkin rootstock varieties [76]. There have been many similar
studies on alpha-linolenic acid in animals [77].

4.3. AJ Drives Resistance by Altering the Rhizosphere Microbiome

Although the rhizosphere microorganisms are invisible to the naked eye, their impor-
tance cannot be overemphasised. In this study, the application of AJ altered the community
diversity of rhizosphere microorganisms but did not affect their abundance (Figure 3A,B);
this may be due to the abundance of microorganisms in AJ. Bioorganic fertilisers bring
about changes in rhizosphere microorganisms [78]. The application of AJ increased the
abundance of Firmicutes, Actinobacteria, and Proteobacteria, which may be related to the
presence of these groups of microorganisms in AJ (Figure 3C,D). Firmicutes and Actinobac-
teria can prevent the occurrence of bacterial wilt [79], whereas Proteobacteria can improve
metabolic activity and promote growth and reproduction [80]. These bacteria have been
linked to enhancing plant resistance to adversity. Combined analysis of the metabolomics
and microbial data showed that these populations were significantly correlated with the
upregulated DEMs (Figure 7). Therefore, these findings suggest that AJ could improve
plant stress resistance by altering the rhizosphere microbial community.

5. Conclusions

Our study demonstrates that AJ could improve plant stress resistance through a
combination of changes in rhizosphere microorganisms, plant genes, and metabolites.
Specifically, our findings indicate that the expression levels of genes and metabolites re-
lated to glutathione and alpha-linolenic acid metabolisms as well as phenylpropanoid and
glucosinolate biosynthesis pathways were upregulated. Furthermore, Firmicutes, Acti-
nobacteria, and Proteobacteria were enriched in the rhizosphere. These results highlight the
complex changes that occur in plants following AJ application and explain the mechanisms
underlying stress resistance. Our findings encourage the application of AJ for improving
plant stress resistance. Most importantly, this study provides a scientific basis for using AJ
to improve agricultural production (Figure 9).
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