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Abstract: Global drylands, covering about 41% of Earth’s surface and inhabited by 38% of the
world’s population, are facing the stark challenges of water scarcity, low water productivity, and
food insecurity. This paper highlights the major constraints to agricultural productivity, traditional
irrigation scheduling methods, and associated challenges, efforts, and progress to enhance water
use efficiency (WUE), conserve water, and guarantee food security by overviewing different smart
irrigation approaches. Widely used traditional irrigation scheduling methods (based on weather,
plant, and soil moisture conditions) usually lack important information needed for precise irrigation,
which leads to over- or under-irrigation of fields. On the other hand, by using several factors,
including soil and climate variation, soil properties, plant responses to water deficits, and changes in
weather factors, smart irrigation can drive better irrigation decisions that can help save water and
increase yields. Various smart irrigation approaches, such as artificial intelligence and deep learning
(artificial neural network, fuzzy logic, expert system, hybrid intelligent system, and deep learning),
model predictive irrigation systems, variable rate irrigation (VRI) technology, and unmanned aerial
vehicles (UAVs) could ensure high water use efficiency in water-scarce regions. These smart irrigation
technologies can improve water management and accelerate the progress in achieving multiple
Sustainable Development Goals (SDGs), where no one gets left behind.

Keywords: drylands; food insecurity; irrigation management; smart irrigation; sustainable development
goals; water scarcity

1. Introduction

Drylands (hyper-arid, arid, semiarid, and dry sub-humid parts) occupy 41% of Earth’s
surface, supporting 38% of global population [1,2]. Agriculture and pastoralism are the
major livelihood sources for most of the population, largely dependent upon natural re-
sources [3]. About 70% of the world’s drylands exist in developing countries where people
are confronting the stark challenge of poverty, food insecurity, malnourishment, poor
economic conditions, and marginalization [4,5]. Water availability and agricultural pro-
ductivity are the most pressing issues associated with drylands and land degradation [6].
Globally, water scarcity is already affecting 1–2 billion people, and a majority of them are
concentrated in drylands, where the supply of water is insufficient to meet the user de-
mands [7]. Future climate projections also suggest that in coming decades more people will
be facing huge shortages of water. Consequently, climate change and water management
decisions will adversely affect drylands and their inhabitants [8]. As global population is
increasing rapidly, agricultural productivity in drylands needs improvement to meet food
security demands. Therefore, adopting smart irrigation approaches is a viable option to bet-
ter utilize the available water resources and improve water productivity in drylands. Water
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scarcity has become one of the critical issues and threatens the sustainable development in
drylands [9]. Water scarcity occurs when water demand becomes equal or even exceeds the
total available fresh water resources [10]. Water scarcity should be considered from both
physical and economic perspectives [11]. Physical water scarcity has two aspects: green
water scarcity (soil moisture in root zone is insufficient to meet crop water demands), and
blue water scarcity (both surface and ground water availability is unable to meet human
water needs) [12]. The economic water scarcity occurs when water resources are physically
available, but lack of institutional capacity and socioeconomic conditions limit the use of
that water [13]. Water scarcity negatively impacts social integrity and sustainable economic
development, especially in drylands. The primary sector, which is seriously affected, is
agriculture, utilizing more than 80% of total fresh water [14]. Intensification of agricultural
water scarcity could affect food production and threaten food security in drylands in the
future [15]. Further, it may seriously impact the associated Sustainable Development Goals
of SDG-2 (Zero hunger), SDG-6 (Clean water), SDG-7 (Clean and affordable energy), SDG
15.3 (Desertification control) and SDG-14 (Life below water), which are directly or indirectly
dependent on water availability [16,17].

Since the available water resources are limited and to obtain more yields with less
water use, efficient management of available water with improved water productivity
is direly needed to meet future food demands [18]. Managing irrigation efficiently is
challenging in drylands because there are so many factors to take into account, such as
crop type, climate, soil type, and irrigation methods [19]. Drylands are characterized
by high potential evapotranspiration, low and erratic rainfall and high temperature [20].
Additionally, predicted extreme weather events due to climate change will further worsen
the situation. Besides hostile environmental conditions, increasing water scarcity in these
regions is posing serious threats to irrigated agriculture and sustained food production [16].
Although agriculture consumes about 80% of the total water utilized in the agriculture
sector globally [14], this irrigation generates a lower return per unit of water used than
other economic sectors [21]. The use of traditional irrigation methods and low water use
efficiency (35–40%) caused by poor management are major constraints to sustainable crop
production in drylands [22,23]. Moreover, farmers in these regions still rely on traditional
irrigation systems that manifest the lowest WUE. This situation puts enormous pressure on
the agriculture sector to become more efficient in irrigation water use and evoked the call for
a “Blue Revolution” in water-limited agricultural regions “to produce more crop per drop
of water.” Efficient water-saving irrigation approaches, especially the application of smart
irrigation systems, have the potential to meet this critical challenge in dryland productivity.

A smart irrigation system applies water in the right amount, at the right time and place,
in a field [24]. Smart irrigation offers better irrigation decision-making by using several
factors, including soil and climate variation, soil hydraulic properties, plant responses
to water deficits, and changes in weather factors, that can help save water and increase
yields [25]. By using smart irrigation systems, farmers can save precious resources without
exposing plants to moisture deficiencies [26]. Smart irrigation has been argued as a way
to manage soil variability and gain economic benefits by fulfilling the specific irrigation
demands of individual crops [27]. It is also implied that the smart irrigation system will
be managed in such a way that will enable nutrients and water to be delivered directly
to the plant roots [28]. To the best of our knowledge, studies addressing the issue of low
water productivity in dryland agriculture and its improvement through adoption of smart
irrigation approaches is limited. Therefore, the specific objectives of this article were (i) to
present an overview of the constraints of low water use efficiency in dryland agriculture,
(ii) to assess the conventional irrigation scheduling methods, and (iii) to examine the
feasibility and benefits of smart irrigation systems for better irrigation management to
enhance water productivity in water-scarce regions.
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2. Major Constraints of Agricultural Productivity in Drylands
2.1. Land Degradation

Natural processes such as vegetation loss, wildfires, overgrazing, climate change,
wind and water erosion and other adverse/destructive anthropogenic activities cause land
degradation (Figure 1) [3,29]. This causes a substantial decline in the functional capabilities
of those specific areas, negatively influences agricultural activities and productivity and
natural resources management, creates economic loss, and loss in biological activity [30].
Generally, land degradation is more critical or serious in dryland, semiarid and arid
areas [31]. These include some parts of central Asia, China, Africa and the Mediterranean
basin [32]. Land degradation in Africa highly impacts Somalia, Eritrea, and Ethiopia (horn
of Africa) [33]. A prominent sign of land degradation is the occurrence of unexpected
climatic conditions and vegetative stress [34]. Moreover, low levels of soil nitrogen and
organic carbon (C) show a state of land degradation that leads to very low soil fertility [35].
Stavi and Lal [36] reported that land degradation increases by 5–10 million hectares every
year globally. Ibrahim et al. [37] found that the increase in land degradation observed in the
Africa Saharan region was mainly due to the increase in drought frequency from 1968–1990.

Figure 1. Global distribution of land degradation based on severity of human-induced pressure [29].

To gain insight into land degradation intensity, statistical methods and models have
been utilized using data collected over the years. These models allow precise predictions
about land degradation intensity [38]. Normalized difference vegetation index (NDVI) is
one of the methods used to measure the vegetation mass over a specific area [39]. NDVI
represents the vegetation state of an area in terms of numerical values. If numerical
values are negative, it means there is a reduction in vegetation. A study carried out by
Ibrahim et al. [37] using residual trend analysis of NDVI showed substantial evidence of soil
degradation in sub-Saharan West Africa. The study also highlighted the drought occurrence
caused by vegetation decline in Africa. Pravalie et al. [40] reported that the impending
increase in land degradation is posing serious threats to the people of developing countries.
Disease proliferation, decrease in crop yields and increasing armed conflicts are the major
outcomes of land deterioration. A possible solution to land degradation is to achieve a state
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of land degradation neutrality (LDN) [41]. LDN is a state where land is retained in a stable
condition capable of enduring biological functions including facilitating appropriate food
security [42]. Sustainable land management practices such as soil amendments (addition of
biochar, manuring, composting) to restore degraded lands could be used to decrease the
effects of land degradation [43].

2.2. Water Scarcity Issues and Sustainable Development Goals

Water availability is one of the main indicators of land degradation, and upsurge in
land degradation is potentially aggravating water scarcity [44,45]. Availability of water is
jeopardized by lessening of ground and surface water due to reduction in biomass [46].
This results in less water available for agricultural (Figure 2) [16] and domestic use. Scarcity
of water is an indicator of safe water; hence, water scarcity is a deficiency in fresh water
resources to meet the standard water demand [11]. Successful achievement of SDGs is
dependent upon the water security of both human and environmental systems (Figure 3)
because water is directly linked to all SDGs [7]. The leading reasons for water scarcity are
droughts, climate change, and inaccessibility and inadequate management of resources [47].
Rosa et al. [16] reported that in 2012, almost 2.3 billion people did not have access to safe
water. Access to safe water is an important factor as it decreases disease frequency and
social problems, including unemployment, malnutrition, and poverty [48]. Agriculture
and industrial sectors use the largest proportion of water, and this water is usually drawn
from below ground, lakes and rivers [49]. Falkenmark [50] reported that water scarcity
poses substantial threats to the agriculture sector, which requires sufficient quantity of
water for irrigation. Crop production and food security are directly dependent on sufficient
water availability [51]. Water scarcity leads to plant stress, resulting in various environ-
mental problems, such as intensified soil erosion and salt concentration [52]. Increasing
climate change, land degradation, and population necessitate the development of effective
management systems to wisely mitigate water scarcity [53–55].

Figure 2. The global distribution of agricultural blue water scarcity (BWS), green water scarcity
(GWS), and economic water scarcity (EWS) [16].

Liu et al. [12] described the common indicators employed to evaluate water scarcity,
such as IWMI, (a system that evaluates the economic and physical changes influencing the
availability of water within a country), the criticality ratio (a ratio of water consumption
to the available water resources) and Falkenmark indicator (which compares the quantity
of available water against the number of people who consume that water). Water stress
and crowding indices may also be employed to measure water scarcity in a country. These
indices also estimate the decrease or increase in water scarcity. Efforts are required to
curtail the water scarcity issues. In this regard, implementing efficient water use practices
and managing water in high-risk regions are important aspects to address [45]. These
efforts could decrease water scarcity and increase access to adequate agricultural and
drinking water. Moreover, by taking care of structural and social customs, governments
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can effectively resolve major conflicts. Hence, joint efforts are needed from governments
and research institutes to resolve the water scarcity problem successfully [56].

Figure 3. Interlinkage of SDGs and water highlighting the importance of water security for humans
and environment.

Liu et al. [12] described the common indicators employed to evaluate water scarcity,
such as IWMI, (a system that evaluates the economic and physical changes influencing the
availability of water within a country), the criticality ratio (a ratio of water consumption
to the available water resources) and Falkenmark indicator (which compares the quantity
of available water against the number of people who consume that water). Water stress
and crowding indices may also be employed to measure water scarcity in a country. These
indices also estimate the decrease or increase in water scarcity. Efforts are required to
curtail the water scarcity issues. In this regard, implementing efficient water use practices
and managing water in high-risk regions are important aspects to address [45]. These
efforts could decrease water scarcity and increase access to adequate agricultural and
drinking water. Moreover, by taking care of structural and social customs, governments
can effectively resolve major conflicts. Hence, joint efforts are needed from governments
and research institutes to resolve the water scarcity problem successfully [56].

2.3. Climate Variability

Variations/changes in climatic conditions often impact human, biological and agri-
cultural systems through decreasing water resources, rising global temperatures, heavy
precipitation, elevation in permafrost thawing, worsening water and air quality, rise in
sea level, health risk, food supply and availability, intense drought, disturbing rainfall
periods, and devastating effects on coastal infrastructure [57,58]. East Africa is an exam-
ple of climatic anomalies, and the progression of increased rainy seasons, droughts and
temperatures is detrimental to the development of this area [59]. In Tanzania, crop data
techniques predicted a yield reduction of 7.6%, 8.8%, and 13% in rice, sorghum and maize
by 2050, respectively [3]. The impacts of variation in climatic events are significantly neg-
ative [60], for example, the Mediterranean Basin has shown a prominent rise in average
temperatures beyond global changes, with significant impacts on plant processes and
water resources [61]. Climatic variation may induce a significant reduction in crop growth
and productivity and increase vector-borne diseases, thus threatening food security [62].
Heavy rain and early frost may have negative effects on flowering periods and induce
frost damage, while dry seasons or droughts largely decrease the decomposition of soil
organic matter [63]. Such alterations induce negative impacts on biological systems. Fitness



Agronomy 2023, 13, 2113 6 of 25

of the population is one of the main factors negatively affecting community structures
and population dynamics [64]. Thus, it becomes vital to develop mitigation practices to
decrease climate change impacts on agriculture. Several mitigation protocols for climate
change impacts suggested by Haussmann et al. [65] and Gomez-Zavaglia et al. [66] are:
(i) developing skills for water management, (ii) improving methods of breeding selection,
(iii) capacity building of farmers, (iv) genetically improved seeds with better adaptation
to increased temperatures, (v) reducing livestock and crop emissions, (vi) changes in net
irrigation, and (vii) sequestering carbon in soils.

2.4. Overexploitation of Groundwater

Increasing economic growth has resulted in continuous demand for water, leading
to groundwater overexploitation, especially in big cities [67]. Both humans and the en-
vironment rely heavily upon groundwater; therefore, understanding its environmental
implications is vital [68]. Over-pumping of water is a global issue, primarily caused via
agricultural water use. Among its effects are the drying of wetlands and streams, phreato-
phytic vegetation elimination, soil subsidence, storage loss, decline in groundwater level,
increased pumping cost, and soil salinization [69,70]. Recently, the exploitation of ground-
water resources has become increasingly critical, especially in semiarid and arid coastal
areas. In these regions, the coastal aquifers are at risk due to the intrusion of salty marine
water. For example, Tripoli in northwestern Libya has been experiencing progressive
seawater intrusion into its coastal aquifers since the 1930s due to its ever-growing demand
for water [71]. Groundwater overexploitation not only causes water-quality degradation
and aquifer depletion but also influences the ecological stability of wetlands and streams,
resulting in substantial losses of biodiversity and habitat. Therefore, societies should realize
that water resources are vulnerable and finite and discover methods to resolve the stresses
of human development on nature’s tolerance. Educating the public about human influences
on the environment is the first step toward sustainable water use.

2.5. Socioeconomic Drivers

The adverse impacts on water availability, agricultural productivity, and economic fea-
sibility have been correlated with the displacement of residents [49]. Countries dependent
on other countries’ agricultural productive capabilities are also seriously affected. Food
insecurity and hunger are common outcomes of poor agricultural production phases for
millions who are dependent on agriculture [72]. The 1980s famine in Africa resulted from a
decline in agricultural productivity [73,74]. Generally, droughts indicate decreased food
security [75]. Between 1992 and 1995, drought periods aggravated already problematic
conditions in Africa. There was income loss for farmers, a rise in unemployment, and
a decline in maize export to neighboring states. Moreover, there was an emergence in
incurred service debts through farmers [76]. Gebremskel et al. [33] stated that drought
periods in East Africa have caused more than 0.5 million deaths and financial losses up
to US $1,500,000. Several rural residents heavily rely on land productivity. Thus, rising
water scarcity, land degradation and drought frequency cause adverse effects on people’s
lives [77]. Couttenier et al. [78] reported that social conflict could erupt as a result of de-
creased availability of farmland and water (e.g., civil war in Darfur). Rifts for agricultural
resources and farmland often generate deadly circumstances. Ongoing conflicts among
Fulani herdsmen farmers in Nigeria are another example of such conflicts. These conflicts
resulted in 68% of total deaths in north-central Nigeria [79].

2.6. Droughts

Drought is a condition of abnormally dry weather sufficiently prolonged, lacking wa-
ter to induce hydrologic imbalance and constraining agricultural activities in the affected
region [80]. Drought types such as inter-annual droughts stay longer and decrease crop
productivity, whereas inter-seasonal drought may be short and controlled via efficient
water management [81]. Hermans and McLeman [82] reported that repeated occurrence
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of drought contributed towards degradation of land. Henchiri [83] reported that sub-
Saharan Africa has faced long periods of drought with greater intensity. Nijbroek et al. [84]
demonstrated that Namibia is an arid country and faced drought for many years, as well
as neighboring counties of South Africa being liable to droughts repeatedly triggered by
El Niño—Southern Oscillation (ENSO), a system of warm seawater that passes over the
Pacific about every 10 years. Climate change could trigger desertification, induce natural
calamities and environmental susceptibility. An increase in drought frequency is also
expected because of climate change [85]. Droughts cause extreme distress to food security,
agricultural productivity, and the economy [81]. Losses of up to US $120,000,000,000 were
noted over a period of 30 years in Europe. In southern Africa, more than 10,000,000 tons of
food was needed in terms of aid to drought-affected areas [3]. Africa has an unpleasant
history of droughts with devastating effects on food security [86]. The most disturbing
drought was during 1991–1992. It caused a huge loss in agricultural productivity, massive
unemployment, and economic despair. Given the detrimental effects of drought, it is
important to improve agricultural practices in response to droughts. One such practice is
environmental restoration. Land restoration helps to reduce land degradation impacts [87].
Rigorous land restoration can be attained through tree plantations in degraded lands.
Alternatively, in situ planting of seeds that could lead to natural regeneration may also
be used [87]. Predicting droughts is also useful for proper mitigation. Recently, scien-
tists in Kenya introduced a technology by satellite analysis, which can forecast droughts
with 90% accuracy [88]. Moreover, better water management techniques and planting
drought-resistant trees and crops may remove the distressing damage droughts have on the
agriculture. Thus, most African nations should focus on irrigation as a method to reduce
drought impacts (Figure 4) [89].

Figure 4. Countries affected by drought in 2020–2022 [89].

2.7. Conventional Technology

In dryland regions, most farmers employ old farming techniques that result in fail-
ure to manage food for increasing populations [90]. The traditional farming techniques
generate little food [3]. Agriculture conservation (crop rotation, soil cover and minimum
tillage) could help to enhance crop yields with increasing profitability and decreasing soil
degradation [91]. Some techniques are not used by subsistence farmers mainly because of
unfamiliarity [92]. The implication of microbial-resistant varieties or seeds is less common
in Africa [93]. These advancements have the capability to improve yield and increase
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stress tolerance. Nonetheless, most farmers in rural areas are lacking access to services and
information to be effectively used in their favor [94]. Sarkar et al. [95] reported that the use
of modern techniques is helpful and provides opportunities to farmers for increasing the
crop yields. Digitizing farming methods permits farmers to guess the yield and weather
forecast, select suitable crops according to the area, and improve irrigation systems. Nuclear
technology is also used as a tool to increase yield via radioactive isotope utilization. These
are used as early detectors and tracers of the existence of diseases. Moreover, applying
nuclear technology in agricultural practices can increase crop productivity by 40%, improve
soil structure and texture, and decrease labor and input costs [96]. Nonetheless, the main
hindrance is that modern farming techniques and technologies are not available to the
majority of farmers in dryland areas.

3. Traditional Approaches Used for Irrigation Scheduling

The amount of water and its application timing is crucial in irrigation scheduling
(IS), either in agriculture or landscapes [97,98]. Irrigation water requirement is measured
following a criterion that determines irrigation needs and methods to apply a calculated
amount of water [18]. In order to use irrigation water efficiently, we have to understand the
dynamics of plant water use, together with weather, plant physiology, and soil properties.
Among the various irrigation scheduling approaches developed and suggested, three
types are most important: weather-based, soil moisture-based, and plant water status-
based [28,99].

3.1. Weather-Based Irrigation Scheduling

In weather-based irrigation planning, reference evapotranspiration (ET0) is calculated
by measuring the weather elements that reflect the amount of water lost via plants and
soil [28]. Solar radiation, humidity, air temperature and wind speed influence the quantity
of water lost through evapotranspiration. In the absence of soil and plant measurements,
weather attributes are used to determine irrigation schedules based on evapotranspira-
tion [100]. Reference evapotranspiration can be calculated following the FAO Penman–
Monteith equation by measuring the solar radiation, wind speed, air temperature and
humidity [100,101]. Daily crop water use can be calculated by:

ETc = Kc × ET0

where ETc = crop evapotranspiration (mm day−1), Kc = crop coefficient, and ET0 = reference
evapotranspiration (mm day−1).

The method is strongly dependent on (1) the accurate calculation of ET0, (2) better Kc
curve development over the entire crop-growing season, (3) determination of soil water-
holding capacity by analyzing soil properties, and (4) quantifying site-specific rainfall [102].
Mostly, real-time weather monitoring systems are equipped with an automatic weather station
containing sensors for temperature, rainfall, wind speed, humidity, atmospheric pressure,
and solar radiation [103]. These data loggers are designed to obtain data automatically at
periodic intervals, and these data are transferred to an online data access portal. Data loggers
communicate with remote servers using a wireless sensor network (WSN) or Internet of
Things (IoT) framework [18]. WSN is one of the most popular technological methods that is
used to precisely monitor the weather and environmental parameters [104–108]. These data
finally reach smart irrigation controllers, which in combination with site-specific variables
(e.g., soil type), set up the irrigation schedule. The selection and performance of a weather
monitoring system depends upon different accuracy, installation, robustness, data acquisition,
maintenance, and power requirements. An IoT-based weather monitoring system demon-
strated by Wasson et al. [109] monitors and analyzes the crop environment in terms of wind
speed, temperature, solar radiation, soil moisture, and humidity using various weather-based
sensors connected through a wireless network for data transfer and web-based services. Like-
wise, Khoa et al. [110] implemented an IoT platform for smart irrigation management. They
suggested an innovative topology of sensor nodes with low cost. The authors were satisfied
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with the performance of the LoRa LPWAN (long-range low-power wide area network) tech-
nology transmission module system. A multiagent-based monitoring approach consisting
of an open-source platform (PANGEA) was used to collect data on weather elements and
soil moisture via different sensors. This platform is equipped with several master and slave
nodes connected through sensors for data transfer [111]. Many researchers [112–114] have
also employed WSN and IoT based platforms for weather-based monitoring and reported
satisfactory performance of the systems. Although weather-based irrigation scheduling is
widely practiced, the heterogeneity of soil properties used to estimate soil water volume
affects the amount of available soil water. In addition to that, spatiotemporal, variability in
large-scale evapotranspiration is another challenge confronted by this approach.

3.2. Plant-Based Irrigation Scheduling

Plant-based irrigation scheduling mainly relies on several indices indicating plant
water status [115]. The relationship between soil moisture deficit and crop water stress
helps to determine irrigation scheduling. Plant-based irrigation scheduling is sensitive to
measurements conducted at a specific crop stage to determine water deficit in plants [18].
Since varying plant species, plant tissues, and crop growth stages have variable sensi-
tivity to moisture deficit, several plant-based stress measurements have been suggested
for irrigation scheduling [99]. There are two principal categories based on plant vari-
able measurements used for irrigation scheduling: firstly, plant water status-based direct
measurements including leaf, stem, and xylem water potential status and indirect mea-
surements pertinent to leaf thickness, turgor pressure, and trunk diameter [116,117]; and
secondly, plant physiology-based estimates including sap flow, stomatal conductance,
xylem cavitation, and thermal sensing [118]. A leaf turgor pressure sensor estimates the
relative change in leaf turgor pressure to determine leaf water stress [119]. In addition to
transpiration water loss, root water uptake and cellular osmotic pressure determine the
magnitude of turgor pressure. For example, a ZIM probe (leaf turgor pressure sensor) is
a noninvasive leaf patch clamp pressure probe that can detect leaf turgor pressure. ZIM
probes are capable of measuring even minute shifts of turgor pressure within leaves in real
time [119,120].

Due to advanced electronic technologies, researchers have developed small leaf sensors
and tested them against cowpea (Vigna unguiculata L.) and tomato (Solanum lycopersicum L.)
plants. Leaf thickness-based irrigation timing improved WUE by 25–45% compared to preset
irrigation plans [121]. In another study, Afzal et al. [122] reported that leaf thickness and leaf
electrical capacitance (CAP) could be employed for leaf water status monitoring. Based on
energy balance and heat pulse, thermal sensors have been developed to determine sap flow
from plant stems, assisting irrigation scheduling. Sap-flow methods are able to provide in
situ measurements of plant water use and transpiration dynamics. The Dynagage sap-flow
sensors are the latest ones used to estimate sap flow and thus the water consumption by
plant. The amount of heat utilized by the sap is measured by the energy balance sensors
and gives the real-time sap flow in grams or kilograms per hour. These sensors require
no calibration and offer an efficient and affordable method to determine the water use of
plants [28]. During transpiration, the water in the xylem subjected to tension is directly
proportional to the deficit in water to the point where the water columns can rupture or
cavitate [123]. This cavitation leads to the eruptive formation of a bubble that contains
water vapor [124]. Audio or ultrasonic frequency signals can detect these cavitation events,
and the associated embolisms can hinder water flow [116]. Detection of such ultrasonic
acoustic emissions (AEs) indicates plant stress and cavitation events. Thus, the AE rate can
be used as a sensor to detect plant stress.

Stem Diameter Fluctuations

Stem and fruit diameter experience diurnal fluctuations due to changing water con-
tent [125]. Various water stress indicators can be determined by analyzing the daily patterns
of stem diameter variation (SDV) [126]. The maximum daily shrinkage (MDS) and stem
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growth rate (SGR) are commonly used indicators for scheduling irrigation [115]. Currently,
different optical sensors are used to detect plant water status, nutrient level and health
condition. Two types of optical sensors (contact and noncontact) are primarily used [18].
Contact sensors are physically connected to plants, whereas noncontact sensors are vehicle-
mounted, fixed, handled, or remotely controlled (aerial vehicles or satellite data) [28]. In
many studies, monitoring through unmanned aerial vehicles (UAVs) with high-resolution
cameras helped to generate irrigation maps over large cropped areas [127,128]. In another
study, Lozoya et al. [129] used a sensor network to control green pepper growth under four
different irrigation designs.

Bauer and Aschenbruck [130] employed IoT and sensor network integration to moni-
tor leaf area for optimizing irrigation. Several factors other than water content can affect the
SDV-derived index, such as plant age, crop load, and field management practices. Further-
more, SDV estimates are usually affected by small raindrops and animals [131]. Canopy
temperature measurement is another key method commonly employed for irrigation
scheduling. Major canopy temperature-based methods include the crop water stress index
(CWSI), temperature–time threshold (TTT), and temperature stress day (TSD) [132–134].
Infrared thermometers and thermal cameras are used to detect temperature. However, diur-
nal dynamics of temperature remain a major challenge for all the canopy temperature-based
methods [99]. A major drawback of using plant-based sensors for irrigation management
is that they lack direct estimates of irrigation water amount to be applied. Soil textural vari-
ability is another challenge affecting the accurate estimation of irrigation amounts needed.

3.3. Irrigation Scheduling Based on Soil Moisture

Soil moisture monitoring is one of the fundamental approaches used for irrigation
scheduling, and it is conducted by determining the soil water content or the soil water po-
tential [135]. Monitoring soil moisture at high spatial and temporal resolution is critical for
optimal irrigation scheduling [28]. Different types of sensors, such as time-domain transmis-
sion, neutron probes, granular matrix, and capacitance, are commonly implemented for soil
moisture determination [136]. Gravimetric sampling to estimate soil moisture fluxes and a
tensiometer is also used to measure soil matric potential, reflecting the amount of soil water
available for plant use [99]. With the advancement of technology, satellite and groundwater
sensors are becoming popular as irrigation tools. Soil moisture sensors can be installed at
multiple depths in the field and capture soil moisture dynamics. They enhance accuracy
and improve understanding of changes appearing in soil water content pertinent to crop
water use and irrigation [137]. Soil sensors also provide information about soil chemical,
physical and mechanical properties obtained in the form of optical, electrical, mechanical,
electromagnetic, acoustic, radiometric, and pneumatic measurements [138]. Measurement
of these attributes assists in the estimation of maximum allowable depletion [139]. Soil
moisture sensors estimate the volumetric moisture content (VMC) by detecting changes in
soil electrical and thermal properties [140].

Frequency-domain reflectometry sensors (FDR) can estimate field soil moisture con-
tent [129]. The sensors are put near the crop roots and show a moisture content range of
0–50% with 0.1% resolution, thus optimizing water use for vegetables. Shigeta et al. [141]
found that real-time soil moisture sensing can be used in practical measurements of soil
moisture fluxes by correlating the VWC of the soil with the capacitance of sensors inserted
in the soil. In TDR sensors, two parallel rods are inserted at the desired depth to measure
the soil moisture content. The rate of the electromagnetic pulse, which radiates from the
sensor into the soil and returns to the soil surface, is directly proportional to soil water
content. However, this is an expensive method for farmers. Other studies [142–144] in-
terconnected IoT-based field monitoring with cloud-based monitoring and data analysis
using an Ardunio controller. They found that the collected data were used to make predic-
tions that helped reduce water consumption and improve crop yields. In another study,
six capacitance-based sensors were used at three locations with a data logger [145]. This
method improved the WUE compared to traditional approaches. Soil moisture-based irri-
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gation scheduling has the disadvantage that plant water uptake and stress are affected by
soil moisture content and also influenced by environmental conditions, pests and diseases,
root zone salinity, and nutrient availability. Variation in soil properties also affects irrigation
scheduling, which necessitates soil testing at multiple points for accurate estimation of soil
moisture content.

4. Innovative Smart Irrigation Approaches

A smart irrigation system consists of firmware, software, and hardware interconnected
via various computational techniques, including artificial intelligence (AI) and deep learn-
ing (DL) etc., which ensures the right amount of water at the appropriate time in crops to
improve WUE, increase yield, reduce fertilizer use, reduce labor cost, and save energy [146].
Various control methods are employed to improve irrigation system efficiency by mon-
itoring variables such as canopy and air temperature, evapotranspiration, rainfall, and
solar radiation. By integrating information from multiple sources, smart irrigation systems
can significantly improve crop production and resource management [147]. The follow-
ing section presents various recent techniques associated with smart irrigation systems
in agriculture.

4.1. State-of-the-Art Smart Irrigation Technologies
4.1.1. Artificial Intelligence (AI) and Deep Learning

AI is a machine’s ability to learn and implement tasks similar to those of a human
brain, and it is powered by computers [148]. When applied to a certain problem domain,
AI algorithms can mimic human decision-making. Irrigation systems have been integrated
with AI for adaptive decision-making through fuzzy logic, expert systems, and ANNs [149].

An artificial neural network (ANN) is an algorithm for processing information that is
inspired by the working of the human brain [150]. Like human brain neurons, an ANN
also contains a neural network, but synapses are substituted with biased connections and
weights [151]. This facilitates the mapping of input and output relationships [152]. ANN-
based control systems can learn and adapt to the variable dynamics, making them ideal
for irrigation systems. Additionally, ANNs have been used as smart strategies in dealing
with the issue of formulating mathematical models based on first principles. Recently,
many researchers have employed ANN methods for irrigation scheduling. Using the
AQUACROP model integrated with a dynamic neural network, Adeyemi et al. (2018) [149]
simulated soil moisture for a potato crop. Karasekreter et al. [153] demonstrated energy and
water savings up to 23.9% and 20.5%, respectively, by implementing an ANN integrated
with soil physical properties and moisture content in a strawberry orchard. Umair and
Muhammad [154] designed an ANN-based controller model in MATLAB using climate
variables as input.

A fuzzy logic system is an extension of Boolean logic that expresses logical values in
the form of true or false and demonstrates the nonlinearity and uncertainty in real-world
problems [155]. The fuzzy system uses different sets of input data to categorize data in
membership classes, and then applies a decision rule to every set to produce human-like
decision outputs [103]. Many researchers have recommended the use of fuzzy logic in
irrigation control systems. Mendes et al. [156] designed a fuzzy inference system that can
control the speed of the central pivot according to the spatial field variability. A fuzzy
irrigation system developed by Mousa et al. [157] was used to compute evapotranspiration
(ETo) via a fuzzy inference system using weather variables as input. They found that the
fuzzy model was accurate and quick in obtaining the required evapotranspiration and
net irrigation to recover the water loss. An expert system is another type of intelligent
system used for irrigation control. Basically, an expert system is a computer program that
simulates the verdict and behavior of an individual or organization with expertise in a
certain area through the use of artificial intelligence (AI) technologies [158].

Expert systems can be used for problem-solving activities such as monitoring, control,
planning, forecasting, prescribing, fusion, and decision-making [159]. An expert-controlled
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irrigation system enables farmers to quantify the water amount needed by crops at the ap-
propriate time by considering the weather and soil conditions. Many researchers [160,161]
have implemented expert systems for irrigation management. The expert system uses
various knowledge-based inputs for accurate decision-making about irrigation schedul-
ing. However, errors in knowledge-based input can seriously affect the performance and
reliability of expert systems [162].

A hybrid intelligence system is another type of intelligent control system in which at
least two artificial intelligence algorithms such as fuzzy logic and neural network are com-
bined, known as “neuro-fuzzy” [149]. Other examples of such hybrid intelligence systems
include fuzzy PID and GAPSO. Tsang et al. [152] employed seven different machine-
learning algorithms to assess soil moisture conditions using aerial images of agricultural
fields to control irrigation. The results demonstrated a 52% reduction in water consumption
by reducing timing, irrigation level, and location errors. Similarly, a combination of ANN,
genetic algorithm (GA) and the Bayesian framework was implemented to forecast daily
irrigation demand under limited data conditions [163]. The results exhibited an improve-
ment in forecast precision by 3% and 11%. Many other studies also demonstrated the use
of intelligent hybrid systems and reported precise forecasting and improved control of
irrigation systems [164,165].

The deep learning method is now applied to deal with millions of weights among neu-
rons for a better understanding of behaviors owing to recent developments in computing
technology in parallel processing, software and hardware. Deep learning has developed a
revolutionary epoch, since it can solve the problems confronted by artificial intelligence
for a long period [166]. Deep learning has been applied in the agriculture and hydrology
fields due to difficulty in software data availability, budget, and complexity, such as crop
evapotranspiration modeling and approximation [167]. Wang and Ma [168] reported that
the traditional machine learning and deep learning models work similarly as a data-driven
artificial intelligence technique and could be applied to model the convoluted correla-
tion between input and output (Table 1). Nonetheless, deep learning has an advantage
over traditional machine learning techniques because of its great hierarchical structure
model [169].

Table 1. Application of various artificial intelligence technologies for irrigation management.

Strategy Outcomes References

Fuzzy logic Optimization [169]

ANN Decrease in evaporation due to schedule and savings observed in water and
electrical energy [170]

Fuzzy logic
The fuzzy controller system can be effectively applied to PA applications such

as water-saving agriculture areas, for example, the croplands, the nursery
gardens and the greenhouses.

[171]

Fuzzy logic controller Drip irrigation prevents wastage of water and evaporation [172]
Fuzzy decision support

system
The system provided improved irrigation suggestions in terms of timing and

water saving. [173]

ANN feedforward Optimization of water resources in a smart farm [174]
Machine learning algorithm Prediction and tackles drought conditions [175]

Fuzzy logic Obtained a higher level of accuracy to expertly use water for irrigation [176]

ANN
Neural network models with one hidden layer with four neurons for sugar

beet and five neurons for wine grape provided excellent predictions of
well-watered canopy temperature

[177]

ANN The proposed model was able to predict the timing and quantity of
irrigation water [178]

LoRa-based machine
learning

This system led to a 46% reduction in water usage, and the plants looked better
than they would have with conventional watering [179]
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4.1.2. Model Predictive Irrigation Systems

Development in smart agriculture through internet usage and increasing computa-
tional power facilitated large data collection from agricultural systems [180]. The model
predictive system has been employed in irrigation scheduling, irrigation canal control, soil
moisture, and stem water potential regulation [55]. Model predictive control (MPC) has
manifested applicability to gate operation and control the canal flow. The management
goal of model predictive control for canals is to maintain the level of water as close to
the set-points as possible [181]. Thus, an appropriate model regulating the dynamics of
canal-water levels is required. A model predictive control system has been employed to
model water movement in the canals, keeping a specific level of water at different locations
and the flow of water that affects these water levels [182–184]. The controlling instruments
maintain the flow of water, by which the regulator can attain the management goals [180].
Nonetheless, attaining this goal is not straightforward, as variations in inflows and outflows
interrupt the whole water system. To estimate future water flows and levels in response to
control actions and disturbances, the water system (controller, canal reaches, disturbances
and structures) needs to be modeled. Several authors have applied MPC in driving irri-
gation flows of canals. For instance, Puig et al. [185] applied MPC to create flow control
approaches from the source of water to the user and Guadiana River’s irrigation territory.
The results exhibited the usefulness of the MPC application. Zhang et al. [186] developed a
non-cooperative distributed MPC algorithm based on Nash optimality for the regulation
of water levels in canals. The simulation of system results indicated the efficacy of the
advocated algorithm. To efficiently deliver the flow of a canal without oscillations, MPC
was combined with online water storage to allow for a delay and evade wave distraction.
The results indicated the significant development of canal setups using automation [180].

4.1.3. Variable-Rate Irrigation (VRI)

VRI is a method of applying irrigation at variable rates in different irrigation manage-
ment zones over the entire field in an optimized way [187]. Normally, the application of
irrigation water is uniform in the entire field. However, owing to soil spatial variability in
soil topography, hydraulic properties and vegetation condition, the soil moisture content
remains nonuniform [188]. When such soil spatial variability becomes significant, the field
is split into different management zones consisting of those field areas with the same soil
properties and crop conditions [150]. Then, irrigation is applied at differential rates in
different management zones [189]. Such variable irrigation management may enhance the
economic value of irrigation by improving WUE, increasing productivity and reduction in
nutrient leaching [190]. This enables an accurate and timely water application based on
soil spatiotemporal properties and plant demand [191].

In other words, VRI technology ensures the application of the right amount of water
at the right time in the right field zone, resulting in significant water savings. The main
components of VRI technology include sensors, prescription maps, spatial information,
and a unit system to apply VRI prescription (lateral irrigation) in the crop field [192].
Optimization of VRI prescriptions is usually determined by using remote sensing, yield
maps, topography, soil apparent electrical conductivity and soil maps [193,194]. There are
different types of irrigation systems used for VRI applications. The variable-rate lateral
irrigation system contains a global navigation satellite system (GNSS) or global positioning
system (GPS) receiver, custom software-operated relays, and valves, thus supplying water
at variable rates using the nozzle-pulsing method with a speed controller [26]. This system
has high accuracy in controlling the irrigation rate and forward speed [195]. Likewise,
the center pivot VRI system consists of a VRI and pivot control panels, control nodes,
solenoid valves, a GNSS, a remote sensing control system, and a variable-frequency drive
(VFD) [191].

The speed and operation of the pivot are regulated by pivot control. The VRI controller
panel governs the irrigation application based on pivot location and the prescription map.
The flow of sprinkler heads is controlled by solenoid valves [26]. The pivot positioning
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is regulated by the GNSS system, and the control nodes attached to the pivot govern the
valve opening and closing. VFD regulates the pressure by altering the irrigation rate at
different points in the field [196]. The rotation speed of the pump impeller is also controlled
by the VFD in response to the input communicated by the pressure switch mounted on
the pump. It helps to maintain the pressure within the predefined threshold limits [197].
The use of VRI technology offers several advantages over conventional irrigation methods.
VRI can substantially improve overall yields by avoiding under-irrigation and/or over-
irrigation. The growers usually set up soil moisture sensors in those field areas with low
soil water-holding capacity (WHC) to prevent under-irrigation in the field [198]. This
practice may increase irrigation frequency, leading to over- irrigation with high soil WHC.
Over-irrigation may result in yield loss due to nutrient leaching and depletion of oxygen in
the root zone [39]. The prevention of under-irrigation in those field areas with higher yield
potential could help optimize water input.

Another advantage of using VRI is that irrigation can be withheld over those field
areas that are not arable [199]. VRI also supports fertilizer application at variable rates that
would benefit in matching the variability in crop nutrient requirements [200]. A two-year
study led by Sui and Yan [192] demonstrated that crop water productivity for corn and
soybean was much better under VRI than uniform rate irrigation (URI) in Mississippi. In
another investigation, application of VRI with delineated management zones based on the
difference in WHC showed better crop water productivity for maize and winter wheat,
which was higher than the overall average of the field [201]. Besides its several advantages,
VRI also has some disadvantages, including higher cost, complexity in developing soil
maps, and maintenance of the system [202]. Overall, VRI technology is a good option to
precisely utilize precious water resources, but considerable efforts are needed to make this
technology affordable and more user-friendly.

4.1.4. Unmanned Aerial Vehicles (UAVs) for Irrigation Management

UAVs, also called drones [203], are frequently linked with military operations, as they
are used as weapons for targeting aircraft and involved in intelligence services. Recently,
drones have been used in a wide range of applications, including delivery services, weather
monitoring, traffic monitoring, surveillance, and rescue [204]. Several studies emphasized
UAV utilization for forecasting and monitoring in agriculture to maintain crop health [205].
Drones are also useful for irrigation monitoring, as they use infrared or thermal imaging
cameras in the IOT network [206]. Manual spraying of pesticides induces lethal diseases to
workers globally, as described by the World Health Organization and Food and Agriculture
Organization [207]. Thus, UAVs could be a potential alternative to manual pesticide
spraying, reducing the potential ecological/environmental risks and health problems [205].

Recently, UAVs with IoT-based sensor networks have been used for smart irriga-
tion purposes, thus significantly improving crop productivity [208]. Chebrolu et al. [209]
suggested a technique of UAV images to rebuild a three-dimensional crop model that
mediates crop growth monitoring based on a plant level. Likewise, the plant height of
sorghum and maize plants was measured based on UAV images and a three-dimensional
model [210]. Roth et al. [211] reported that the RMSE (root-mean-square error) was
0.33 m for a single sorghum’s height. The soybean leaf area index was extracted using 3D
and UAV plant models. In another study, carried out by Deng et al. [212], different cameras
were fixed on UAVs for smart farming. The results indicated that the UAV-based multiband
images are useful and showed substantial ability for precise irrigation and agriculture
management. RGB (red, green and blue) cameras can be used with a drone to determine
crop biomass using visible reflectance for assessing vegetation indices [213]. According to
Rokhmana [214], using UAVs for remote sensing can support precision farming. They can
be used to obtain periodic information from the field, i.e., stock evaluation, plant health
and vegetation monitoring.

Several researchers examined the chances of applying IoT systems to govern crop
health and irrigation monitoring. Automated water irrigation was innovated and employed
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by mobile applications [215]. The designed smartphone application can process and de-
velop the soil images near the root surface of plants to ascertain sensor-less water quality. A
smart drip irrigation method was established using an ARM9 processor, involving environ-
mental conditions including CO2 amount, low moisture, and high temperature [216]. Zaier
et al. [217] suggested an irrigation system controlled wirelessly to promote groundwater
usage in large-scale fields of Oman. Oksanen et al. [218] stated that big data and IoT
could be used to establish a real-time crop growth monitoring system, facilitating precise
irrigation estimates. Based on the collection of plant data, they suggested establishing a
central unit to develop a crop growth model, Oksanen et al. [218] proposed a method to
forecast and diagnose wheat diseases, weeds, and pests using a computerized IoT-based
method. A fungicide and insecticide management system based on predictive models for
pests and crop diseases has also been developed using the IoT [219]. A new irrigation
method based on the IoT was proposed by [220] where humidity sensors were applied,
and high humidity values of 90–95% were recorded (Table 2).

Table 2. Application of different types of UAVs for irrigation management.

Type of UAVs Used Purpose References

Unmanned helicopter Mapping of crop water stress, index for irrigation scheduling [221]
Unmanned helicopter Assess water stress variability in a commercial vineyard [222]

Unmanned helicopter The fuzzy controller system can be effectively applied to water
stress detection in an almond orchard [223]

Multi-copter engines Water stress detection in grapevine [224]
Fixed wing Detection of water stress in citrus cultivars [224]
Fixed wing Water stress detection in fruit tress [225]
Fixed wing Soil moisture estimation at different soil levels [226]

Quadcopter Estimation of canopy cover maps for irrigation management of
peanut and cotton [227]

Quadcopter Identification of nonuniformly irrigated areas in olive groves
and vineyard crops [228]

Hexacopter Soil moisture content prediction under different irrigation
treatments in maize crop [229]

4.2. Forecasting Smart Irrigation Technology with DSSIS

A decision support system (DSS) is an interactive software-based system used to
identify, analyze, and improve decisions based on raw data, documents, and personal
knowledge [99]. Various decision support systems (DSSs) have been designed for managing
irrigation water to improve WUE [230,231]. A smart and efficient DSS has to consider
several factors, such as soil water status, crop type, irrigation method, weather information,
and application, to develop irrigation scheduling [19]. To facilitate precise irrigation
scheduling by minimizing errors in field soil moisture estimates, DSSs provide irrigation
schedules not only for the current day but also to forecast irrigation events for future days.

Based on the idea of forecasting irrigation, recently a prototype of an irrigation schedul-
ing DSS called decision support system for irrigation scheduling (DSSIS) has been devel-
oped for arid regions [232]. This DSSIS has the ability to predict irrigation events for the
current day as well as forecast irrigation for the future by using the weather information
of the next 4 days. The DSSIS prototype consists of irrigation pipelines, software and
hardware to control irrigation and peripheral equipment The irrigation pipelines consist
of a drip irrigation system, valves and polyvinyl chloride pipes. The software controlling
the irrigation system includes RZWQM2 (Root Zone Water Quality Model) integrated
with an irrigation scheduling software (RZ Irrsch and an online weather data acquisition
system [233]. The irrigation-controlling hardware contains automatic control equipment.
A peripheral equipment consists of a water reservoir, circulating pumps, and strainers.
In DSSIS, the RZWQM2 model works as an engine and facilitates decision-making about
irrigation scheduling. The RZWQM2 is first calibrated and validated according to site-
specific experimental data (crop, weather, and soil data). The IrrSch software generates
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daily weather data from the nearby weather stations and also forecasts upcoming 4-day
weather using a weather application program interface (API) then transfer this information
to RZWQM2 [99].

Based on the information given by IrrSch, RZWQM2 predicts crop evapotranspiration,
soil water stress factor (SWFAC), and soil moisture content for the current and next 4 days.
When the current day’s water stress level falls below the preset threshold, an irrigation
event is initiated. The amount of water to be supplied is computed by RZWQM2 using
field capacity and the predicted soil water content and rooting depth. This system (DSSIS)
has been tested for cotton irrigation scheduling under full, deficit, experience, and sensor-
based irrigation treatments in an arid region. Under deficit irrigation, DSSIS saved 50% of
irrigation water with a 4% increase in yield and up to 80% increase in water productivity
over experience-based irrigation [232]. In another study, Chen et al. [234] evaluated the
effect of irrigation scheduling by DSSIS on water productivity, seed cotton yield, and
economic profitability under an arid desert climate. Under DSSIS, water productivity, seed
cotton yield, and economic benefit were higher than soil moisture sensor-based irrigation
scheduling. Full irrigation DSS also maintained crop yield under deficit irrigation treatment.
In a three-year field study, Chen et al. [233] evaluated irrigation water use efficiency (IWUE)
in cotton using the RZWQM2 model with DSSIS in an arid oasis. After validation, the
RZWQM2 model was run with seven irrigation scenarios (from 850 to 350 mm water),
and the long-term weather data (1990–2019) were used to estimate the best IWUE. The
results manifested that the irrigation with 660 mm water produced the highest seed cotton
yield (4.09 Mg ha−1), whereas irrigation with 550 mm water exhibited the highest IWUE
(6.53 kg ha−1mm−1). These findings provided important guidelines for farmers to use
deficit irrigation strategies. This will also help the farmers to develop and improve irrigation
scheduling strategies with respect to their specific crop production settings.

This irrigation forecasting DSSIS has been tested on a small scale in an arid oasis and
provided satisfactory results regarding water productivity. It could be promoted over a
large scale. To further improve the site-specific irrigation management, the soil textural
variability could be analyzed and a local-level soil database could be developed through
extensive soil sampling and analysis. This soil database could be integrated with DSSIS for
scheduling irrigation for a specific field. This concept of irrigation is termed soil test-based
irrigation prescription (STIP). Availability of site-specific soil information may result in
potential gains in improved WUE and higher profitability in arid regions where existing
irrigation strategies are poorly connected with local agronomic and biophysical settings.
Hence, development of the STIP concept could be a way forward to improve WUE and
further strengthen efforts to conserve and efficiently utilize the limited water resources in
arid and hyperarid regions.

5. Future Prospects

This paper presented an overview of advanced and smart irrigation practices for
improving WUE in water-limited regions, but still there are some challenges that are
important to consider for designing smart, sustainable and user-friendly irrigation systems.

I. Variability in soil texture is a vital source of uncertainty because it influences the
current and potential soil water storage estimates both vertically and latterly in a
field. Therefore, site-specific soil analysis is one way to rectify this problem and obtain
the exact soil parameter information needed for accurate irrigation scheduling. Site-
specific soil test-based information integrated with smart irrigation systems can help
to improve WUE in arid and semiarid regions. This method is called soil test-based
irrigation prescription (STIP). The proper execution of STIP needs specific field soil
sampling, analysis of soil properties and development of a soil database. This soil
information with crop and weather data can be integrated with a model or decision
support system to forecast an irrigation event.

II. Most of the experiments related to smart irrigation systems were conducted on a
small scale in research fields or under controlled environmental conditions, which
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cannot represent commercial farming practices. Therefore, more on-farm studies in
large fields are needed for a clear understanding about the implementation of smart
irrigation technology.

III. Most of the commercial smart irrigation systems offered by different irrigation com-
panies help to improve water use efficiency, but the high cost of these state-of-the-art
devices is a serious challenge for farmers. Moreover, these commercial smart irrigation
systems are custom-built, meaning difficulty in control and adaptability. Therefore,
affordable and user-friendly equipment should be manufactured at a local level.

IV. Most of the farmers in dryland regions are not well educated and should be trained
through practical demonstration of smart irrigation systems by expert extension work-
ers. Furthermore, governments should provide subsidies to farmers for dissemination
of such technologies on a large scale.

6. Conclusions

This article provided an overview of the major constraints to agricultural productivity,
traditional irrigation scheduling methods, and efforts and advancements that have been
achieved to enhance WUE, conserve water, and most importantly guarantee food security
through the adoption of different smart irrigation approaches in dryland regions. Dryland
agriculture is largely affected by low WUE because farmers are relying upon traditional
irrigation scheduling methods, resulting in over- and/or under-irrigation of fields and
yield reduction. In this situation, adoption of smart irrigation approaches or technologies
including artificial intelligence and deep learning (ANN, fuzzy logic, expert system, hybrid
intelligent system, and deep learning), model predictive irrigation systems, VRI technology,
and UAVs could ensure high water use efficiency and productivity in water-scarce regions.
These technologies consider several factors, including soil and climate variation, soil
structure and hydraulic properties, plant responses to water deficits, and changes in
weather factors to apply the right amount of water at the right time and place. However,
all these methods face some challenges regarding accurate execution and performance
under field conditions, which could be rectified by incorporating indigenous knowledge
and through practical demonstrations to the farmers. Smart irrigation technologies are
revolutionizing global agriculture. Such technologies are highly desirable to achieve the
SDGs and improve the living standards of poor farmers in drylands.

Author Contributions: Conceptualization, Z.A. and D.G.; methodology, D.G. and G.M.; software,
L.Y. and S.A.; investigation, Z.A. and D.G.; resources, D.G.; data curation, S.A., G.M. and L.Y.;
writing—original draft preparation, Z.A., D.G. and G.M.; writing—review and editing, S.A., L.Y.,
G.M.; supervision, D.G.; project administration, Z.A.; funding acquisition, D.G. and Z.A. All authors
have read and agreed to the published version of the manuscript.

Funding: The funding was provided by the Natural Science Foundation of Xinjiang Uygur Au-
tonomous Region (2022D01E099).

Acknowledgments: The authors highly acknowledge the Xinjiang Institute of Ecology and Geogra-
phy, Chinese Academy of Sciences for supporting this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Maestre, F.T.; Quero, J.L. Plant Species Richness and Ecosystem Multi-functionality in Global Drylands. Science 2012, 335, 214.

[CrossRef] [PubMed]
2. Tariq, A.; Ullah, A.; Sardans, J.; Zeng, F.; Graciano, C.; Li, X.; Peñuelas, J. Alhagi sparsifolia: An ideal phreatophyte for combating

desertification and land degradation. Sci. Total Environ. 2022, 844, 157228. [PubMed]
3. Chimwamurombe, P.M.; Mataranyika, P.N. Factors influencing dryland agricultural productivity. J. Arid Environ. 2021,

189, 104489. [CrossRef]
4. Stringer, L.C.; Reed, M.S.; Fleskens, L.; Thomas, R.J.; Le, Q.B.; Lala-Pritchard, T. A new dryland development paradigm grounded

in empirical analysis of dryland systems science. Land Degrad. Dev. 2017, 28, 1952–1961. [CrossRef]
5. Plaza, C.; Zaccone, C. Soil resources and element stocks in drylands to face global issues. Sci. Rep. 2018, 8, 13788. [CrossRef]

https://doi.org/10.1126/science.1215442
https://www.ncbi.nlm.nih.gov/pubmed/22246775
https://www.ncbi.nlm.nih.gov/pubmed/35809729
https://doi.org/10.1016/j.jaridenv.2021.104489
https://doi.org/10.1002/ldr.2716
https://doi.org/10.1038/s41598-018-32229-0


Agronomy 2023, 13, 2113 18 of 25

6. Pravalie, R. Drylands extent and environmental issues. A global approach. Earth-Sci. Rev. 2016, 161, 259–278. [CrossRef]
7. Stringer, L.C.; Mirzabaev, A. Climate change impacts on water security in global drylands. One Earth 2021, 4, 851–864.
8. Byers, E.; Gidden, M. Global exposure and vulnerability to multi-sector development and climate change hotspots. Environ. Res.

Lett. 2018, 13, 055012. [CrossRef]
9. Huang, Z.; Yuan, X.; Liu, X. The key drivers for the changes in global water scarcity: Water withdrawal versus water availability.

J. Hydrol. 2021, 601, 126658. [CrossRef]
10. Kummu, M.; Guillaume, J.H.A. The world’s road to water scarcity: Shortage and stress in the 20th century and pathways towards

sustainability. Sci. Rep. 2016, 6, 38495. [CrossRef] [PubMed]
11. Rosa, L.; Chiarelli, D.D.; Rulli, M.C.; Dell’Angelo, J.; D’Odorico, P. Global agricultural economic water scarcity. Sci. Adv. 2020,

6, eaaz6031. [CrossRef]
12. Liu, J.; Yang, H. Water scarcity assessments in the past, present, and future. Earth’s Future 2017, 5, 545–559. [CrossRef] [PubMed]
13. Stroosnijder, L.; Moore, D.; Alharbi, A.; Argaman, E.; Biazin, B.; van den Elsen, E. Improving water use efficiency in drylands.

Curr. Opin. Environ. Sustain. 2012, 4, 497–506. [CrossRef]
14. Dalezios, N.R.; Angelakis, A.N.; Eslamian, S. Water scarcity management: Part 1: Methodological framework. Int. J. Glob. Environ.

Issues 2018, 17, 1–40. [CrossRef]
15. Pastor, A.V.; Palazzo, A.; Havlik, P.; Biemans, H.; Wada, Y.; Obersteiner, M.; Ludwig, F. The global nexus of food–trade–water

sustaining environmental flows by 2050. Nat. Sustain. 2019, 2, 499–507. [CrossRef]
16. Rosa, L.; Chiarelli, D.D.; Sangiorgio, M.; Beltran-Peña, A.A.; Rulli, M.C.; D’Odorico, P.; Fung, I. Potential for sustainable irrigation

expansion in a 3 C warmer climate. Proc. Nat. Acad. Sci. USA 2020, 117, 29526–29534. [CrossRef] [PubMed]
17. Liu, X.; Liu, W. Global agricultural water scarcity assessment incorporating blue and green water availability under future climate

change. Earth’s Future 2022, 10, e2021EF002567. [CrossRef]
18. Bwambale, E.; Abagale, F.K.; Anornu, G.K. Smart irrigation monitoring and control strategies for improving water use efficiency

in precision agriculture: A review. Agric. Water Manag. 2022, 260, 107324.
19. Dabach, S.; Lazarovitch, N.; Simunek, J.; Shani, U. Numerical investigation of irrigation scheduling based on soil water status.

Irrig. Sci. 2013, 31, 27–36. [CrossRef]
20. Modarres, R.; da Silva, V.R. Rainfall Trends in Arid and Semi-Arid Regions of Iran. J. Arid Environ. 2007, 70, 344–355. [CrossRef]
21. Zhang, J.; Guan, K.; Peng, B.; Jiang, C.; Zhou, W.; Yang, Y.; Cai, Y. Challenges and opportunities in precision irrigation decision-

support systems for center pivots. Environ. Res. Lett. 2021, 16, 053003.
22. Huang, Y.; Li, Y.P.; Chen, X.; Ma, Y.G. Optimization of the irrigation water resources for agricultural sustainability in Tarim River

Basin, China. Agric. Water Manag. 2012, 107, 74–85. [CrossRef]
23. Yu, L.; Zhao, X.; Gao, X.; Jia, R.; Yang, M.; Yang, X.; Siddique, K.H. Effect of natural factors and management practices on

agricultural water use efficiency under drought: A meta-analysis of global drylands. J. Hydrol. 2021, 594, 125977. [CrossRef]
24. Singh, U.; Praharaj, C.S. Precision irrigation management: Concepts and applications for higher use efficiency in field crops. In

Scaling Water Productivity and Resource Conservation in Upland Field Crops Ensuring More Crop Per Drop; ICAR-Indian Institute of
Pulses Research: Kampur, India, 2019.

25. Bitella, G.; Rossi, R.; Bochicchio, R.; Perniola, M.; Amato, M. A novel low-cost open-hardware platform for monitoring soil water
content and multiple soil-air-vegetation parameters. Sensors 2014, 14, 19639–19659. [CrossRef] [PubMed]

26. Neupane, J.; Guo, W. Agronomic basis and strategies for precision water management: A review. Agronomy 2019, 9, 87. [CrossRef]
27. Cambra, C.; Sendra, S. Smart system for bicarbonate control in irrigation for hydroponic precision farming. Sensors 2018, 18, 1333.

[CrossRef] [PubMed]
28. Abioye, E.A.; Abidin, M.S.Z.; Mahmud, M.S.A.; Buyamin, S.; Ishak, M.I.; Ramli, M.K.I. A review on monitoring and advanced

control strategies for precision irrigation. Comput. Electron. Agric. 2020, 173, 105441.
29. Food and Agriculture Organization of the United Nations (FAO). The State of the World’s Land and Water Resources for Food and

Agriculture-Systems at Breaking Points; Main Report; FAO: Rome, Italy, 2022. [CrossRef]
30. Zamfir, R.; Smiraglia, D.; Quaranta, G.; Salvia, R.; Salvati, L.; Giménez-Morera, A. Land degradation and mitigation policies in

the Mediterranean region: A brief commentary. Sustainability 2020, 12, 8313. [CrossRef]
31. Burrell, A.L.; Evans, J.P.; De Kauwe, M.G. Anthropogenic climate change has driven over 5 million km2 of drylands towards

desertification. Nat. Comm. 2020, 1, 3853. [CrossRef] [PubMed]
32. Dameneh Eskandari, H. Desertification of Iran in the early twenty-first century: Assessment using climate and vegetation indices.

Sci. Rep. 2021, 11, 20548.
33. Gebremeskel, G.; Tang, Q. Droughts in East Africa: Causes, impacts and resilience. Earth-Sci. Rev. 2019, 193, 146–161.
34. Imbrenda, V.; Quaranta, G.; Salvia, R.; Egidi, G.; Salvati, L.; Prokopova, M.; Lanfredi, M. Land degradation and metropolitan

expansion in a peri-urban environment. Geomat. Nat. Hazards Risk 2021, 12, 1797–1818. [CrossRef]
35. Jin, J.; Wang, L.; Muller, K. A 10-year monitoring of soil properties dynamics and soil fertility evaluation in Chinese hickory

plantation regions of southeastern China. Sci. Rep. 2021, 11, 23531. [PubMed]
36. Stavi, I.; Lal, R. Achieving zero net land degradation: Challenges and opportunities. J. Arid Environ. 2015, 112, 44–51. [CrossRef]
37. Ibrahim, Y.Z.; Balzter, H.; Kaduk, J.; Tucker, C.J. Land degradation assessment using residual trend analysis of GIMMS NDVI3g,

soil moisture and rainfall in Sub- Saharan West Africa from 1982 to 2012. Remote Sens. 2015, 7, 5471–5494. [CrossRef]

https://doi.org/10.1016/j.earscirev.2016.08.003
https://doi.org/10.1088/1748-9326/aabf45
https://doi.org/10.1016/j.jhydrol.2021.126658
https://doi.org/10.1038/srep38495
https://www.ncbi.nlm.nih.gov/pubmed/27934888
https://doi.org/10.1126/sciadv.aaz6031
https://doi.org/10.1002/2016EF000518
https://www.ncbi.nlm.nih.gov/pubmed/30377623
https://doi.org/10.1016/j.cosust.2012.08.011
https://doi.org/10.1504/IJGENVI.2018.090629
https://doi.org/10.1038/s41893-019-0287-1
https://doi.org/10.1073/pnas.2017796117
https://www.ncbi.nlm.nih.gov/pubmed/33168728
https://doi.org/10.1029/2021EF002567
https://doi.org/10.1007/s00271-011-0289-x
https://doi.org/10.1016/j.jaridenv.2006.12.024
https://doi.org/10.1016/j.agwat.2012.01.012
https://doi.org/10.1016/j.jhydrol.2021.125977
https://doi.org/10.3390/s141019639
https://www.ncbi.nlm.nih.gov/pubmed/25337742
https://doi.org/10.3390/agronomy9020087
https://doi.org/10.3390/s18051333
https://www.ncbi.nlm.nih.gov/pubmed/29693611
https://doi.org/10.4060/cb9910en
https://doi.org/10.3390/su12208313
https://doi.org/10.1038/s41467-020-17710-7
https://www.ncbi.nlm.nih.gov/pubmed/32737311
https://doi.org/10.1080/19475705.2021.1951363
https://www.ncbi.nlm.nih.gov/pubmed/34876648
https://doi.org/10.1016/j.jaridenv.2014.01.016
https://doi.org/10.3390/rs70505471


Agronomy 2023, 13, 2113 19 of 25

38. Minea, G.; Ciobotaru, N.; Ioana-Toroimac, G. Designing grazing susceptibility to land degradation index (GSLDI) in hilly areas.
Sci. Rep. 2022, 12, 9393. [PubMed]

39. Li, H.; Cohen, A.; Li, Z.; Zhang, M. The impacts of socioeconomic development on rural drinking water safety in China: A
provincial-level comparative analysis. Sustainability 2018, 11, 85. [CrossRef]

40. Prăvălie, R.; Bandoc, G.; Patriche, C.; Sternberg, T. Recent changes in global drylands: Evidences from two major aridity databases.
Catena 2019, 178, 209–231. [CrossRef]

41. Allen, C.; Metternicht, G.; Verburg, P.; Akhtar-Schuster, M.; da Cunha, M.I.; Santivañez, M.S. Delivering an enabling environment
and multiple benefits for land degradation neutrality: Stakeholder perceptions and progress. Environ. Sci. Pol. 2020, 114, 109–118.
[CrossRef]

42. Grainger, A. Is land degradation neutrality feasible in dry areas? J. Arid Environ. 2015, 112, 14–24. [CrossRef]
43. Pandit, R.; Parrotta, J.A. A framework to evaluate land degradation and restoration responses for improved planning and

decision-making. Ecosyst. People 2019, 16, 1–18. [CrossRef]
44. Boretti, A.; Rosa, L. Reassessing the projections of the World Water Development Report. NPJ Clean Water 2019, 2, 15. [CrossRef]
45. Wijitkosum, S. Factor influencing land degradation sensitivity and desertification in a drought prone watershed in Thailand. Int.

Soil Water Conserv. Res. 2020, 9, 217–228.
46. Vanham, D.; Alfieri, L.; Feyen, L. National water shortage for low to high environmental flow protection. Sci. Rep. 2022, 12, 3037.
47. Vallino, E.; Ridolfi, L.; Laio, F. Measuring economic water scarcity in agriculture: A cross-country empirical investigation. Environ.

Sci. Res. Pollut. 2020, 114, 73–85. [CrossRef]
48. Vilar-Compte, M.; Burrola-Mendez, S. Urban poverty and nutrition challenges associated with accessibility to a healthy diet: A

global systematic literature review. Int. J. Eq. Health 2021, 20, 40. [CrossRef] [PubMed]
49. Borsato, E.; Rosa, L. Weak and Strong Sustainability of Irrigation: A Framework for Irrigation Practices Under Limited Water

Availability. Front. Sustain. Food Syst. 2020, 4, 17. [CrossRef]
50. Falkenmark, M. Growing water scarcity in agriculture: Future challenge to global water security. Philos. Trans. R. Soc. A Math.

Phys. Eng. Sci. 2013, 37, 20120410. [CrossRef]
51. Assouline, S.; Russo, D.; Silber, A.; Or, D. Balancing water scarcity and quality for sustainable irrigated agriculture. Water Resour.

Res. 2015, 51, 3419–3436. [CrossRef]
52. Seleiman, M.F.; Al-Suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Battaglia, M.L. Drought stress impacts on plants and

different approaches to alleviate its adverse effects. Plants 2021, 10, 259. [CrossRef]
53. Ali, S.; Chen, Y.; Azmat, M.; Kayumba, P.M.; Ahmed, Z.; Mind’je, R.; Ghaffar, A.; Qin, J.; Tariq, A. Long-Term Performance

Evaluation of the Latest Multi-Source Weighted-Ensemble Precipitation (MSWEP) over the Highlands of Indo-Pak (1981–2009).
Remote Sens. 2022, 14, 4773. [CrossRef]

54. Okello, C.; Tomasello, B.; Greggio, N.; Wambiji, N.; Antonellini, M. Impact of population growth and climate change on the
freshwater resources of Lamu Island, Kenya. Water 2015, 7, 1264–1290. [CrossRef]

55. Cianconi, P.; Betro, S.; Janiri, L. The impact of climate change on mental health: A systematic descriptive review. Front. Psychiat.
2020, 11, 74.

56. Garcia, E.N.; Ulibarri, N. Plan writing as a policy tool: Instrumental, conceptual, and tactical uses of water management plans in
California. J. Environ. Stud. Sci. 2022, 12, 475–489. [CrossRef]

57. Filho, L.W.; Balasubramanian, M. Handling the health impacts of extreme climate events. Environ. Sci. Euro. 2022, 34, 45.
[CrossRef]

58. Hegerl, G.C.; Brönnimann, S.; Cowan, T.; Friedman, A.R.; Hawkins, E.; Iles, C.; Undorf, S. Causes of climate change over the
historical record. Environ. Res. Lett. 2019, 14, 123006. [CrossRef]

59. Chersich, M.F.; Wright, C.Y. Climate change adaptation in South Africa: A case study on the role of the health sector. Glob. Health
2019, 15, 22.

60. Van der Wiel, K.; Bintanja, R. Contribution of climatic changes in mean and variability to monthly temperature and precipitation
extremes. Commun. Earth Environ. 2021, 2, 1. [CrossRef]

61. Tzanakakis, V.A.; Paranychianakis, N.V.; Angelakis, A.N. Water supply and water scarcity. Water 2020, 12, 2347. [CrossRef]
62. Dasgupta, S.; Robinson, E.J.Z. Attributing changes in food insecurity to a changing climate. Sci. Rep. 2022, 12, 4709. [CrossRef]

[PubMed]
63. Boczon, A.; Hilszczanska, D.; Wrzosek, M. Drought in the forest breaks plant–fungi interactions. Euro. J. For. Res. 2021, 140,

1301–1321.
64. Garcia-Cervigon, A.I.; Quintana-Ascencio, P.F.; Escudero, A. Demographic effects of interacting species: Exploring stable

coexistence under increased climatic variability in a semiarid shrub community. Sci. Rep. 2021, 11, 3099. [CrossRef] [PubMed]
65. Haussmann, B.I.; Fred Rattunde, H.; Weltzien-Rattunde, E.; Traoré, P.S.; Vom Brocke, K.; Parzies, H.K. Breeding strategies for

adaptation of pearl millet and sorghum to climate variability and change in West Africa. J. Agron. Crop Sci. 2012, 198, 327–339.
[CrossRef]

66. Gomez-Zavaglia, A.; Mejuto, J.C.; Simal-Gandara, J. Mitigation of emerging implications of climate change on food production
systems. Food Res. Int. 2020, 134, 109256.

67. Zhang, H.; Yu, J.; Du, C.; Xia, J.; Wang, X. Assessing risks from groundwater exploitation and utilization: Case study of the
Shanghai megacity, China. Water 2019, 11, 1775. [CrossRef]

https://www.ncbi.nlm.nih.gov/pubmed/35729181
https://doi.org/10.3390/su11010085
https://doi.org/10.1016/j.catena.2019.03.016
https://doi.org/10.1016/j.envsci.2020.07.029
https://doi.org/10.1016/j.jaridenv.2014.05.014
https://doi.org/10.1080/26395916.2019.1697756
https://doi.org/10.1038/s41545-019-0039-9
https://doi.org/10.1016/j.envsci.2020.07.017
https://doi.org/10.1186/s12939-020-01330-0
https://www.ncbi.nlm.nih.gov/pubmed/33472636
https://doi.org/10.3389/fsufs.2020.00017
https://doi.org/10.1098/rsta.2012.0410
https://doi.org/10.1002/2015WR017071
https://doi.org/10.3390/plants10020259
https://doi.org/10.3390/rs14194773
https://doi.org/10.3390/w7031264
https://doi.org/10.1007/s13412-022-00754-0
https://doi.org/10.1186/s12302-022-00621-3
https://doi.org/10.1088/1748-9326/ab4557
https://doi.org/10.1038/s43247-020-00077-4
https://doi.org/10.3390/w12092347
https://doi.org/10.1038/s41598-022-08696-x
https://www.ncbi.nlm.nih.gov/pubmed/35304565
https://doi.org/10.1038/s41598-021-82571-z
https://www.ncbi.nlm.nih.gov/pubmed/33542350
https://doi.org/10.1111/j.1439-037X.2012.00526.x
https://doi.org/10.3390/w11091775


Agronomy 2023, 13, 2113 20 of 25

68. Esteller, M.V.; Diaz-Delgado, C. Environmental effects of aquifer overexploitation: A case study in the highlands of Mexico.
Environ. Manag. 2002, 29, 266–278. [CrossRef]

69. Cohen, D.; Teodorescu, K. On the Effect of Practice on Exploration and Exploitation of Options and Strategies. Front. Psychol.
2021, 12, 725690. [CrossRef] [PubMed]

70. Golian, M.; Saffarzadeh, A.; Katibeh, H.; Mahdad, M.; Saadat, H.; Khazaei, M.; Dashti Barmaki, M. Consequences of groundwater
overexploitation on land subsidence in Fars Province of Iran and its mitigation management programme. Water Environ. J. 2021,
35, 975–985. [CrossRef]

71. Alfarrah, N.; Walraevens, K. Groundwater overexploitation and seawater intrusion in coastal areas of arid and semi-arid regions.
Water 2018, 10, 143. [CrossRef]

72. Beyer, R.M.; Hua, F.; Martin, P.A. Relocating croplands could drastically reduce the environmental impacts of global food
production. Commun. Earth Environ. 2022, 3, 74–85. [CrossRef]

73. Bjornlund, V.; Bjornlund, H.; van Rooyen, A. Why food insecurity persists in sub-Saharan Africa: A review of existing evidence.
Food Secur. 2022, 14, 845–864. [PubMed]

74. Xia, L.; Robock, A. Global food insecurity and famine from reduced crop, marine fishery and livestock production due to climate
disruption from nuclear war soot injection. Nat. Food 2022, 3, 586–596. [CrossRef] [PubMed]

75. Van Ginkel, M.; Biradar, C. Drought Early Warning in Agri-Food Systems. Climate 2021, 9, 134. [CrossRef]
76. Ayugi, B.; Eresanya, E.O.; Onyango, A.O.; Ogou, F.K.; Okoro, E.C.; Okoye, C.O.; Ongoma, V. Review of meteorological drought in

Africa: Historical trends, impacts, mitigation measures, and prospects. Pure Appl. Geo. 2022, 179, 1365–1386.
77. Hunegnaw, Y.; Alemayehu, G. Plant Density and Time of White Lupine (Lupinus albus L.) Relay Cropping with Tef Eragrostis tef

Zucc. Trotter. in Additive Design in the Highlands of Northwest Ethiopia. Int. J. Agron. 2022, 2022, 8730191. [CrossRef]
78. Couttenier, M.; Soubeyran, R. Drought and civil war in sub-saharan Africa. Econ. J. 2014, 124, 201–244. [CrossRef]
79. Li, X.; Zhao, W.; Li, J.; Li, Y. Crop yield and water use efficiency as affected by different soil-based management methods for

variable-rate irrigation in a semi-humid climate. Trans. ASABE 2018, 61, 1915–1922. [CrossRef]
80. Williams, A.P.; Cook, B.I.; Smerdon, J.E. Rapid intensification of the emerging southwestern North American mega drought in

2020–2021. Nat. Clim. Chang. 2022, 12, 232–234. [CrossRef]
81. Nickayin, S.S.; Coluzzi, R.; Marucci, A. Desertification risk fuels spatial polarization in ‘affected’ and ‘unaffected’ landscapes in

Italy. Sci. Rep. 2022, 12, 747. [CrossRef] [PubMed]
82. Hermans, K.; McLeman, R. Climate change, drought, land degradation and migration: Exploring the linkages. Curr. Opin.

Environ. Sustain. 2021, 50, 236–244. [CrossRef]
83. Henchiri, M.; Igbawua, T.; Javed, T.; Bai, Y.; Zhang, S.; Essifi, B.; Zhang, J. Meteorological drought analysis and return periods

over north and west africa and linkage with el niño–southern oscillation (Enso). Remote Sens. 2021, 13, 4730. [CrossRef]
84. Nijbroek, R.; Piikki, K.; Söderström, M.; Kempen, B.; Turner, K.G.; Hengari, S.; Mutua, J. Soil organic carbon baselines for land

degradation neutrality: Map accuracy and cost tradeoffs with respect to complexity in Otjozondjupa, Namibia. Sustainability
2018, 10, 1610. [CrossRef]

85. Sloggy, M.R.; Suter, J.F.; Rad, M.R.; Manning, D.T.; Goemans, C. Changing climate, changing minds? The effects of natural
disasters on public perceptions of climate change. Clim. Chang. 2021, 168, 25. [CrossRef] [PubMed]

86. Baudoin, M.A.; Vogel, C. Living with drought in South Africa: Lessons learnt from the recent El Niño drought period. Int. J.
Disast. Risk Reduct. 2017, 23, 128–137. [CrossRef]

87. Pacheco, F.A.L.; Sanches Fernandes, L.F. Land degradation: Multiple environmental consequences and routes to neutrality. Curr.
Opin. Environ. Sci. Health 2018, 5, 79–86. [CrossRef]

88. Barrett, A.B.; Duivenvoorden, S.; Salakpi, E.E.; Muthoka, J.M.; Mwangi, J.; Oliver, S.; Rowhani, P. Forecasting vegetation condition
for drought early warning systems in pastoral communities in Kenya. Rem. Sens. Environ. 2020, 248, 111886.

89. United Nations Convention to Combat Desertification. Drought in Numbers-Restoration for Readiness and Resilience. 2022.
Available online: https//www.catalogue.unccd.int/1872_Drought_in_Numbers_(English).pdf (accessed on 25 June 2023).

90. Giller, K.E.; Delaune, T.; Silva, J.V. Small farms and development in sub-Saharan Africa: Farming for food, for income or for lack
of better options? Food Secur. 2021, 13, 1431–1454. [CrossRef]

91. Choden, T.; Ghaley, B.B. A Portfolio of Effective Water and Soil Conservation Practices for Arable Production Systems in Europe
and North Africa. Sustainability 2021, 13, 2726. [CrossRef]

92. Treich, N. Cultured Meat: Promises and Challenges. Environ. Resour. Eco. 2021, 79, 33–61. [CrossRef]
93. Ikhimiukor, O.O.; Odih, E.E.; Donado-Godoy, P. A bottom-up view of antimicrobial resistance transmission in developing

countries. Nat. Microbiol. 2022, 7, 757–765. [CrossRef] [PubMed]
94. Altieri, M.A.; Nicholls, C.I.; Henao, A.; Lana, M.A. Agroecology and the design of climate change-resilient farming systems.

Agron. Sustain. Develop. 2015, 35, 869–890. [CrossRef]
95. Sarker, N.I.; Islam Shahidul Ali, A.; Islam Saiful Salam, A.; Mahmud, H.S.M. Promoting digital agriculture through big data for

sustainable farm management. Int. J. Innovat. Appl. Stud. 2019, 25, 1235–1240.
96. Kassie, M.; Shiferaw, B.; Muricho, G. Agricultural technology, crop income, and poverty alleviation in Uganda. World Dev. 2011,

39, 1784–1795. [CrossRef]
97. McCready, M.; Dukes, M. Landscape irrigation scheduling efficiency and adequacy by various control technologies. Agric. Water

Manag. 2011, 98, 697–704. [CrossRef]

https://doi.org/10.1007/s00267-001-0024-0
https://doi.org/10.3389/fpsyg.2021.725690
https://www.ncbi.nlm.nih.gov/pubmed/34867606
https://doi.org/10.1111/wej.12688
https://doi.org/10.3390/w10020143
https://doi.org/10.1038/s43247-022-00360-6
https://www.ncbi.nlm.nih.gov/pubmed/35136455
https://doi.org/10.1038/s43016-022-00573-0
https://www.ncbi.nlm.nih.gov/pubmed/37118594
https://doi.org/10.3390/cli9090134
https://doi.org/10.1155/2022/8730191
https://doi.org/10.1111/ecoj.12042
https://doi.org/10.13031/trans.13036
https://doi.org/10.1038/s41558-022-01290-z
https://doi.org/10.1038/s41598-021-04638-1
https://www.ncbi.nlm.nih.gov/pubmed/35031625
https://doi.org/10.1016/j.cosust.2021.04.013
https://doi.org/10.3390/rs13234730
https://doi.org/10.3390/su10051610
https://doi.org/10.1007/s10584-021-03242-6
https://www.ncbi.nlm.nih.gov/pubmed/34720263
https://doi.org/10.1016/j.ijdrr.2017.05.005
https://doi.org/10.1016/j.coesh.2018.07.002
https//www.catalogue.unccd.int/1872_Drought_in_Numbers_(English).pdf
https://doi.org/10.1007/s12571-021-01209-0
https://doi.org/10.3390/su13052726
https://doi.org/10.1007/s10640-021-00551-3
https://doi.org/10.1038/s41564-022-01124-w
https://www.ncbi.nlm.nih.gov/pubmed/35637328
https://doi.org/10.1007/s13593-015-0285-2
https://doi.org/10.1016/j.worlddev.2011.04.023
https://doi.org/10.1016/j.agwat.2010.11.007


Agronomy 2023, 13, 2113 21 of 25

98. Vellidis, G.; Liakos, V. Irrigation scheduling for cotton using soil moisture sensors, smartphone apps, and traditional methods. In
Proceedings of the Beltwide Cotton Conference, New Orleans, LA, USA, 5–7 January 2016; National Cotton Council Memphis:
Cordova, TN, USA, 2016.

99. Gu, Z.; Qi, Z.; Burghate, R.; Yuan, S.; Jiao, X.; Xu, J. Irrigation scheduling approaches and applications: A review. J. Irrig. Drain.
Eng. 2020, 146, 04020007. [CrossRef]

100. White, S.C.; Raine, S.R. A Grower Guide to Plant Based Sensing for Irrigation Scheduling; National Centre for Engineering in
Agriculture: Toowoomba, QC, Australia, 2008; NCEA Publication 1001574/6.

101. Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for computing crop water requirements-FAO
Irrigation and drainage paper 56. FAO Rome 1998, 300, D05109.

102. Davis, S.; Dukes, M. Irrigation scheduling performance by evapotranspiration-based controllers. Agric. Water Manag. 2010, 98,
19–28. [CrossRef]

103. Adeyemi, O.; Grove, I.; Peets, S.; Norton, T. Advanced monitoring and management systems for improving sustainability in
precision irrigation. Sustainability 2017, 9, 353. [CrossRef]

104. Patil, P.; Desai, L.B. Intelligent irrigation control system by employing wireless sensor networks. Int. J. Comput. Appl. 2013, 79,
33–40. [CrossRef]

105. Hamouda, Y.E.M. Smart irrigation decision support based on fuzzy logic using wireless sensor network. In Proceedings of the
International Conference on Promising Electronic Technologies, Deir El-Balah, Palestine, 16–17 October 2017; pp. 109–113.

106. Viani, F.; Bertolli, M. Low-cost wireless monitoring and decision support for water saving in agriculture. IEEE Sens. J. 2017, 17,
4299–4309. [CrossRef]

107. Keswani, B.; Mohapatra, A.G.; Mohanty, A.; Khanna, A.; Rodrigues, J.J.; Gupta, D.; De Albuquerque, V.H.C. Adapting weather
conditions based IoT enabled smart irrigation technique in precision agriculture mechanisms. Neural Comput. Appl. 2019, 31,
277–292. [CrossRef]

108. Difallah, W.; Benahmed, K.; Bounnama, F.; Draoui, B.; Saaidi, A. Intelligent irrigation management system. Int. J. Adv. Comput.
Sci. Appl. 2018, 9, 429–433. [CrossRef]

109. Wasson, T.; Choudhury, T. Integration of Rfid and sensor in agriculture using IoT. In Proceedings of the International Conference
on Smart Technology for Smart Nation, Bengaluru, India, 17–19 August 2017; pp. 217–222.

110. Khoa, T.A.; Man, M.M.; Nguyen, T.Y.; Nguyen, V.; Nam, N.H. Smart agriculture using IoT multi-sensors: A novel watering
management system. J. Sens. Actuator Netw. 2019, 8, 45. [CrossRef]

111. Villarrubia, G.; De Paz, J.F. Combining multi-agent systems and wireless sensor networks for monitoring crop irrigation. Sensors
2017, 17, 8. [CrossRef]

112. Shahzadi, R.; Ferzund, J.; Tausif, M.; Suryani, M.A. Internet of things based expert system for smart agriculture. Int. J. Adv.
Comput. Sci. Appl. 2016, 7. [CrossRef]

113. Rahman, M.K.I.A.; Abidin, M.S.Z.; Azimi, M.S.; Mahmud, S.B.; Ishak, M.H.; Emmanuel, A.A. Advancement of a smart fibrous
capillary irrigation management system with an internet of things intgration. Bull. Electr. Eng. Inform. 2019, 8, 1402–1410.

114. Coelho, A.D.; Dias, B.G.; de Oliveira Assis, W.; de Almeida Martins, F.; Pires, R.C. Monitoring of soil moisture and atmospheric
sensors with internet of things (IoT) applied in precision agriculture. In Proceedings of the 2020 XIV Technologies Applied to
Electronics Teaching Conference (TAEE), Porto, Portugal, 8–10 July 2020; pp. 1–8.

115. Fernandez, J.E. Plant-Based Methods for Irrigation Scheduling of Woody Crops. Horticulturae 2017, 3, 35. [CrossRef]
116. Jones, H.G. Monitoring plant and soil water status: Established and novel methods revisited and their relevance to studies of

drought tolerance. J. Exp. Bot. 2017, 58, 119–130. [CrossRef] [PubMed]
117. Padilla-Diaz, C.M.; Rodriguez-Dominguez, C.M. Scheduling regulated deficit irrigation in a hedgerow olive orchard from leaf

turgor pressure related measurements. Agric. Water Manag. 2016, 164, 28–37. [CrossRef]
118. Fernandez, J.E. Plant-based sensing to monitor water stress: Applicability to commercial orchards. Agric. Water Manag. 2014, 142,

99–109. [CrossRef]
119. Zimmermann, U.; Bitter, R.; Marchiori, P.E.R.; Rüger, S.; Ehrenberger, W.; Sukhorukov, V.L.; Ribeiro, R.V. A non-invasive

plant-based probe for continuous monitoring of water stress in real time: A new tool for irrigation scheduling and deeper insight
into drought and salinity stress physiology. Theo. Exp. Plant Physiol. 2013, 25, 2–11. [CrossRef]

120. Zimmermann, U.; Ruger, S. Effects of environmental parameters and irrigation on the turgor pressure of banana plants measured
using the non-invasive, online monitoring leaf patch clamp pressure probe. Plant Biol. 2010, 12, 424–436. [CrossRef] [PubMed]

121. Seelig, H.D.; Stoner, R.J.; Linden, J.C. Irrigation control of cowpea plants using the measurement of leaf thickness under
greenhouse conditions. Irrig. Sci. 2012, 30, 247–257. [CrossRef]

122. Afzal, A.; Duiker, S.W.; Watson, J.E. Leaf thickness to predict plant water status. Biosyst. Eng. 2017, 156, 148–156. [CrossRef]
123. Steudle, E. The cohesion-tension mechanism and the acquisition of water by plant roots. Ann. Rev. Plant Physiol. Plant Mol. Biol.

2001, 52, 847–875. [CrossRef] [PubMed]
124. Jones, H.G. Irrigation scheduling: Advantages and pitfalls of plant based methods. J. Exp. Bot. 2004, 55, 2427–2436. [CrossRef]
125. Guo, D.; Chen, Z.; Huang, D.; Zhang, J. Evapotranspiration model-based scheduling strategy for baby pakchoi irrigation in

greenhouse. Hort. Sci. 2021, 56, 204–209. [CrossRef]
126. Goldhamer, D.A.; Fereres, E. Irrigation scheduling protocols using continuously recorded trunk diameter measurements. Irrig.

Sci. 2011, 20, 115–125. [CrossRef]

https://doi.org/10.1061/(ASCE)IR.1943-4774.0001464
https://doi.org/10.1016/j.agwat.2010.07.006
https://doi.org/10.3390/su9030353
https://doi.org/10.5120/13788-1882
https://doi.org/10.1109/JSEN.2017.2705043
https://doi.org/10.1007/s00521-018-3737-1
https://doi.org/10.14569/IJACSA.2018.090954
https://doi.org/10.3390/jsan8030045
https://doi.org/10.3390/s17081775
https://doi.org/10.14569/IJACSA.2016.070947
https://doi.org/10.3390/horticulturae3020035
https://doi.org/10.1093/jxb/erl118
https://www.ncbi.nlm.nih.gov/pubmed/16980592
https://doi.org/10.1016/j.agwat.2015.08.002
https://doi.org/10.1016/j.agwat.2014.04.017
https://doi.org/10.1590/S2197-00252013000100002
https://doi.org/10.1111/j.1438-8677.2009.00235.x
https://www.ncbi.nlm.nih.gov/pubmed/20522178
https://doi.org/10.1007/s00271-011-0268-2
https://doi.org/10.1016/j.biosystemseng.2017.01.011
https://doi.org/10.1146/annurev.arplant.52.1.847
https://www.ncbi.nlm.nih.gov/pubmed/11337418
https://doi.org/10.1093/jxb/erh213
https://doi.org/10.21273/HORTSCI15513-20
https://doi.org/10.1007/s002710000034


Agronomy 2023, 13, 2113 22 of 25

127. Uddin, M.A.; Mansour, A. Agriculture internet of things: AG-IoT. In Proceedings of the 2017 27th International Telecommunication
Networks and Applications Conference, ITNAC, Melbourne, VIC, Australia, 22–24 November 2017; pp. 1–6.

128. Jia, X.; Huang, Y.; Wang, Y.; Sun, D. Research on water and fertilizer irrigation system of tea plantation. Int. J. Distrib. Sens. Net.
2019, 15, 1550147719840182. [CrossRef]

129. Lozoya, C.; Mendoza, C. Sensor-based model driven control strategy for precision irrigation. J. Sens. 2016, 2016, 9784071.
[CrossRef]

130. Bauer, J.; Aschenbruck, N. Design and implementation of an agricultural monitoring system for smart farming. In Proceedings of
the 2018 IoT Vertical and Topical Summit on Agriculture—Tuscany, IOT Tuscany, Tuscany, Italy, 8–9 May 2018; pp. 1–6.

131. Fernandez, J.; Cuevas, M. Irrigation scheduling from stem diameter variations: A review. Agric. For. Meteorol. 2010, 150, 135–151.
[CrossRef]

132. Idso, S.B.; Jackson, R.D.; Pinter, P.J., Jr.; Reginato, R.J.; Hatfield, J.L. Normalizing the stress-degree-day parameter for environmental
variability. Agric. Meteorol. 1981, 24, 45–55. [CrossRef]

133. Wanjura, D.; Upchurch, D.; Mahan, J. Behavior of temperature-based water stress indicators in biotic-controlled irrigation. Irrig.
Sci. 2006, 24, 223–232. [CrossRef]

134. Clawson, K.L.; Blad, B.L. Infrared thermometry for scheduling irrigation of corn. Agron. J. 1982, 74, 311–316. [CrossRef]
135. Delgoda, D.; Saleem, S.K.; Malano, H.; Halgamuge, M.N. Root zone soil moisture prediction models based on system identification:

Formulation of the theory and validation using field and AQUACROP data. Agric. Water Manag. 2016, 163, 344–353. [CrossRef]
136. Hedley, C.; Yule, I. A Method for Spatial Prediction of Daily Soil Water Status for Precise Irrigation Scheduling. Agric. Water

Manag. 2009, 96, 1737–1745. [CrossRef]
137. Soulis, K.X.; Elmaloglou, S.; Dercas, N. Investigating the effects of soil moisture sensors positioning and accuracy on soil moisture

based drip irrigation scheduling systems. Agric. Water Manag. 2015, 148, 258–268. [CrossRef]
138. Zinkernagel, J.; Maestre-Valero, J.F. New technologies and practical approaches to improve irrigation management of open field

vegetable crops. Agric. Water Manag. 2020, 242, 106404. [CrossRef]
139. Li, W.; Awais, M. Review of sensor network-based irrigation systems using IoT and remote sensing. Adv. Meteorol. 2020,

2020, 8396164. [CrossRef]
140. Peddinti, S.R.; Hopmans, J.W.; Abou Najm, M.; Kisekka, I. Assessing effects of salinity on the performance of a low-cost wireless

soil water sensor. Sensors 2020, 20, 7041. [CrossRef] [PubMed]
141. Shigeta, R.; Kawahara, Y. Capacitive-touch-based soil monitoring device with exchangeable sensor probe. In Proceedings of the

2018 IEEE Sensors, New Delhi, India, 28–31 October 2018; pp. 1–4.
142. Jha, R.K.; Kumar, S. Field monitoring using IoT in agriculture. In Proceedings of the 2017 International Conference on Intelligent

Computing, Instrumentation and Control Technologies, Kerala, India, 6–7 July 2017; pp. 1417–1420.
143. Salvi, S.; Sanjay, H.A. Cloud based data analysis and monitoring of smart multi-level irrigation system using IoT. In Proceedings of

the International conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 10–11 February
2017; pp. 752–757.

144. Yashaswini, L.S.; Vani, H.U. Smart automated irrigation system with disease prediction. In Proceedings of the 2017 IEEE
International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), Chennai, India, 21–22 September
2017; pp. 422–427.

145. Yadav, P.K.; Sharma, F.C. Soil Moisture Sensor-Based Irrigation Scheduling to Optimize Water Use Efficiency in Vegetables.
Irrig. Assoc. 2020, 1–7, [WWW Document]. Available online: http://www.irrigation.org/IA/FileUploads/IA/Resources/
TechnicalPapers/2018/Soil_Moisture_Sensor_based_Irrigation_YADAV.pdf (accessed on 25 June 2023).

146. Boman, B.; Smith, S.; Tullos, B. Control and Automation in Citrus Micro Irrigation Systems; Agricultural and Biological Engineering
Department, UF/IFAS Extension; University of Florida: Gainesville, FL, USA, 2015; pp. 1–15.

147. Al-Ghobari, H.M.; Mohammad, F.S.; El Marazky, M.S.A. Assessment of smart irrigation controllers under subsurface and
drip-irrigation systems for tomato yield in arid regions. Crop Pasture Sci. 2015, 66, 1086–1095. [CrossRef]

148. Fuentes, B.S.; Tongson, E. Advances and requirements for machine learning and artificial intelligence applications in viticulture.
Wine Vitic. J. 2018, 33, 47–51.

149. Adeyemi, O.; Grove, I.; Peets, S.; Domun, Y.; Norton, T. Dynamic neural network modelling of soil moisture content for predictive
irrigation scheduling. Sensors 2018, 18, 3408. [CrossRef] [PubMed]

150. Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine learning in agriculture: A review. Sensors 2018, 18, 2674.
[CrossRef] [PubMed]

151. Campos, J.; Gallart, M.; Llop, J.; Ortega, P.; Salcedo, R.; Gil, E. On-farm evaluation of prescription map-based variable rate
application of pesticides in vineyards. Agronomy 2020, 10, 102. [CrossRef]

152. Tsang, S.W.; Jim, C.Y. Applying artificial intelligence modeling to optimize green roof irrigation. Energy Build. 2016, 127, 360–369.
[CrossRef]

153. Karasekreter, N.; Basciftci, F.; Fidan, U. A new suggestion for an irrigation schedule with an artificial neural network. J. Exp.
Theor. Artif. Intell. 2013, 25, 93–104. [CrossRef]

154. Umair, S.; Muhammad, R.U. Automation of irrigation system using ANN based controller. Int. J. Elec. Comp. Sci. 2010, 10, 41–47.
155. Hasan, M.F.; Haque, M.M.; Khan, M.R.; Ruhi, R.I.; Charkabarty, A. Implementation of fuzzy logic in autonomous irrigation

system for efficient use of water. In Proceedings of the 2018 Joint 7th International Conference on Informatics, Electronics &

https://doi.org/10.1177/1550147719840182
https://doi.org/10.1155/2016/9784071
https://doi.org/10.1016/j.agrformet.2009.11.006
https://doi.org/10.1016/0002-1571(81)90032-7
https://doi.org/10.1007/s00271-005-0021-9
https://doi.org/10.2134/agronj1982.00021962007400020013x
https://doi.org/10.1016/j.agwat.2015.08.011
https://doi.org/10.1016/j.agwat.2009.07.009
https://doi.org/10.1016/j.agwat.2014.10.015
https://doi.org/10.1016/j.agwat.2020.106404
https://doi.org/10.1155/2020/8396164
https://doi.org/10.3390/s20247041
https://www.ncbi.nlm.nih.gov/pubmed/33316968
http://www.irrigation.org/IA/FileUploads/IA/Resources/TechnicalPapers/2018/Soil_Moisture_Sensor_based_Irrigation_YADAV.pdf
http://www.irrigation.org/IA/FileUploads/IA/Resources/TechnicalPapers/2018/Soil_Moisture_Sensor_based_Irrigation_YADAV.pdf
https://doi.org/10.1071/CP15065
https://doi.org/10.3390/s18103408
https://www.ncbi.nlm.nih.gov/pubmed/30314346
https://doi.org/10.3390/s18082674
https://www.ncbi.nlm.nih.gov/pubmed/30110960
https://doi.org/10.3390/agronomy10010102
https://doi.org/10.1016/j.enbuild.2016.06.005
https://doi.org/10.1080/0952813X.2012.680071


Agronomy 2023, 13, 2113 23 of 25

Vision (ICIEV) and 2018 2nd International Conference on Imaging, Vision & Pattern Recognition, Kitakyushu, Japan, 25–29 June
2018; pp. 234–238.

156. Mendes, W.R.; Araujo, F.M.U.; Dutta, R.; Heeren, D.M. Fuzzy control system for variable rate irrigation using remote sensing.
Expert Syst. Appl. 2019, 124, 13–24. [CrossRef]

157. Mousa, A.K.; Crook, M.S.; Abdullah, M.N. Fuzzy based decision support model for irrigation system management. Int. J. Comput.
Appl. 2014, 104, 14–20.

158. Janjanam, D.; Ganesh, B.; Manjunatha, L. Design of an expert system architecture: An overview. J. Phys. Conf. Ser. 2021,
1767, 012036. [CrossRef]

159. Khamkar, M.N.U. Design and Implementation of Expert System in Irrigation of Sugarcane: Conceptual Study; Sinh Gad Institute of
Management and Computer Application (SIM CA): Maharashtra, India, 2014; pp. 55–58.

160. Hazman, M. Crop irrigation schedule expert system. In Proceedings of the International conference ICT Knowledge Engineering,
Bangkok, Thailand, 18–20 November 2015; pp. 78–83.

161. Eid, S.; Abdrabbo, M. Developments of an expert system for on-farm irrigation water management under arid conditions. J. Soil
Sci. Agric. Eng. 2018, 9, 69–76. [CrossRef]

162. Ragab, S.A.; El-Gindy, A.M.; Arafa, Y.E.; Gaballah, M.S. An expert system for selecting the technical specifications of drip
irrigation control unit. Arab. Univ. J. Agric. Sci. 2018, 26, 601–609. [CrossRef]

163. Perea, R.G.; Poyato, E.C.; Montesinos, P.; Díaz, J.A.R. Optimisation of water demand forecasting by artificial intelligence with
short data sets. Biosyst. Eng. 2019, 177, 59–66. [CrossRef]

164. Cam, Z.G.; Çimen, S.; Yildirim, T. Learning parameter optimization of multi-layer perceptron using artificial bee colony, genetic
algorithm and particle swarm optimization. In Proceedings of the SAMI 2015—IEEE 13th International Symposium on Applied
Machine Intelligence and Informatics, Herl’any, Slovakia, 22–24 January 2015; Volume 1, pp. 329–332.

165. Mehra, M.; Saxena, S.; Sankaranarayanan, S.; Tom, R.J.; Veeramanikandan, M. IoT based hydroponics system using Deep Neural
Networks. Comput. Electron. Agric. 2018, 155, 473–486. [CrossRef]

166. Saggi, M.K.; Jain, S.A. Survey Towards Decision Support System on Smart Irrigation Scheduling Using Machine Learning
approaches. Arch. Comput. Method. Eng. 2022, 29, 4455–4478.

167. Ferreira, L.B.; da Cunha, F.F. New approach to estimate daily reference evapotranspiration based on hourly temperature and
relative humidity using machine learning and deep learning. Agric. Water Manag. 2020, 234, 106113. [CrossRef]

168. Wang, J.; Ma, Y. Deep learning for smart manufacturing: Methods and applications. J. Manufact. Syst. 2018, 48, 144–156. [CrossRef]
169. Kia, P.J.; Far, A.T. Intelligent control based fuzzy logic for automation of greenhouse irrigation system and evaluation in relation

to conventional systems. World Appl. Sci. J. 2009, 6, 16–23.
170. Obaideen, K.; Yousef, B.A.; AlMallahi, M.N.; Tan, Y.C.; Mahmoud, M.; Jaber, H.; Ramadan, M. An overview of smart irrigation

systems using IoT. Energy Nexus 2022. [CrossRef]
171. Al-Ali, A.R.; Qasaimeh, M.; Al-Mardini, M.; Radder, S.; Zualkernan, I.A. ZigBee-based irrigation system for home gardens. In

Proceedings of the 2015 International Conference on Communications, Signal Processing, and their Applications, Sharjah, United
Arab Emirates, 17–19 February 2015; pp. 1–5.

172. Anand, K.; Jayakumar, C.; Muthu, M.; Amirneni, S. Automatic drip irrigation system using fuzzy logic and mobile technology. In
Proceedings of the 2015 IEEE technological innovation in ict for agriculture and rural development, Chennai, India, 10–12 July
2015; pp. 54–58.

173. Giusti, E.; Marsili-Libelli, S.A. Fuzzy Decision Support System for irrigation and water conservation in agriculture. Environ.
Modell. Soft. 2015, 63, 73–86. [CrossRef]

174. Dela Cruz, J.R.; Baldovino, R.G.; Bandala, A.A.; Dadios, E.P. Water usage optimization of Smart Farm Automated Irrigation System
using artificial neural network. In Proceedings of the 2017 5th International Conference on Information and Communication
Technology, Melaka, Malaysia, 17–19 May 2017; pp. 1–5.

175. Arvind, G.; Athira, V.G.; Haripriya, H.; Rani, R.A.; Aravind, S. Automated irrigation with advanced seed germination and pest
control. In Proceedings of the 2017 IEEE Technological Innovations in ICT for Agriculture and Rural Development, Chennai,
India, 7–8 April 2017; pp. 64–67.

176. Krishnan, R.S.; Julie, E.G.; Robinson, Y.H.; Raja, S.; Kumar, R.; Thong, P.H. Fuzzy logic based smart irrigation system using
internet of things. J. Clean. Prod. 2020, 252, 119902. [CrossRef]

177. King, B.A.; Shellie, K.C.; Tarkalson, D.D.; Levin, A.D.; Sharma, V.; Bjorneberg, D.L. Data-driven models for canopy temperature-
based irrigation scheduling. Trans. ASABE 2020, 63, 1579–1592. [CrossRef]

178. Sidhu, R.K.; Kumar, R.; Rana, P.S. Long short-term memory neural network-based multi-level model for smart irrigation. Mod.
Phy. Lett. B 2020, 34, 2050418. [CrossRef]

179. Lakshmi, G.P.; Asha, P.N.; Sandhya, G.; Sharma, S.V.; Shilpashree, S.; Subramanya, S.G. An intelligent IOT sensor coupled
precision irrigation model for agriculture. Measurement. Sensors 2023, 25, 100608.

180. Bwambal, E.; Abagale, F.K.; Anornu, G.K. Data-driven model predictive control for precision irrigation management. Smart Agric.
Technol. 2023, 3, 100074. [CrossRef]

181. Kassing, R. Model Predictive Control of Open Water Systems with Mobile Operators Delft University of Technology. Master’s
Thesis, Delft University of Technology, Delft, The Netherlands, 2018.

https://doi.org/10.1016/j.eswa.2019.01.043
https://doi.org/10.1088/1742-6596/1767/1/012036
https://doi.org/10.21608/jssae.2018.35544
https://doi.org/10.21608/ajs.2018.15965
https://doi.org/10.1016/j.biosystemseng.2018.03.011
https://doi.org/10.1016/j.compag.2018.10.015
https://doi.org/10.1016/j.agwat.2020.106113
https://doi.org/10.1016/j.jmsy.2018.01.003
https://doi.org/10.1016/j.nexus.2022.100124
https://doi.org/10.1016/j.envsoft.2014.09.020
https://doi.org/10.1016/j.jclepro.2019.119902
https://doi.org/10.13031/trans.13901
https://doi.org/10.1142/S0217984920504187
https://doi.org/10.1016/j.atech.2022.100074


Agronomy 2023, 13, 2113 24 of 25

182. Menon, J.; Mudgal, B.; Guruprasath, M.; Sivalingam, S. Control of an irrigation branch canal using model predictive controller.
Curr. Sci. 2020, 118, 1255. [CrossRef]

183. Wang, Y.; Riaz, S. Accelerated iterative learning control for linear discrete time invariant switched systems. Mathematic. Prob. Eng.
2022, 2022, 5738826. [CrossRef]

184. Zheng, Z.; Wang, Z.; Zhao, J.; Zheng, H. Constrained model predictive control algorithm for cascaded irrigation canals. J. Irrig.
Drain. Eng. 2019, 145, 04019009. [CrossRef]

185. Puig, V.; Ocampo-Martínez, C.; Romera, J.; Quevedo, J.; Negenborn, R.; Rodríguez, P.; de Campos, S. Model predictive control of
combined irrigation and water supply systems: Application to the Guadiana river. Proceedings of 2012 9th IEEE International
Conference on Networking, Sensing and Control, Beijing, China, 11–14 April 2012; pp. 85–90.

186. Zhang, R.; Liu, A.; Yu, L.; Zhang, W. Distributed model predictive control based on Nash optimality for large scale irrigation
systems. IFAC-Pap. 2015, 48, 551–555.

187. Bhakta, I.; Phadikar, S.; Majumder, K. State-of-the-art technologies in precision agriculture: A systematic review. J. Sci. Food Agric.
2019, 99, 4878–4888. [CrossRef] [PubMed]

188. Fontanet, M.; Scudiero, E.; Skaggs, T.H.; Fernàndez-Garcia, D.; Ferrer, F.; Rodrigo, G.; Bellvert, J. Dynamic management zones for
irrigation scheduling. Agric. Water Manag. 2020, 238, 106207. [CrossRef]

189. Thorp, K.R. Long-term simulations of site-specific irrigation management for Arizona cotton production. Irrig. Sci. 2020, 38,
49–64. [CrossRef]

190. Liang, X.; Liakos, V.; Wendroth, O.; Vellidis, G. Scheduling irrigation using an approach based on the van Genuchten model.
Agric. Water Manag. 2016, 176, 170–179. [CrossRef]

191. Serrano, J.; Shahidian, S.; Marques da Silva, J.; Paixão, L.; Moral, F.; Carmona-Cabezas, R.; Noéme, J. Mapping management zones
based on soil apparent electrical conductivity and remote sensing for implementation of variable rate irrigation—Case study of
corn under a center pivot. Water 2020, 12, 3427. [CrossRef]

192. Sui, R.; Yan, H. Field study of variable rate irrigation management in humid Climates. Irrig. Drain. 2017, 66, 327–339. [CrossRef]
193. Scudiero, E.; Teatini, P. Workflow to Establish Time-Specific Zones in Precision Agriculture by Spatiotemporal Integration of Plant

and Soil Sensing Data. Agronomy 2018, 8, 253. [CrossRef]
194. Ohana-Levi, N.; Bahat, I.; Peeters, A.; Shtein, A.; Netzer, Y.; Cohen, Y.; Ben-Gal, A. A weighted multivariate spatial clustering

model to determine irrigation management zones. Comput. Electron. Agric. 2019, 162, 719–731. [CrossRef]
195. Han, Y.J.; Khalilian, A.; Owino, T.O.; Farahani, H.J.; Moore, S. Development of Clemson variable-rate lateral irrigation system.

Comput. Electron. Agric. 2009, 68, 108–113. [CrossRef]
196. Yari, A.; Madramootoo, C.A. Performance evaluation of constant versus variable rate irrigation. Irrig. Drain. 2017, 66, 501–509.

[CrossRef]
197. Vories, E.; Stevens, W.G. Investigating irrigation scheduling for rice using variable rate irrigation. Agric. Water Manag. 2017, 179,

314–323. [CrossRef]
198. Daccache, A.; Knox, J.W. Implementing precision irrigation in a humid climate: Recent experiences and on-going challenges.

Agric. Water Manag. 2015, 147, 135–143. [CrossRef]
199. Evans, R.G.; LaRue, J. Adoption of site-specific variable rate irrigation systems. Irrig. Sci. 2013, 31, 871–887. [CrossRef]
200. Lo, T.H.; Heeren, D.M. Field characterization of field capacity and root zone available water capacity for variable rate irrigation.

Appl. Eng. Agric. 2017, 33, 559–572. [CrossRef]
201. Zhao, W.; Li, J.; Yang, R.; Li, Y. Crop yield and water productivity responses in management zones for variable-rate irrigation

based on available soil water holding capacity. Trans. ASABE 2017, 60, 1659–1667. [CrossRef]
202. O’Shaughnessy, S.A.; Evett, S.R. Identifying advantages and disadvantages of variable rate irrigation: An updated review. Appl.

Eng. Agric. 2019, 35, 837–852. [CrossRef]
203. Shi, W.; Zhou, H.; Li, J.; Xu, W.; Zhang, N.; Shen, X. Drone assisted vehicular networks: Architecture, challenges and opportunities.

IEEE Netw. 2018, 32, 130–137. [CrossRef]
204. Yazdinejad, A.; Parizi, R.M. Enabling drones in the internet of things with decentralized blockchain-based security. IEEE Internet

Things J. 2020, 8, 6406–6415. [CrossRef]
205. Vihari, M.M.; Nelakuditi, U.R.; Teja, M.P. IoT based Unmanned Aerial Vehicle system for Agriculture applications. In Proceedings

of the 2018 International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 13–14 December
2018; pp. 26–28.

206. Roopaei, M.; Rad, P.; Choo, K.K.R. Cloud of things in smart agriculture: Intelligent irrigation monitoring by thermal imaging.
IEEE Cloud Comput. 2017, 4, 10–15. [CrossRef]

207. Elijah, O.; Rahman, T.A.; Orikumhi, I.; Leow, C.Y.; Hindia, M.N. An overview of Internet of Things (IoT) and data analytics in
agriculture: Benefits and challenges. IEEE Internet Things J. 2018, 5, 3758–3773.

208. Boursianis, A.D.; Papadopoulou, M.S. Internet of Things (IoT) and Agricultural Unmanned Aerial Vehicles (UAVs) in smart
farming: A comprehensive review. Internet Things 2020, 18, 100187.

209. Chebrolu, N.; Labe, T.; Stachniss, C. Robust Long-Term Registration of UAV Images of Crop Fields for Precision Agriculture.
IEEE Robot. Autom. Lett. 2018, 3, 3097–3104. [CrossRef]

210. Chang, A.; Jung, J.; Maeda, M.M.; Landivar, J. Crop height monitoring with digital imagery from Unmanned Aerial System
(UAS). Comput. Electron. Agric. 2017, 141, 232–237. [CrossRef]

https://doi.org/10.18520/cs/v118/i8/1255-1264
https://doi.org/10.1155/2022/5738826
https://doi.org/10.1061/(ASCE)IR.1943-4774.0001390
https://doi.org/10.1002/jsfa.9693
https://www.ncbi.nlm.nih.gov/pubmed/30883757
https://doi.org/10.1016/j.agwat.2020.106207
https://doi.org/10.1007/s00271-019-00650-6
https://doi.org/10.1016/j.agwat.2016.05.030
https://doi.org/10.3390/w12123427
https://doi.org/10.1002/ird.2111
https://doi.org/10.3390/agronomy8110253
https://doi.org/10.1016/j.compag.2019.05.012
https://doi.org/10.1016/j.compag.2009.05.002
https://doi.org/10.1002/ird.2131
https://doi.org/10.1016/j.agwat.2016.05.032
https://doi.org/10.1016/j.agwat.2014.05.018
https://doi.org/10.1007/s00271-012-0365-x
https://doi.org/10.13031/aea.11963
https://doi.org/10.13031/trans.12340
https://doi.org/10.13031/aea.13128
https://doi.org/10.1109/MNET.2017.1700206
https://doi.org/10.1109/JIOT.2020.3015382
https://doi.org/10.1109/MCC.2017.5
https://doi.org/10.1109/LRA.2018.2849603
https://doi.org/10.1016/j.compag.2017.07.008


Agronomy 2023, 13, 2113 25 of 25

211. Roth, L.; Aasen, H. Extracting leaf area index using viewing geometry effects-A new perspective on high-resolution unmanned
aerial system photography. ISPRS 2018, 141, 161–175. [CrossRef]

212. Deng, L.; Mao, Z.; Li, X.; Hu, Z.; Duan, F.; Yan, Y. UAV-based multispectral remote sensing for precision agriculture: A comparison
between different cameras. ISPRS 2018, 146, 124–136. [CrossRef]

213. Jannoura, R.; Brinkmann, K.; Uteau, D.; Bruns, C.; Joergensen, R.G. Monitoring of crop biomass using true colour aerial
photographs taken from a remote controlled hexacopter. Biosyst. Eng. 2015, 129, 341–351. [CrossRef]

214. Rokhmana, C.A. The Potential of UAV-based Remote Sensing for Supporting Precision Agriculture in Indonesia. Proc. Environ.
Sci. 2015, 24, 245–253. [CrossRef]

215. Jagüey, J.G.; Villa-Medina, J.F.; López-Guzmán, A.; Porta-Gándara, M.Á. Smartphone irrigation sensor. IEEE Sens. J. 2015, 15,
5122–5127. [CrossRef]

216. Kavianand, G.; Nivas, V.M.; Kiruthika, R.; Lalitha, S. Smart drip irrigation system for sustainable agriculture. In Proceedings of
the 2016 IEEE Technological Innovations in ICT for Agriculture and Rural Development (TIAR), Chennai, India, 15–16 July 2016;
pp. 19–22.

217. Zaier, R.; Zekri, S.; Jayasuriya, H.; Teirab, A.; Hamza, N.; Al-Busaidi, H. Design and implementation of smart irrigation system
for groundwater use at farm scale. In Proceedings of the 2015 7th International Conference on Modelling, Identification and
Control (ICMIC), Sousse, Tunisia, 18–20 December 2015; pp. 1–6.

218. Oksanen, T.; Linkolehto, R.; Seilonen, I. Adapting an industrial automation protocol to remote monitoring of mobile agricultural
machinery: A combine harvester with IoT. IFAC-Pap. 2016, 49, 127–131. [CrossRef]

219. Lee, H.; Moon, A.; Moon, K.; Lee, Y. Disease and pest prediction IoT system in orchard: A preliminary study. In Proceedings of
the 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN), Milan, Italy, 4–7 July 2017; pp. 525–527.

220. Chieochan, O.; Saokaew, A.; Boonchieng, E. IOT for smart farm: A case study of the Lingzhi mushroom farm at Maejo University.
In Proceedings of the 2017 14th International Joint Conference on Computer Science and Software Engineering, Nakhon Si
Thammarat, Thailand, 12–14 July 2017; pp. 1–6.

221. Berni, J.A.; Zarco-Tejada, P.J.; Suárez, L.; Fereres, E. Thermal and narrowband multispectral remote sensing for vegetation
monitoring from an unmanned aerial vehicle. IEEE Trans. Geosci. Remote Sens. 2009, 47, 722–738.

222. Baluja, J.; Diago, M.P.; Balda, P.; Zorer, R.; Meggio, F.; Morales, F.; Tardaguila, J. Assessment of vineyard water status variability
by thermal and multispectral imagery using an unmanned aerial vehicle (UAV). Irrig. Sci. 2012, 30, 511–522. [CrossRef]

223. Gonzalez-Dugo, V.; Zarco-Tejada, P.; Berni, J.A.; Suarez, L.; Goldhamer, D.; Fereres, E. Almond tree canopy temperature reveals
intra-crown variability that is water stress-dependent. Agric. For. Meteorol. 2012, 154, 156–165.

224. Zarco-Tejada, P.J.; González-Dugo, V.; Berni, J.A. Fluorescence, temperature and narrow-band indices acquired from a UAV
platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Rem. Sens. Environ. 2012, 117,
322–337. [CrossRef]

225. Gonzalez-Dugo, V.; Zarco-Tejada, P.; Nicolás, E.; Nortes, P.A.; Alarcón, J.J.; Intrigliolo, D.S.; Fereres, E.J.P.A. Using high resolution
UAV thermal imagery to assess the variability in the water status of five fruit tree species within a commercial orchard. Precis.
Agric. 2013, 14, 660–678. [CrossRef]

226. Aboutalebi, M.; Allen, L.N.; Torres-Rua, A.F.; McKee, M.; Coopmans, C. Estimation of soil moisture at different soil levels using
machine learning techniques and unmanned aerial vehicle (UAV) multispectral imagery. Auton. Air Ground Sens. Syst. Agric.
Optim. Phenotyping 2019, 11008, 216–226.

227. Chen, A.; Orlov-Levin, V.; Meron, M. Applying high-resolution visible-channel aerial imaging of crop canopy to precision
irrigation management. Agric. Water Manag. 2019, 216, 196–205. [CrossRef]

228. Jorge, J.; Vallb, M.; Soler, J.A. Detection of irrigation in homogeneities in an olive grove using the NDRE vegetation index obtained
from UAV images. Euro. J. Remote Sens. 2019, 52, 169–177. [CrossRef]

229. Zhang, Y.; Han, W.; Zhang, H.; Niu, X.; Shao, G. Evaluating soil moisture content under maize coverage using UAV multimodal
data by machine learning algorithms. J. Hydrol. 2023, 617, 129086.

230. Kropp, I.; Nejadhashemi, A.P.; Deb, K.; Abouali, M.; Roy, P.C.; Adhikari, U.; Hoogenboom, G. A multi-objective approach to
water and nutrient efficiency for sustainable agricultural intensification. Agric. Syst. 2019, 173, 289–302. [CrossRef]

231. Nawandar, N.; Satpute, V. IoT based low cost and intelligent module for smart irrigation system. Comput. Electron. Agric. 2019,
162, 979–990. [CrossRef]

232. Chen, X.; Qi, Z.; Gui, D.; Gu, Z.; Ma, L.; Zeng, F.; Sima, M.W. A model-based real-time decision support system for irrigation
scheduling to improve water productivity. Agronomy 2019, 9, 686. [CrossRef]

233. Chen, X.; Feng, S.; Qi, Z.; Sima, M.W.; Zeng, F.; Li, L.; Wu, H. Optimizing Irrigation Strategies to Improve Water Use Efficiency of
Cotton in Northwest China Using RZWQM2. Agriculture 2022, 12, 383. [CrossRef]

234. Chen, X.; Qi, Z.; Gui, D.; Sima, M.W.; Zeng, F.; Li, L.; Gu, Z. Evaluation of a new irrigation decision support system in improving
cotton yield and water productivity in an arid climate. Agric. Water Manag. 2020, 234, 106139. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.isprsjprs.2018.04.012
https://doi.org/10.1016/j.isprsjprs.2018.09.008
https://doi.org/10.1016/j.biosystemseng.2014.11.007
https://doi.org/10.1016/j.proenv.2015.03.032
https://doi.org/10.1109/JSEN.2015.2435516
https://doi.org/10.1016/j.ifacol.2016.10.024
https://doi.org/10.1007/s00271-012-0382-9
https://doi.org/10.1016/j.rse.2011.10.007
https://doi.org/10.1007/s11119-013-9322-9
https://doi.org/10.1016/j.agwat.2019.02.017
https://doi.org/10.1080/22797254.2019.1572459
https://doi.org/10.1016/j.agsy.2019.03.014
https://doi.org/10.1016/j.compag.2019.05.027
https://doi.org/10.3390/agronomy9110686
https://doi.org/10.3390/agriculture12030383
https://doi.org/10.1016/j.agwat.2020.106139

	Introduction 
	Major Constraints of Agricultural Productivity in Drylands 
	Land Degradation 
	Water Scarcity Issues and Sustainable Development Goals 
	Climate Variability 
	Overexploitation of Groundwater 
	Socioeconomic Drivers 
	Droughts 
	Conventional Technology 

	Traditional Approaches Used for Irrigation Scheduling 
	Weather-Based Irrigation Scheduling 
	Plant-Based Irrigation Scheduling 
	Irrigation Scheduling Based on Soil Moisture 

	Innovative Smart Irrigation Approaches 
	State-of-the-Art Smart Irrigation Technologies 
	Artificial Intelligence (AI) and Deep Learning 
	Model Predictive Irrigation Systems 
	Variable-Rate Irrigation (VRI) 
	Unmanned Aerial Vehicles (UAVs) for Irrigation Management 

	Forecasting Smart Irrigation Technology with DSSIS 

	Future Prospects 
	Conclusions 
	References

