
Citation: Yan, A.; Ning, S.; Geng, H.;

Guo, T.; Xiao, S. Quantitative Trait

Locus (QTL) Mapping for Common

Wheat Plant Heights Based on

Unmanned Aerial Vehicle Images.

Agronomy 2023, 13, 2088. https://

doi.org/10.3390/agronomy13082088

Academic Editor: Frank Liebisch

Received: 25 June 2023

Revised: 2 August 2023

Accepted: 7 August 2023

Published: 9 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agronomy

Article

Quantitative Trait Locus (QTL) Mapping for Common Wheat
Plant Heights Based on Unmanned Aerial Vehicle Images
An Yan 1, Songrui Ning 2,* , Hongwei Geng 3, Tao Guo 4 and Shuting Xiao 4

1 College of Grassland Science, Xinjiang Agricultural University, Urumqi 830052, China; zryanan@163.com
2 State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology,

Xi’an 710048, China
3 College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; hw-geng@163.com
4 College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China;

xxyan528@163.com (T.G.); 15309900960@163.com (S.X.)
* Correspondence: ningsongrui@163.com

Abstract: The application of unmanned aerial vehicle (UAV) remote sensing technology for high-
throughput acquisition of phenotypic values of field plant height is of great significance in plant
height monitoring of wheat varieties (lines). Based on the UAV, mounted with high-resolution digital
cameras, a low-altitude remote sensing platform was built to obtain images of the Berkut/Worrakatta
recombinant inbred lines (RIL) wheat population (297 lines). The optimal digital surface model
(DSM) for plant height extraction was constructed by combining the actual wheat plant heights
measured in the field. Using a wheat 50K SNP chip, quantitative trait locus (QTL) analysis was
performed for field plant height of the RIL population using UAV plant height data to detect the locus
related to plant height. We verified the effectiveness of QTL analysis using the UAV plant height
data. The results of the DSM plant height extraction method showed that the plant height extraction
models during the entire growth period had a highly significant correlation (p < 0.001); the measured
plant height correlated with the predicted plant height, with prediction model accuracy R2 = 0.7527
and verification model accuracy R2 = 0.8214. QTL analysis was conducted on the manually and
UAV-measured plant height traits. For the manually measured plant height phenotypes, one locus
related to plant height was detected on wheat chromosome 6A and explained 13.12% of phenotypic
variation. For the UAV-measured phenotypes, one locus related to plant height was also detected
on wheat chromosome 6A and explained 9.62% of phenotypic variation. The QPH.xjau-6A locus
on chromosome 6A, which featured in the results of the two measurement methods, is a stable
locus, indicating that the mapping results obtained using the actual plant height values were in good
agreement with those obtained using the UAV extracted values. Three candidate genes related to
plant height were screened: they encode protein kinase, NAC domain protein, and cytochrome P450,
respectively. Therefore, this study provided reference information for monitoring plant phenotype
and growth of wheat and also for the extraction of plant height for wheat breeding in the future.

Keywords: digital image; plant height; quantitative trait loci; Triticum aestivum L.; unmanned
aerial vehicle

1. Introduction

Wheat (Triticum aestivum L.) is an important food crop that is widely cultivated globally
and is of great significance to national economies and social development [1,2]. However,
demand for food has increased notably due to the rapid increase in the world population,
and it is expected that by 2050, global food demand will increase by 70% [3]. Although the
rapid development of biotechnology has promoted an increase in wheat yield, supporting
global food security, the demand for wheat continues to increase. Researchers are also
considering how to conduct accurate and high-throughput measurement of important
phenotypic traits of wheat plants to ensure more efficient and rapid genetic improvement in
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important wheat traits [3,4]. Research on crop phenotypes, which are the basis of breeding,
contributes to the accurate selection of new varieties that meet the requirements of breeding
programs. With cross-application of crop phenotypic identification based on remote sensing
technology used in crop breeding programs, the advantages of unmanned aerial vehicle
(UAV) remote sensing in realizing high-throughput identification of important phenotypes
in crop field have gradually been realized, making it an increasingly popular research
method in wheat breeding [5–8].

Plant height (PH) is an essential crop phenotypic parameter and an important trait
for evaluating plant growth and yield. Reduced plant height and improved lodging
resistance have always been important breeding goals [9,10]. From the 1960s to the 1980s,
the promotion of dwarf and semi-dwarf wheat varieties played a key factor in increasing
global wheat production [11–13]. At present, the measurement of wheat plant height using
the manual method is time-consuming and labor-intensive, and it suffers a certain degree
of subjectivity. High-throughput monitoring of wheat plant height using UAV remote
sensing technology can help to achieve timely, accurate, and efficient growth monitoring
and yield prediction, which are of great importance in the genetic improvement of wheat
traits [14,15]. The commonly used sensors for remote sensing monitoring in agriculture
include high-resolution digital cameras, multi-spectral cameras, and thermal infrared
sensors, each with different applications, working performance, and indicators [16,17].
Digital cameras can take high-resolution orthophotos of crops, which can be used to plan
breeding programs and monitor crop growth, the crop planting area, and the lodging
area; agricultural multi-spectral cameras can produce crop reflectance of red, green, and
near-infrared bands for information analysis of crop growth, yield, diseases, and insect
pests, and thermal imagers can accurately determine the crop canopy temperature for
monitoring crop transpiration and drought [8,18,19]. Owing to its rapid development,
UAV remote sensing technology has been widely applied in the detection of important
crop traits, and detection of crop height is increasingly becoming an important research
problem [16,20–22]. Yang et al. [18] found that the phenotypic values extracted from UAV
images can be used to measure the phenotypic traits of crops. Niu et al. [23] used UAV
digital images in combination with ground control points (GCP) to generate a digital
surface model (DSM) to extract the plant height of maize, and they confirmed the efficiency
and accuracy of crop prediction analysis based on UAV remote sensing technology. With
regard to crop height monitoring, Zarco-Tejada et al. [24] and Luo et al. [25] obtained
high-resolution images through visible light (RGB) digital cameras and LIDAR, attached to
fixed-wing aircraft, and used them to estimate the height of olive trees and the plant height
of low wetland vegetation, respectively. Verhoeven [26] and Weiss and Baret [27] acquired
high-resolution images through visible light cameras mounted on UAVs, constructed a
DSM for crops using dynamic structural algorithms and a 3D reconstruction method, and
calculated plant height of crops and vines. The aforementioned studies all reflected the
advantages of UAVs, such as carrying convenience, high flexibility, and short operating
cycles [27,28]. The use of linkage maps for gene mapping has also been widely applied
in research on the height traits of wheat [21,22,29]. An increasing number of reports have
identified quantitative trait loci (QTL) for the plant height of wheat using different genetic
populations [30–32]. Liu et al. [33] discovered seven QTLs affecting plant height, which
are located on chromosomes 1B, 4B, 6A, 6D, and 7A, and each QTL explained 5.2–50.1% of
the phenotypic variation. Bőrner et al. [34] detected some major QTLs controlling plant
height on wheat chromosomes 1AS, 2DS, 4AL, and 6AS. Few existing studies have used
high-throughput phenotypic identification to obtain QTLs in crops [20].

In this study, linkage analysis was conducted using UAV remote sensing-measured
plant height of wheat and field-measured height phenotypes of wheat. The comparison
of phenotypic identification and QTL analysis demonstrated the accuracy of UAV remote
sensing data in the determination of phenotypes, and it also revealed the practicality of
using UAV remote sensing data in the genetic improvement of crops. This study aimed to
provide a fast, efficient, and large-scale phenotypic identification method for complex traits
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of wheat varieties (lines) and effectively solve the problems of large-scale and accurate
phenotypic identification in the genetic improvement of wheat.

2. Materials and Methods
2.1. Test Materials and Design

The wheat materials used in this study were recombinant inbred lines (RIL) of the
F6 generation with 297 lines developed from parents Berkut and Worrakatta using the
single seed descent method. The plant height of the parent Berkut was significantly higher
than that of the parent Worrakatta. The parents and their populations came from the
International Maize and Wheat Improvement Center (CIMMYT) and were donated by
the Wheat Research Institute of the Chinese Academy of Agricultural Science and the
Wheat Genetics and Breeding Research Group of the College of Agriculture, Xinjiang
Agricultural University.

In 2019, phenotypic identification tests on plant height of wheat using UAV remote
sensing were conducted at the Snapping Research Base of Xinjiang Agricultural University.
The site is located at 87◦21′08′′ to 87◦21′11′′ E, 43◦56′19′′ to 43◦56′22′′ N. Wheat RIL popu-
lations of 297 lines were sown on 5 April 2019 and harvested normally on 8 July 2019. The
field was designed with random blocks, containing 2 replicates and 3 row zones (each of
size 2 m × 0.9 m). In addition, each zone was spaced 0.2 m apart. Field management was
carried out in accordance with the local conventional cultivation management mode, and
the wheat field showed good growth. Fertilizer application, drip irrigation, insect control,
and weed control were also followed in local field management practices.

2.2. Image and Ground Data Acquisition

A DJI Genie 4A four-rotor electric drone, mounted with a high-resolution digital
camera, was used as a UAV remote sensing data acquisition platform. The UAV platform
had a position and orientation system (POS) for data acquisition in real time. The model
of the high-resolution digital camera was FC 6310, and its main parameters included
20 million real pixels, 5472 × 3648 resolution, f/5.6 aperture value, and 9 mm focal length.
Specific parameters of the UAV image acquisition system are listed in Table 1. On the days
of image acquisition (5 April 2019 and 6 July 2019), solar radiation was stable, and the
weather was sunny and cloudless. During the data acquisition at the mature period (6 July
2019), the plant height was measured at 96 evenly distributed sampling points. Four plants
were selected at equal intervals along the diagonal of each material block and measured
using a tape; the average height of the four plants was taken as the mean plant height (PH)
of the measuring plot. The height of the top of the spikes surrounding the wheat was taken
as the height of the plant during the measurement.

Table 1. Main parameters of the UAV remote sensing image acquisition system.

Main Parameter Value

Maximum takeoff weight 1368 g
Duration of flight 25–30 min

Flying height 20 m
Horizontal and vertical overlapping rate 80%

Ground resolution 1 cm

2.3. Plant Height Data Extraction

Using acquired high-resolution digital images, in combination with GCP data and
Pix4Dmapper stitching software, stitching of UAV high-resolution digital images was
performed to generate a digital orthophoto map (DOM) and digital surface model (DSM)
of bare land and wheat during the mature period in the field, denoted as DSM0 and DSM1,
respectively. DSM0 was the bare land image immediately after sowing, which could be
used as a datum of the field undulation. The difference between DSM1 and DSM0 could be
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used to determine the plant height (PH) of wheat varieties (lines) at each sampling point,
as shown in Equation (1). The specific image stitching process is shown in Figure 1.

PH = DSM1 − DSM0, (1)

where DSM1 is the DSM at the mature period, and DSM0 is the estimated DSM of the bare
land after sowing.
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2.4. Plant Height Data Modeling

Using the method of simple linear regression analysis, 70% of the sample data were
randomly selected for modeling, and a wheat plant height estimation model was con-
structed. The remaining 30% of the sample data were used for verification, and a wheat
plant height verification model was also constructed to test the model estimation ability.
Estimated plant height of wheat and field observation values were used for model regres-
sion analysis. The determination coefficient (R2) was selected as the evaluation index of
the estimation and verification model. The higher the R2 value of the model, the better the
fitness of the model. The calculation method of R2 is shown in Equation (2):

R2 =

n
∑

i=1
(Xi − X)

2
(Yi −Y)2

n
n
∑

i=1
(Xi − X)

2 n
∑

i=1
(Yi −Y)2

(2)

where Xi and X are the measured value of sample i and the mean of the measured values,
respectively; Yi and Y are the estimated value of sample i and the mean of the estimated
values, respectively; and n is the total number of samples.
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2.5. QTL Mapping

Linkage analysis, based on a high-density genetic map constructed by our research
group, was conducted using a 50K SNP chip. The entire map used 11,375 markers to
construct a genetic map containing 1604 bin markers and 28 linkage groups, covering
21 chromosomes of common wheat. The length of the genetic map was 2220.26 cM, and the
average distance between each marker was 1.38 cM. By combining the phenotypic values
with the chip data, inclusive composite interval mapping (ICIM-ADD) was completed to
estimate major QTL using ICIM Mapping V4.1 software, where the logarithm of the odds
(LOD) threshold was set at 2.5; default values were used for other settings. The results
were jointly evaluated based on the values of phenotypic variation explained (PVE) and
LOD to obtain the QTL of plant height. A QTL was named by Q + abbreviation of the
trait + abbreviation of the work unit (xjau) + the chromosome where the QTL was located.
For example, the QTL detected on the short arm of wheat chromosome 6A was named
QPH.xjau-6A.

2.6. Candidate Genes

The detected SNP markers that significantly correlated with yield-related traits were
used to detect the candidate genes. Physical positions of population markers were mapped
on the wheat genome, and a BLAST comparison was performed using the significant SNP
marker sequence detected in multiple environments based on the Chinese Spring Wheat
Reference Genome Database (http://www.wheatgome.org/ (accessed on 13 February
2023)) and NCBI website (http://www.ncbi.nlm.nih.gov/ (accessed on 19 February 2023))
for functional annotation of candidate genes.

3. Results
3.1. Phenotypic Evaluation

The mean plant height of the parent Berkut, determined using traditional field mea-
surement, was 68.0 cm, and that of parent Worrakatta was 56.0 cm. The plant heights of
the two parents were significantly different (p < 0.05), and the range of variation in the
plant height of the RIL population was 49.4–78.3 cm, showing a bidirectional transgressive
segregation (Table 2). The mean plant height of parent Berkut, determined using UAV
remote sensing measurement, was 69.4 cm, and that of parent Worrakatta was 60.0 cm. The
plant heights of the two parents were also significantly different (p < 0.05), and the range of
variation in the plant height of the RIL population was 54.5–76.5 cm, showing a bidirec-
tional transgressive segregation (Table 2). The values of the field-measured plant height
and UAV remote-sensing-measured plant heights of the population both showed a normal
distribution with continuous variables (Figure 2). The plant heights of the two parents
and the mean plant height of the population measured using UAV remote sensing were all
higher than the plant heights measured manually in the field. However, the field-measured
plant height of the population exhibited a larger variation range than did the UAV remote-
sensing-measured heights. Correlation analysis showed that the correlation coefficient
between the field-measured plant height and UAV remote-sensing-measured plant height
was as high as 0.92, indicating that UAV remote sensing can be used to effectively reflect the
phenotype of plant height among individuals. Variance analysis showed that the genotypic
differences between the field-measured plant height and UAV remote-sensing-measured
plant height of the Berkut/Worrakatta RIL population both reached a significant level
(p < 0.001) (Table 3), and the broad-sense heritability of both was 0.76, indicating that the
plant height of wheat was greatly affected by genetic factors.

http://www.wheatgome.org/
http://www.ncbi.nlm.nih.gov/
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Table 2. Basic descriptions of the plant height of wheat Berkut/Worrakatta parents and the population.

Parent RIL Population

Berkut Worrakatta Mean Minimum Maximum Standard
Deviation

Standard
Error Kurtosis Skewness

Measured 68.0 cm 56.0 cm 61.2 cm 49.4 cm 78.3 cm 5.92 0.34 −0.27 0.45
UAV 69.4 cm 60.0 cm 64.3 cm 54.5 cm 76.5 cm 4.42 0.26 −0.27 0.45
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Table 3. Variance analysis and broad-sense heritability of plant height traits.

Index
Mean Square Heritability Correlation

Coefficient
(r)Genotype (G) Replicate Error (h2)

Measured 70.19 *** 3.47 15.74 0.76
0.92UAV 39.03 *** 1.91 8.75 0.76

*** indicates significance at p < 0.001.

3.2. Plant Height Model Analysis

Linear regression analysis was carried out on 297 lines of the wheat RIL population,
and a plant height estimation model was constructed. A total of 70% of the data were
randomly selected for model construction (Figure 3A), and the remaining 30% of the data
were selected for model verification (Figure 3B). Scatter plots of the results were produced,
and R2 values of the models were calculated, as shown in Figure 3. The R2 values of the
model data and verification data were 0.7527 and 0.8214, respectively. This result also
indicated that the models all had high prediction accuracy. Figure 3A also illustrates that
the wheat plant height data extracted by DSM were generally smaller than the manually
measured values. However, the overall deviation was not large. This may have been caused
by factors such as full ear grains with increased grain weight, reduced vegetation coverage,
and withered and yellow leaves after the end of the wheat growth period, leading to a high
bending degree of the wheat stem and reduction in the image extraction effects, thereby
lowering the plant height of wheat extracted by DSM.
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3.3. QTL Mapping for Plant Height

The 297 lines of the Berkut/Worrakatta RIL population were subjected to whole-
genome analysis for the manually measured plant height and UAV measured plant height.
The results showed that in the manually measured plant height phenotypes, one plant
height-related QTL QPH.xjau-6A was detected, and it is distributed on wheat chromosome
6A between AX-109447932 and AX-95023286 with a PVE of 13.12%. In the UAV remote
sensing measured phenotypes, the same locus related to plant height was also detected
on wheat chromosome 6A, with PEV of 9.62% (Table 4 and Figure 4). The same QTL
detected in the two methods was located in a total area of 155.0 Mb between AX-109447932
and AX-95023286. The PEV of manually measured plant height and UAV-measured plant
height was basically the same, indicating that chromosome 6A is an important effector
locus of plant height. This verified the accuracy of plant height measurement using UAV
remote sensing and showed the similar trend of genome prediction for plant height from
UAV remote sensing measurement and traditional field measurement. Moreover, the
number and position of major QTLs obtained were basically consistent with the QTL
mapping results under conventional plant height measurement. The experimental results
also showed that the high-throughput detection of wheat plant height can be accurately
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realized by UAV, which provides a theoretical basis for the development of the technology
of remote sensing to monitor wheat phenotype.

Table 4. QTL mapping of plant height in the wheat Berkut/Worrakatta RIL population.

Treatment QTL a Chr b Position Left Marker Right Marker LOD c PVE (%) d AE e

Measured QPH.xjau-6A 6A 44 AX-109447932 AX-95023286 8.91 13.12 −2.16
UAV QPH.xjau-6A 6A 44 AX-109447932 AX-95023286 6.39 9.62 −1.50

a QTLs that extend across single one-log support confidence intervals were assigned the same symbol. b Chr
Chromosome. c LOD Logarithm of odds (LOD) score. d PVE is phenotypic variance explained by individual QTL
in percentages. e AE Additive effect of LOX activity.
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3.4. Candidate Genes

Based on the fact that QPH.xjau-6A was repeatedly detected in both the manually and
UAV remote-sensing-measured plant height and was closely linked with SNP markers AX-
109447932 and AX-95023286, the sequence information in this area was analyzed using the
IWGSC Ref Seq Annotations database of wheat to screen the candidate genes. According
to the gene functional annotation information, three candidate genes (TraesCS6A01G196400,
TraesCS6A01G208900, and TraesCS6A01G210500) related to the plant height of wheat were
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obtained, as listed in Table 5. The three candidate genes included: (1) TraesCS6A01G196400,
the gene encoding protein kinase, which regulates normal growth and development of
plant organs and participates in hormone signal transmission in plants, playing a role
in promoting growth and development of wheat; (2) TraesCS6A01G208900, the gene en-
coding the NAC domain protein, which regulates plant growth and development and
negatively regulates plant height by affecting the accumulation of gibberellic acid (GA);
and (3) TraesCS6A01G210500, the gene encoding cytochrome P450, which promotes the
increase in plant height and increases grain yield by promoting cell proliferation (Table 5).

Table 5. Candidate genes for SNPs significantly associated with plant height.

Marker a Chr b Position (Mb) Gene Candidate Gene

AX-109447932AX-
95023286 6A

287.31 TraesCS6A01G196400 Protein kinase family protein
377.86 TraesCS6A01G208900 NAC domain-containing protein
381.53 TraesCS6A01G210500 Cytochrome P450

a Marker shard markers were detected in MLM models at the threshold −log10 (p) = 3.0. b Chr Chromosome.

4. Discussion

Plant height is a vital agronomic trait of wheat, affecting biomass and yield. The
conventional method of measuring plant phenotypic traits (e.g., plant height, etc.) requires
manual field investigation, which is inefficient and time-consuming. In recent years, the
combination of spectral features (e.g., RGB, multispectral, and hyperspectral, etc.) and traits
has more accurately extracted the phenotypic information of crops [35]. Satellite-based
phenotyping depends on the planting area of the crop and weather conditions. UAV-based
field phenotyping of crops makes it possible to collect crop heights with higher precision,
frequency, and efficiency. In many studies, images collected by UAV-based high-resolution
cameras were generated into digital orthophoto maps (DOMs), digital surface models
(DSMs), crop surface models (CSMs), and digital terrain models (DTMs), which are used
to analyze the data of crop height [36–38]. Xie et al. [39] and Feng et al. [40] reviewed
recent applications of UAV remote sensing with various sensors for plant high-throughput
phenotyping traits (plant height, etc.). The final purpose of phenotyping is to select the
best genome lines [39]. However, Wang et al. [20] pointed out that few existing studies
have used high-throughput phenotypic identification to obtain QTLs in crops. This study
combined this method with field measured plant heights of wheat, and an optimal digital
surface model (DSM) was constructed for plant height extraction based on UAV images.
Moreover, QTL analysis was performed for field plant height of the RIL population and
UAV plant height data to detect the locus related to plant height and we also verified the
effectiveness of QTL analysis using the UAV plant height data.

Plant height, which is an important phenotypic feature of plants, can be used to
evaluate growth status and estimate the yield of plants, and it is also one of the important
evaluation criteria of breeding value and germplasm resources [2,9,10,33]. Plant height is a
basic observable and measurable agronomic trait in wheat. There have been many reports
on gene mapping of plant height by previous researchers. Most of the 21 chromosomes
of wheat are related to genetic variation in plant height [27,33]. Despite limiting factors,
such as the low density of molecular markers, large variation of traits affected by the
environment, and linkage drag, there are few loci available for molecular marker-assisted
selection obtained through linkage analysis or association analysis [41,42]. Using a high-
density integrated physical map as the basis, the common loci controlling yield-related
traits can be detected using two methods: single marker–trait association (SNP-GWAS)
and segment–trait association (Haplotype-GWAS). A comparison of the detected loci with
previously reported loci on a genetic map and physical map, and the analysis of the genetic
correlation between different traits, can provide a reliable basis for analyzing the effects
of different loci and assist in the selection of molecular markers [31,33,43]. Despite the
genetic linkage map saturation of wheat and the genetic background differences between
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the parents (the parental plant height was not of extreme types), only one QTL related
to the plant height variation of wheat was detected in this study. Some QTLs, especially
micro-effect QTLs, were not detected. In this study, a plant height-related QTL QPH.xjau-6A
was detected between the markers AX-109447932 and AX-95023286 on chromosome 6A.
Although this QTL is on the same chromosome as the one detected by Liu et al. and Wang
et al., it is not on or near the same marker [30,33]. It is speculated that this QTL may be a
new locus. Therefore, further study on this type of loci would be of great significance in
analyzing the genetic mechanisms that regulate the plant height of wheat and in cultivating
new high-yield wheat varieties.

Plant height is an important agronomic trait of wheat. Although 13 Rht major genes
have been discovered and mapped, the plant height of most varieties is controlled by
multiple genes and is characterized by typical quantitative and genetic features, and it is
easily affected by environmental factors [30]. Identification and selection of plant height
phenotypes using traditional methods are constrained by the need for field work, which
makes it difficult to achieve large-scale identification, and the reliability of the method is
low [44]. Phenotypic traits of plant height are easy to observe, while their genetic research
is progressing slowly, and cloning of the genes regulating the related traits is even more
difficult. So far, the QTLs of plant height that can be repeatedly detected are limited to a
few major loci, such as Rht-B1b and Rht-D1b. A large number of QTLs have been obtained
on other loci, but their stability is poor. Their reliability still needs further verification,
and they are far from being able to be applied in production [41]. UAV remote sensing
technology has potential application value in the phenotypic analysis of plants and achieves
rapid acquisition of spatial information in large-scale crop breeding plots. With guaranteed
accuracy and effectiveness of phenotypic identification, this method has advantages such as
fast maneuvering speed, low costs of usage, and simple maintenance and operation. It has
already played an important role in the large-scale identification of crop phenotypes [9,10].
In this study, through a correlation analysis between the traditionally-measured plant
height and the UAV remote-sensing-measured plant height, we found that both methods
for plant height prediction can accurately reflect the differences between varieties. The
accuracy and practicality of analyzing plant height traits through UAV remote sensing
images were justified. In addition, in this study, based on the plant height phenotypic
data obtained by UAV remote sensing image analysis, in combination with the wheat 50K
SNP chip, the major QTLs of plant height could be accurately obtained. The number and
position of major QTLs obtained were basically consistent with the QTL mapping results
under conventional plant height measurement. The major locus related to plant height,
QPH.xjau-6A, was detected on chromosome 6A using both methods.

Three possible genes (TraesCS6A01G196400, TraesCS6A01G208900, and TraesCS6A01G
210500) associated with plant height candidates in chromosome 6A were identified by
linkage analysis in this study. TraesCS6A01G196400 and TraesCS6A01G208900 are regulated
protein kinases; the proteins of this family have important roles in physiological pro-
cesses such as phytohormone signaling, light signaling, and floral organ development [45].
TraesCS6A01G210500 encodes cytochrome P450 protein. Cytochrome proteins not only par-
ticipate in biosynthetic pathways in plants, but also act as key enzymes in the degradation
of foreign toxic substances and cellular defense systems, which have a certain impact on
crop height [46]. This result also revealed the practicality of using UAV remote sensing
data in the genetic improvement of crops.

5. Conclusions

In this study, a remote sensing platform was established using a UAV carrying a high-
resolution digital camera to acquire images of a Berkut/Worrakatta RIL wheat population
(297 lines). The best digital surface model (DSM) for extracting plant height was constructed
by combining field measurements of actual wheat plant heights. Quantitative trait loci
(QTL) analyses were then performed on the field plant height and drone plant height data
of the RIL population using a wheat 50K SNP chip to detect loci associated with plant
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height. The value of R2 between the field measured plant height and the predicted plant
height by the DSM model reached 0.7527. This indicated that the accuracy of UAV-based
measurement of wheat plant height was higher. Both the field measured data and the
predicted data using the UAV mined the QPH.xjau-6A locus on chromosome 6A. This
verified the utility and feasibility of UAV-based remote sensing in gene mining. Moreover,
the QTL we identified might be a new QTL locus associated with wheat plant height. This
study also provided a fast, efficient, and large-scale phenotypic identification method for
complex traits of wheat varieties, and it solved the problems of large-scale and precise
phenotypic identification in the genetic breeding of wheat.
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PH Plant height
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